GATE

ELECTRONICS \& COMMUNICATION

Topicwise Solved Paper

Year 2013-1996

By RK Kanodia \& Ashish Murolia

For more GATE Resources, Mock Test and Study material Join the Community

UNIT 1

ENGINEERING MATHEMATICS

2013

ONE MARK
1.1 The maximum value of θ until which the approximation $\sin \theta \approx \theta$ holds to within 10% error is
(A) 10°
(B) 18°
(C) 50°
(D) 90°
1.2 The minimum eigen value of the following matrix is
$\left[\begin{array}{ccc}3 & 5 & 2 \\ 5 & 12 & 7 \\ 2 & 7 & 5\end{array}\right]$
(A) 0
(B) 1
(C) 2
(D) 3
1.3 A polynomial $f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x-a_{0}$ with all coefficients positive has
(A) no real roots
(B) no negative real root
(C) odd number of real roots
(D) at least one positive and one negative real root

2013

TWO MARKS
Let A be an $m \times n$ matrix and B an $n \times m$ matrix. It is given that determinant $\left(I_{m}+A B\right)=$ determinant $\left(I_{n}+B A\right)$, where I_{k} is the $k \times k$ identity matrix. Using the above property, the determinant of the matrix given below is
$\left[\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2\end{array}\right]$
(A) 2
(B) 5
(C) 8
(D) 16

2012

ONE MARK
1.5 With initial condition $x(1)=0.5$, the solution of the differential equation

$$
t \frac{d x}{d t}+x=t, \text { is }
$$

(A) $x=t-\frac{1}{2}$
(B) $x=t^{2}-\frac{1}{2}$
(C) $x=\frac{t^{2}}{2}$
(D) $x=\frac{t}{2}$

Given $f(z)=\frac{1}{z+1}-\frac{2}{z+3}$.
If C is a counter clockwise path in the z-plane such that $|z+1|=1$, the value of $\frac{1}{2 \pi j} \oint_{C} f(z) d z$ is
(A) -2
(B) -1
(C) 1
(D) 2
1.7 If $x=\sqrt{-1}$, then the value of x^{x} is
(A) $e^{-\pi / 2}$
(B) $e^{\pi / 2}$

(C) x

(D) 1

2012
TWO MARKS
1.8 Consider the differential equation $\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+y(t)=\delta(t)$ with $\left.y(t)\right|_{t=0^{-}}=-2$ and $\left.\frac{d y}{d t}\right|_{t=0^{-}}=0$
The numerical value of $\left.\frac{d y}{d t}\right|_{t=0^{+}}$is
(A) -2
(A) -2
(B) -1
(C) 0
(D) 1
1.9 The direction of vector \boldsymbol{A} is radially outward from the origin, with $|\boldsymbol{A}|=k r^{n}$. where $r^{2}=x^{2}+y^{2}+z^{2}$ and k is a constant. The value of n for which $\nabla \cdot \boldsymbol{A}=0$ is
(A) -2
(B) 2
(C) 1
(D) 0
1.10 A fair coin is tossed till a head appears for the first time. The

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
probability that the number of required tosses is odd, is
(A) $1 / 3$
(B) $1 / 2$
(C) $2 / 3$
(D) $3 / 4$
1.11 The maximum value of $f(x)=x^{3}-9 x^{2}+24 x+5$ in the interval $[1,6]$ is
(A) 21
(B) 25
(C) 41
(D) 46

Given that
$\boldsymbol{A}=\left[\begin{array}{rr}-5 & -3 \\
2 & 0\end{array}\right]$ and $\boldsymbol{I}=\left[\begin{array}{ll}1 & 0 \\
0 & 1\end{array}\right]$, the value of A^{3} is

(A) $15 \boldsymbol{A}+12 \boldsymbol{I}$	(B) $19 \boldsymbol{A}+30 \boldsymbol{I}$
(C) $17 \boldsymbol{A}+15 \boldsymbol{I}$	(D) $17 \boldsymbol{A}+21 \boldsymbol{I}$

Consider a closed surface S surrounding volume V. If \vec{r} is the position vector of a point inside S, with \hat{n} the unit normal on S, the value of the integral $\iint_{S} 5 \vec{r} \cdot \hat{n} d S$ is
(A) $3 V$
(B) 5 V
(C) 10 V
(D) 15 V
1.14 The solution of the differential equation $\frac{d y}{d x}=k y, y(0)=c$ is
(A) $x=c e^{-k y}$
(B) $x=k e^{c y}$
(C) $y=c e^{k x}$
(D) $y=c e^{-k x}$
1.15 The value of the integral $\oint_{c} \frac{-3 z+4}{\left(z^{2}+4 z+5\right)} d z$ where c is the circle
$|z|=1$ is given by $z=1$ is given by
(A) 0
(B) $1 / 10$
(C) $4 / 5$
(D) 1

A numerical solution of the equation $f(x)+\sqrt{x-3}=0$ can be obtained using Newton- Raphson method. If the starting value is $x=2$ for the iteration, the value of x that is to be used in the next step is
(A) 0.306
(B) 0.739
(C) 1.694
(D) 2.306
1.17 The system of equations

$$
\begin{aligned}
x+y+z & =6 \\
x+4 y+6 y & =20 \\
x+4 y+\lambda z & =\mu
\end{aligned}
$$

has NO solution for values of λ and μ given by
(A) $\lambda=6, \mu=20$
(B) $\lambda=6, \mu \neq 20$
(C) $\lambda \neq 6, \mu=20$
(D) $\lambda \neq 6, \mu=20$
${ }^{1.18}$ A fair dice is tossed two times. The probability that the second toss results in a value that is higher than the first toss is
(A) $2 / 36$
(B) $2 / 6$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(C) $5 / 12$
(D) $1 / 2$

2010

ONE MARKS
The eigen values of a skew-symmetric matrix are
(A) always zero
(B) always pure imaginary
(C) either zero or pure imaginary
(D) always real

The trigonometric Fourier series for the waveform $f(t)$ shown below contains

(A) only cosine terms and zero values for the dc components
(B) only cosine terms and a positive value for the dc components
(C) only cosine terms and a negative value for the dc components
(D) only sine terms and a negative value for the dc components

A function $n(x)$ satisfied the differential equation

$$
\frac{d^{2} n(x)}{d x^{2}}-\frac{n(x)}{L^{2}}=0
$$

where L is a constant. The boundary conditions are : $n(0)=K$ and $n(\infty)=0$. The solution to this equation is
(A) $n(x)=K \exp (x / L)$
(B) $n(x)=K \exp (-x / \sqrt{L})$
(C) $n(x)=K^{2} \exp (-x / L)$
(D) $n(x)=K \exp (-x / L)$

If $e^{y}=x^{1 / x}$, then y has a
(A) maximum at $x=e$
(B) minimum at $x=e$
(C) maximum at $x=e^{-1}$
(D) minimum at $x=e^{-1}$
1.23 A fair coin is tossed independently four times. The probability of the event "the number of time heads shown up is more than the number of times tail shown up"
(A) $1 / 16$
(B) $1 / 3$
(C) $1 / 4$
(D) $5 / 16$

If $\vec{A}=x y \hat{a}_{x}+x^{2} \hat{a}_{y}$, then $\oint_{C} \vec{A} \cdot d \vec{l}$ over the path shown in the figure is

(A) 0
(B) $\frac{2}{\sqrt{3}}$
(C) 1
(D) $2 \sqrt{3}$
1.25 The residues of a complex function

$$
x(z)=\frac{1-2 z}{z(z-1)(z-2)}
$$

at its poles are
(A) $\frac{1}{2},-\frac{1}{2}$ and 1
(B) $\frac{1}{2},-\frac{1}{2}$ and -1
(C) $\frac{1}{2}, 1$ and $-\frac{3}{2}$
(D) $\frac{1}{2},-1$ and $\frac{3}{2}$
${ }^{1.26}$ Consider differential equation $\frac{d y(x)}{d x}-y(x)=x$, with the initial condition $y(0)=0$. Using Euler's first order method with a step size of 0.1 , the value of $y(0.3)$ is
(A) 0.01
(B) 0.031
(C) 0.0631
(D) 0.1
1.27 $\begin{aligned} & \text { Given } f(t)=L^{-1}\left[\frac{3 s+1}{s^{3}+4 s^{2}+(k-3) s}\right] \text {. If } \lim _{t \rightarrow \infty} f(t)=1 \text {, then the value } \\ & \text { of } k \text { is }\end{aligned}$
(A) 1
(B) 2
(C) 3
(D) 4

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

2009

ONE MARK
1.28 The order of the differential equation

$$
\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{3}+y^{4}=e^{-t}
$$

(A) 1
(B) 2
(C) 3
(D) 4
1.29 A fair coin is tossed 10 times. What is the probability that only the first two tosses will yield heads?
(A) $\left(\frac{1}{2}\right)^{2}$
(B) ${ }^{10} C_{2}\left(\frac{1}{2}\right)^{2}$
(C) $\left(\frac{1}{2}\right)^{10}$
(D) ${ }^{10} C_{2}\left(\frac{1}{2}\right)^{10}$

If $f(z)=c_{0}+c_{1} z^{-1}$, then $\oint_{\text {unit circle }} \frac{1+f(z)}{z} d z$ is given by
(A) $2 \pi c_{1}$
(B) $2 \pi\left(1+c_{0}\right)$
(C) $2 \pi j c_{1}$
(D) $2 \pi\left(1+c_{0}\right)$

2009

TWO MARKS
The Taylor series expansion of $\frac{\sin x}{x-\pi}$ at $x=\pi$ is given by
(A) $1+\frac{(x-\pi)^{2}}{3!}+\ldots$
(B) $-1-\frac{(x-\pi)^{2}}{3!}+\ldots$
(C) $1-\frac{(x-\pi)^{2}}{3!}+\ldots$
(D) $-1+\frac{(x-\pi)^{2}}{3!}+\ldots$
1.32 Match each differential equation in Group I to its family of solution curves from Group II

Group I

Group II
A. $\frac{d y}{d x}=\frac{y}{x}$

1. Circles
B. $\frac{d y}{d x}=-\frac{y}{x}$
2. Straight lines
C. $\frac{d y}{d x}=\frac{x}{y}$
3. Hyperbolas
D. $\frac{d y}{d x}=-\frac{x}{y}$
(A) $\mathrm{A}-2, \mathrm{~B}-3, \mathrm{C}-3, \mathrm{D}-1$
(B) $\mathrm{A}-1, \mathrm{~B}-3, \mathrm{C}-2, \mathrm{D}-1$
(C) $\mathrm{A}-2, \mathrm{~B}-1, \mathrm{C}-3, \mathrm{D}-3$
(D) $\mathrm{A}-3, \mathrm{~B}-2, \mathrm{C}-1, \mathrm{D}-2$

The Eigen values of following matrix are

$$
\left[\begin{array}{rrr}
-1 & 3 & 5 \\
-3 & -1 & 6 \\
0 & 0 & 3
\end{array}\right]
$$

(A) $3,3+5 j, 6-j$
(B) $-6+5 j, 3+j, 3-j$
(C) $3+j, 3-j, 5+j$
(D) $3,-1+3 j,-1-3 j$

2008

ONE MARKS
All the four entries of the 2×2 matrix $P=\left[\begin{array}{ll}p_{11} & p_{12} \\ p_{21} & p_{22}\end{array}\right]$ are nonzero, and one of its eigenvalue is zero. Which of the following statements is true?
(A) $p_{11} p_{12}-p_{12} p_{21}=1$
(B) $p_{11} p_{22}-p_{12} p_{21}=-1$
(C) $p_{11} p_{22}-p_{12} p_{21}=0$
(D) $p_{11} p_{22}+p_{12} p_{21}=0$
1.35 The system of linear equations

$$
\begin{aligned}
4 x+2 y & =7 \\
2 x+y & =6 \text { has }
\end{aligned}
$$

(A) a unique solution
(B) no solution
(C) an infinite number of solutions
(D) exactly two distinct solutions
1.36 The equation $\sin (z)=10$ has
(A) no real or complex solution
(B) exactly two distinct complex solutions
(C) a unique solution
(D) an infinite number of complex solutions
1.37 For real values of x, the minimum value of the function

$$
f(x)=\exp (x)+\exp (-x) \text { is }
$$

(A) 2
(B) 1
(C) 0.5
(D) 0
1.38 Which of the following functions would have only odd powers of x in its Taylor series expansion about the point $x=0$?
(A) $\sin \left(x^{3}\right)$
(B) $\sin \left(x^{2}\right)$
(C) $\cos \left(x^{3}\right)$
(D) $\cos \left(x^{2}\right)$
1.39 Which of the following is a solution to the differential equation $\frac{d x(t)}{d t}+3 x(t)=0$?
(A) $x(t)=3 e^{-t}$
(B) $x(t)=2 e^{-3 t}$
(C) $x(t)=-\frac{3}{2} t^{2}$
(D) $x(t)=3 t^{2}$
1.40 The recursion relation to solve $x=e^{-x}$ using Newton - Raphson method is

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(A) $x_{n+1}=e^{-x_{n}}$
(B) $x_{n+1}=x_{n}-e^{-x_{n}}$
(C) $x_{n+1}=\left(1+x_{n}\right) \frac{e^{-x_{n}}}{1+e^{-x_{n}}}$
(D) $x_{n+1}=\frac{x_{n}^{2}-e^{-x_{n}}\left(1-x_{n}\right)-1}{x_{n}-e^{-x_{n}}}$
1.41 The residue of the function $f(z)=\frac{1}{(z+2)^{2}(z-2)^{2}}$ at $z=2$ is
(A) $-\frac{1}{32}$
(B) $-\frac{1}{16}$
(C) $\frac{1}{16}$
(D) $\frac{1}{32}$
1.42 Consider the matrix $P=\left[\begin{array}{rr}0 & 1 \\ -2 & -3\end{array}\right]$. The value of e^{p} is
(A) $\left[\begin{array}{ll}2 e^{-2}-3 e^{-1} & e^{-1}-e^{-2} \\ 2 e^{-2}-2 e^{-1} & 5 e^{-2}-e^{-1}\end{array}\right]$
(C) $\left[\begin{array}{ll}5 e^{-2}-e^{-1} & 3 e^{-1}-e^{-2} \\ 2 e^{-2}-6 e^{-1} & 4 e^{-2}+6^{-1}\end{array}\right]$
(B) $\left[\begin{array}{cc}e^{-1}+e^{-1} & 2 e^{-2}-e^{-1} \\ 2 e^{-1}-4 e^{2} & 3 e^{-1}+2 e^{-2}\end{array}\right]$
(D) $\left[\begin{array}{cc}2 e^{-1}-e^{-2} & e^{-1}-e^{-2} \\ -2 e^{-1}+2 e^{-2} & -e^{-1}+2 e^{-2}\end{array}\right]$
1.43 In the Taylor series expansion of $\exp (x)+\sin (x)$ about the point $x=\pi$, the coefficient of $(x-\pi)^{2}$ is
(A) $\exp (\pi)$
(B) $0.5 \exp (\pi)$
(C) $\exp (\pi)+1$
(D) $\exp (\pi)-1$
1.44 The value of the integral of the function $g(x, y)=4 x^{3}+10 y^{4}$ along the straight line segment from the point $(0,0)$ to the point $(1,2)$ in the $x-y$ plane is
(A) 33
(B) 35
(C) 40
(D) 56
1.45 Consider points P and Q in the $x-y$ plane, with $P=(1,0)$ and $Q=(0,1)$. The line integral $2 \int_{P .}^{Q}(x d x+y d y)$ along the semicircle with the line segment $P Q$ as its diameter
(A) is -1
(B) is 0
(C) is 1
(D) depends on the direction (clockwise or anit-clockwise) of the semicircle

2007

ONE MARK
The following plot shows a function which varies linearly with x. The value of the integral $I=\int_{1}^{2} y d x$ is

(A) 1.0
(B) 2.5
(C) 4.0
(D) 5.0
1.47 For $|x| \ll 1$, coth (x) can be approximated as
(A) x
(B) x^{2}

GATE Electronics \& Communication
 by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(C) $\frac{1}{x}$
(D) $\frac{1}{x^{2}}$
$\lim _{\theta \rightarrow 0} \frac{\sin \left(\frac{\theta}{2}\right)}{\theta}$ is
(A) 0.5
(B) 1
(C) 2
(D) not defined
1.49 Which one of following functions is strictly bounded?
(A) $1 / x^{2}$
(B) e^{x}
(C) x^{2}
(D) $e^{-x^{2}}$
1.50 For the function e^{-x}, the linear approximation around $x=2$ is
(A) $(3-x) e^{-2}$
(B) $1-x$
(C) $[3+3 \sqrt{2}-(1-\sqrt{2}) x] e^{-2}$
(D) e^{-2}

2007

The solution of the differential equation $k^{2} \frac{d^{2} y}{d x^{2}}=y-y_{2}$ under the boundary conditions
(i) $y=y_{1}$ at $x=0$ and
(ii) $y=y_{2}$ at $x=\infty$, where k, y_{1} and y_{2} are constants, is
(A) $y=\left(y_{1}-y_{2}\right) \exp \left(-\frac{x}{k^{2}}\right)+y_{2}$
(B) $y=\left(y_{2}-y_{1}\right) \exp \left(-\frac{x}{k}\right)+y_{1}$
(C) $y=\left(y_{1}-y_{2}\right) \sinh \left(\frac{x}{k}\right)+y_{1}$
(D) $y=\left(y_{1}-y_{2}\right) \exp \left(-\frac{x}{k}\right)+y_{2}$
1.52 The equation $x^{3}-x^{2}+4 x-4=0$ is to be solved using the Newton - Raphson method. If $x=2$ is taken as the initial approximation of the solution, then next approximation using this method will be
(A) $2 / 3$
(B) $4 / 3$
(C) 1
(D) $3 / 2$

Three functions $f_{1}(t), f_{2}(t)$ and $f_{3}(t)$ which are zero outside the interval $[0, T]$ are shown in the figure. Which of the following statements is correct?

(A) $f_{1}(t)$ and $f_{2}(t)$ are orthogonal
(B) $f_{1}(t)$ and $f_{3}(t)$ are orthogonal
(C) $f_{2}(t)$ and $f_{3}(t)$ are orthogonal
D) $f_{1}(t)$ and $f_{2}(t)$ are orthonormal
1.54 If the semi-circular control D of radius 2 is as shown in the figure, then the value of the integral $\oint_{D} \frac{1}{\left(s^{2}-1\right)} d s$ is

(A) $j \pi$
(B) $-j \pi$
(C) $-\pi$
(D) π
1.55 It is given that $X_{1}, X_{2} \ldots X_{M}$ at M non-zero, orthogonal vectors. The dimension of the vector space spanned by the $2 M$ vectors $X_{1}, X_{2}, \ldots X_{M},-X_{1},-X_{2}, \ldots-X_{M}$ is
(A) $2 M$
(B) $M+1$
(C) M
(D) dependent on the choice of $X_{1}, X_{2}, \ldots X_{M}$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

1.56 Consider the function $f(x)=x^{2}-x-2$. The maximum value of $f(x)$ in the closed interval $[-4,4]$ is
(A) 18
(B) 10
(C) -225
(D) indeterminate
1.57 An examination consists of two papers, Paper 1 and Paper 2. The probability of failing in Paper 1 is 0.3 and that in Paper 2 is 0.2 . Given that a student has failed in Paper 2, the probability of failing in Paper 1 is 0.6 . The probability of a student failing in both the papers is
(A) 0.5
(B) 0.18
(C) 0.12
(D) 0.06

2006

ONE MARK

${ }^{\text {1.58 }}$ The rank of the matrix $\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1\end{array}\right]$ is
(A) 0
(B) 1
(C) 2
(D) 3
$\nabla \times \nabla \times P$, where P is a vector, is equal to
(A) $P \times \nabla \times P-\nabla^{2} P$
(B) $\nabla^{2} P+\nabla(\nabla \times P)$
(C) $\nabla^{2} P+\nabla \times P$
(D) $\nabla(\nabla \cdot P)-\nabla^{2} P$
$\iint(\nabla \times P) \cdot d s$, where P is a vector, is equal to
(A) $\oint P \cdot d l$
(B) $\oint \nabla \times \nabla \times P \cdot d l$
(C) $\oint \nabla \times P \cdot d l$
(D) $\iiint \nabla \cdot P d v$

A probability density function is of the form

$$
p(x)=K e^{-\alpha|x|}, x \in(-\infty, \infty)
$$

The value of K is
(A) 0.5
(B) 1
(C) 0.5α
(D) α
1.62 A solution for the differential equation $\dot{x}(t)+2 x(t)=\delta(t)$ with initial condition $x\left(0^{-}\right)=0$ is
(A) $e^{-2 t} u(t)$
(B) $e^{2 t} u(t)$
(C) $e^{-t} u(t)$
(D) $e^{t} u(t)$

2006

TWO MARKS
The eigenvalue and the corresponding eigenvector of 2×2 matrix are given by

Eigenvalue
$\lambda_{1}=8$
$\lambda_{2}=4$
Eigenvector
$v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$v_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$
The matrix is
(A) $\left[\begin{array}{ll}6 & 2 \\ 2 & 6\end{array}\right]$
(B) $\left[\begin{array}{ll}4 & 6 \\ 6 & 4\end{array}\right]$
(C) $\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]$
(D) $\left[\begin{array}{ll}4 & 8 \\ 8 & 4\end{array}\right]$

For the function of a complex variable $W=\ln Z$ (where, $W=u+j v$ and $Z=x+j y$, the $u=$ constant lines get mapped in Z-plane as
(A) set of radial straight lines
(B) set of concentric circles
(C) set of confocal hyperbolas
(D) set of confocal ellipses
1.65 The value of the constant integral $\oint_{|z-j|=2} \frac{1}{z^{2}+4} \mathrm{dz}$ is positive sense is
(A) $\frac{j \pi}{2}$
(B) $-\frac{\pi}{2}$
(C) $-\frac{j \pi}{2}$
(D) $\frac{\pi}{2}$
${ }^{1.66}$ The integral $\int_{0}^{\pi} \sin ^{3} \theta d \theta$ is given by
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) $\frac{4}{3}$
(D) $\frac{8}{3}$

Three companies X, Y and Z supply computers to a university. The percentage of computers supplied by them and the probability of those being defective are tabulated below

Company	\% of Computer Sup- plied	Probability of being supplied defective
X	60%	0.01
Y	30%	0.02
Z	10%	0.03

Given that a computer is defective, the probability that was supplied by Y is
(A) 0.1
(B) 0.2
(C) 0.3
(D) 0.4
1.68 For the matrix $\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$ the eigenvalue corresponding to the eigenvector $\left[\begin{array}{l}101 \\ 101\end{array}\right]$ is

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(A) 2
(B) 4
(C) 6
(D) 8
1.69 For the differential equation $\frac{d^{2} y}{d x^{2}}+k^{2} y=0$ the boundary conditions are
(i) $y=0$ for $x=0$ and
(ii) $y=0$ for $x=a$

The form of non-zero solutions of y (where m varies over all integers) are
(A) $y=\sum_{m} A_{m} \sin \frac{m \pi x}{a}$
(B) $y=\sum_{m} A_{m} \cos \frac{m \pi x}{a}$
(C) $y=\sum_{m} A_{m} x^{\frac{m \pi}{a}}$
(D) $y=\sum_{m} A_{m} e^{-\frac{m \pi x}{a}}$
1.70 As x increased from $-\infty$ to ∞, the function $f(x)=\frac{e^{x}}{1+e^{x}}$
(A) monotonically increases
(B) monotonically decreases
(C) increases to a maximum value and then decreases
(D) decreases to a minimum value and then increases
1.71 The following differential equation has

$$
3\left(\frac{d^{2} y}{d t^{2}}\right)+4\left(\frac{d y}{d t}\right)^{3}+y^{2}+2=x
$$

(A) degree $=2$, order $=1$
(B) degree $=1$, order $=2$
(C) degree $=4$, order $=3$
(D) degree $=2$, order $=3$
1.72 A fair dice is rolled twice. The probability that an odd number will follow an even number is
(A) $1 / 2$
(B) $1 / 6$
(C) $1 / 3$
(D) $1 / 4$

A solution of the following differential equation is given by $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$
(A) $y=e^{2 x}+e^{-3 x}$
(B) $y=e^{2 x}+e^{3 x}$
(C) $y=e^{-2 x}+3^{3 x}$
(D) $y=e^{-2 x}+e^{-3 x}$

2005
TWO MARKS
In what range should $\operatorname{Re}(s)$ remain so that the Laplace transform of $\quad 1.80$ the function $e^{(a+2) t+5}$ exits.
(A) $\operatorname{Re}(s)>a+2$
(B) $\operatorname{Re}(s)>a+7$
(C) $\operatorname{Re}(s)<2$
(D) $\operatorname{Re}(s)>a+5$
1.75 The derivative of the symmetric function drawn in given figure will look like

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
${ }^{1.78}$ Let, $A=\left[\begin{array}{cc}2 & -0.1 \\ 0 & 3\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}\frac{1}{2} & a \\ 0 & b\end{array}\right]$. Then $(a+b)=$
(A) $7 / 20$
(B) $3 / 20$
(C) $19 / 60$
(D) $11 / 20$
1.79 The value of the integral $I=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \exp \left(-\frac{x^{2}}{8}\right) d x$ is
(A) 1
(B) π
(C) 2
(D) 2π

Given an orthogonal matrix

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$\left[A A^{T}\right]^{-1}$ is
(A) $\left[\begin{array}{cccc}\frac{1}{4} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right]$
(B) $\left[\begin{array}{cccc}\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right]$
(C) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{cccc}\frac{1}{4} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{1}{4}\end{array}\right]$
(A)

(B)

(C)

(D)

Match the following and choose the correct combination:

Group I
E. Newton-Raphson method
F. Runge-kutta method
G. Simpson's Rule
H. Gauss elimination

Group 2

1. Solving nonlinear equations
2. Solving linear simultaneous equations
3. Solving ordinary differential equations
4. Numerical integration
5. Interpolation
6. Calculation of Eigenvalues
(A) $\mathrm{E}-6, \mathrm{~F}-1, \mathrm{G}-5, \mathrm{H}-3$
(B) $\mathrm{E}-1, \mathrm{~F}-6, \mathrm{G}-4, \mathrm{H}-3$
(C) $\mathrm{E}-1, \mathrm{~F}-3, \mathrm{G}-4, \mathrm{H}-2$
(D) $\mathrm{E}-5, \mathrm{~F}-3, \mathrm{G}-4, \mathrm{H}-1$
1.77 Given the matrix $\left[\begin{array}{rr}-4 & 2 \\ 4 & 3\end{array}\right]$, the eigenvector is
(A) $\left[\begin{array}{l}3 \\ 2\end{array}\right]$
(B) $\left[\begin{array}{l}4 \\ 3\end{array}\right]$
(C) $\left[\begin{array}{r}2 \\ -1\end{array}\right]$
(D) $\left[\begin{array}{r}-1 \\ 2\end{array}\right]$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

SOLUTIONS

Option（B）is correct．
Here，as we know

$$
\operatorname{Lim}_{\theta \rightarrow 0} \sin \theta \approx 0
$$

but for 10% error，we can check option（B）first，

$$
\begin{aligned}
\theta & =18^{\circ}=18^{\circ} \times \frac{\pi}{180^{\circ}}=0.314 \\
\sin \theta & =\sin 18^{\circ}=0.309 \\
\% \text { error } & =\frac{0.314-0.309}{0.309} \times 100 \%=0.49 \%
\end{aligned}
$$

Now，we check it for $\theta=50^{\circ}$

$$
\begin{aligned}
\theta & =50^{\circ}=50^{\circ} \times \frac{\pi}{180^{\circ}}=0.873 \\
\sin \theta & =\sin 50^{\circ}=0.77 \\
\% \text { error } & =\frac{0.77-0.873}{0.873}=-12.25 \%
\end{aligned}
$$

so，the error is more than 10% ．Hence，for error less than 10% ， $\theta=18^{\circ}$ can have the approximation

$$
\sin \theta \approx \theta
$$

Option（A）is correct．
For，a given matrix $[A]$ the eigen value is calculated as

$$
|A-\lambda I|=0
$$

where λ gives the eigen values of matrix．Here，the minimum eigen value among the given options is

$$
\lambda=0
$$

We check the characteristic equation of matrix for this eigen value

$$
\begin{aligned}
|A-\lambda I| & =|A| \quad \quad(\text { for } \lambda=0) \\
& =\left|\begin{array}{ccc}
3 & 5 & 2 \\
5 & 12 & 7 \\
2 & 7 & 5
\end{array}\right| \\
& =3(60-49)-5(25-14)+2(35-24) \\
& =33-55+22 \\
& =0
\end{aligned}
$$

Hence，it satisfied the characteristic equation and so，the minimum eigen value is

$$
\lambda=0
$$

Option（D）is correct．
Given，the polynomial

$$
f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x-a_{0}
$$

Since，all the coefficients are positive so，the roots of equation is given by

$$
f(x)=0
$$

It will have at least one pole in right hand plane as there will be least one sign change from $\left(a_{1}\right)$ to $\left(a_{0}\right)$ in the Routh matrix $1^{\text {st }}$ col－ umn．Also，there will be a corresponding pole in left hand plane i．e．；at least one positive root（in R．H．P） and at least one negative root（in L．H．P） Rest of the roots will be either on imaginary axis or in L．H．P Option（B）is correct．

Consider the given matrix be

$$
I_{m}+A B=\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]
$$

where $m=4$ so，we obtain

$$
\begin{aligned}
A B & =\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]-\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Hence，we get

米え゙ゥ゚（

At market Book is available in 3 volume i．e．in 3 book binding form．But at NODIA Online Store book is available in 10 book
binding form．Each unit of Book is in separate binding．
Available Only at NODIA Online Store

Click to Buy

WWW．nodia．co．in

$$
A=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], B=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

Therefore，

$$
B A=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=4
$$

From the given property

$$
\operatorname{Det}\left(I_{m}+A B\right)=\operatorname{Det}\left(I_{m}+B A\right)
$$

$$
\begin{aligned}
\Rightarrow \quad \operatorname{Det}\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right] & =\operatorname{Det}\left\{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]+4\right\} \\
& =1+4 \\
& =5
\end{aligned}
$$

Note ：Determinant of identity matrix is always 1.
1．5 Option（D）is correct．

$$
\begin{aligned}
& t \frac{d x}{d t}+x=t \\
& \frac{d x}{d t}+\frac{x}{t}=1 \\
& \frac{d x}{d t}+P x=Q \text { (General form) } \\
& I F=e^{\int^{p u t}}=e^{l_{t}^{1 \mu t}}=e^{\ln t}=t \\
& x \times I F=\int(Q \times I F) d t+C \\
& x \times t=\int(1)(t) d t+C
\end{aligned}
$$

Integrating factor，
Solution has the form

$$
x t=\frac{t^{2}}{2}+C
$$

Taking the initial condition,

So,

$$
\begin{aligned}
x(1) & =0.5 \\
0.5 & =\frac{1}{2}+C \Rightarrow C=0 \\
x t & =\frac{t^{2}}{2} \Rightarrow x=\frac{t}{2}
\end{aligned}
$$

Option (C) is correct.

$$
f(z)=\frac{1}{z+1}-\frac{2}{z+3}
$$

$\frac{1}{2 \pi j} \oint_{C} f(z) d z=$ sum of the residues of the poles which lie inside the given closed region.

$$
C \Rightarrow|z+1|=1
$$

Only pole $z=-1$ inside the circle, so residue at $z=-1$ is.

$$
\begin{aligned}
& f(z)= \frac{-z+1}{(z+1)(z+3)} \\
&=\lim _{z \rightarrow-1} \frac{(z+1)(-z+1)}{(z+1)(z+3)}=\frac{2}{2}=1
\end{aligned}
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit WWW.nodia.co.in

$$
\text { So } \quad \frac{1}{2 \pi j} \oint_{C} f(z) d z=1
$$

Option (A) is correct.

$$
x=\sqrt{-1}=i=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}
$$

So,

$$
\begin{aligned}
x & =e^{i \frac{\pi}{2}} \\
x^{x} & =\left(e^{i \frac{\pi}{2}}\right)^{x} \Rightarrow\left(e^{i \frac{\pi}{2}}\right)^{i}=e^{-\frac{\pi}{2}}
\end{aligned}
$$

Option (D) is correct.

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{2 d y(t)}{d t}+y(t)=\delta(t)
$$

By taking Laplace transform with initial conditions

$$
\begin{aligned}
& {\left[s^{2} Y(s)-s y(0)-\left.\frac{d y}{d t}\right|_{t=0}\right]+2[s y(s)-y(0)]+Y(s)=1} \\
& \Rightarrow \quad\left[s^{2} Y(s)+2 s-0\right]+2[s Y(s)+2]+Y(s)=1 \\
& Y(s)\left[s^{2}+2 s+1\right]=1-2 s-4 \\
& Y(s)=\frac{-2 s-3}{s^{2}+2 s+1} \\
& y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s) \\
& \text { then, } \\
& \frac{d y(t)}{d t} \stackrel{\mathcal{L}}{\longleftrightarrow} s Y(s)-y(0)
\end{aligned}
$$

So,

$$
s Y(s)-y(0)=\frac{(-2 s-3) s}{\left(s^{2}+2 s+1\right)}+2
$$

$$
\begin{aligned}
& =\frac{-2 s^{2}-3 s+2 s^{2}+4 s+2}{\left(s^{2}+2 s+1\right)} \\
& \begin{aligned}
s Y(s)-y(0) & =\frac{s+2}{(s+1)^{2}}=\frac{s+1}{(s+1)^{2}}+\frac{1}{(s+1)^{2}} \\
& =\frac{1}{s+1}+\frac{1}{(s+1)^{2}}
\end{aligned}
\end{aligned}
$$

Taking inverse Laplace transform

$$
\frac{d y(t)}{d t}=e^{-t} u(t)+t e^{-t} u(t)
$$

At $t=0^{+}$,

$$
\left.\frac{d y}{d t}\right|_{t=0^{+}}=e^{0}+0=1
$$

1.9 Option (A) is correct.

Divergence of \boldsymbol{A} in spherical coordinates is given as

$$
\begin{align*}
\nabla \cdot \boldsymbol{A} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(k r^{n+2}\right) \\
& =\frac{k}{r^{2}}(n+2) r^{n+1} \\
& =k(n+2) r^{n-1}=0 \quad \text { (given) } \tag{given}\\
n+2 & =0 \quad \Rightarrow \quad n=-2
\end{align*}
$$

Option (C) is correct.
Probability of appearing a head is $1 / 2$. If the number of required tosses is odd, we have following sequence of events.

$$
H, T T H, T T T T H
$$

\qquad
Probability

$$
\begin{aligned}
& P=\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{5}+\ldots . \\
& P=\frac{\frac{1}{2}}{1-\frac{1}{4}}=\frac{2}{3}
\end{aligned}
$$

1.11 Option (B) is correct.

$$
\begin{aligned}
f(x) & =x^{3}-9 x^{2}+24 x+5 \\
\frac{d f(x)}{d x} & =3 x^{2}-18 x+24=0 \\
\frac{d f(x)}{d x} & =x^{2}-6 x+8=0 \\
\frac{d^{2} f(x)}{d x^{2}} & =6 x-18
\end{aligned}
$$

For $x=2, \frac{d^{2} f(x)}{d x^{2}}=12-18=-6<0$
So at $x=2, f(x)$ will be maximum

$$
\begin{aligned}
\left.f(x)\right|_{\max } & =(2)^{3}-9(2)^{2}+24(2)+5 \\
& =8-36+48+5=25
\end{aligned}
$$

1.12 Option (B) is correct.

Characteristic equation.

$$
\begin{aligned}
\mid \boldsymbol{A}-\lambda \boldsymbol{I}
\end{aligned}\left|=0, \begin{array}{c}
\mid-5-\lambda-3 \\
2-\lambda
\end{array}\right|=0
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

$$
\lambda^{2}+5 \lambda+6=0
$$

Since characteristic equation satisfies its own matrix, so

$$
\boldsymbol{A}^{2}+5 \boldsymbol{A}+6=0 \Rightarrow \boldsymbol{A}^{2}=-5 \boldsymbol{A}-6 \boldsymbol{I}
$$

Multiplying with \boldsymbol{A}

$$
\begin{aligned}
\boldsymbol{A}^{3}+5 \boldsymbol{A}^{2}+6 \boldsymbol{A} & =0 \\
\boldsymbol{A}^{3}+5(-5 \boldsymbol{A}-6 \boldsymbol{I})+6 \boldsymbol{A} & =0 \\
\boldsymbol{A}^{3} & =19 \boldsymbol{A}+30 \boldsymbol{I}
\end{aligned}
$$

Option (D) is correct.
From Divergence theorem, we have

$$
\iiint \vec{\nabla} \cdot \vec{A} d v=\oint_{s} \vec{A} \cdot \hat{n} d s
$$

The position vector

$$
\vec{r}=\left(\hat{u}_{x} x+\hat{u}_{y} y+\hat{u}_{z} z\right)
$$

Here, $\vec{A}=5 \vec{r}$, thus

$$
\nabla \cdot \vec{A}
$$

$$
=\left(\hat{u}_{x} \frac{\partial}{\partial x}+\hat{u}_{y} \frac{\partial}{\partial y}+\hat{u}_{z} \frac{\partial}{\partial z}\right) \cdot\left(\hat{u}_{x} x+\hat{u}_{y} y+\hat{u}_{z} z\right)
$$

$$
=\left(\frac{d x}{d x}+\frac{d y}{d y}+\frac{d z}{d z}\right) 5=3 \times 5=15
$$

So,

$$
\iint_{s} 5 \vec{r} \cdot \hat{n} d s=\iiint 15 d v=15 V
$$

Option (C) is correct.
We have

$$
\frac{d y}{d x}=k y
$$

Integrating

$$
\int \frac{d y}{y}=\int k d x+A
$$

$$
\ln y=k x+A
$$

Since $y(0)=c$ thus

$$
\ln c=A
$$

So, we get,

$$
\ln y=k x+\ln c
$$

$$
\ln y=\ln e^{k x}+\ln c
$$

or

$$
y=c e^{k x}
$$

Option (A) is correct.
C R Integrals is $\oint_{C} \frac{-3 z+4}{z^{2}+4 z+5} d z$ where C is circle $|z|=1$

$$
\oint_{C} f(z) d z=0 \text { if poles are outside C. }
$$

Now

$$
z^{2}+4 z+5=0
$$

$$
(z+2)^{2}+1=0
$$

Thus $\quad z_{1,2}=-2 \pm j \Rightarrow\left|z_{1,2}\right|>1$
So poles are outside the unit circle.
Option (C) is correct.
We have $\quad f(x)=x+\sqrt{x}-3=0$

$$
f^{\prime}(x)=1+\frac{1}{2 \sqrt{x}}
$$

Substituting $x_{0}=2$ we get

$$
f^{\prime}\left(x_{0}\right)=1.35355 \text { and } f\left(x_{0}\right)=2+\sqrt{2}-3=0.414
$$

Newton Raphson Method

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Substituting all values we have

$$
x_{1}=2-\frac{0.414}{1.3535}=1.694
$$

Option (B) is correct
Writing A : B we have

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & : & 6 \\
1 & 4 & 6 & : & 20 \\
1 & 4 & \lambda & : & \mu
\end{array}\right]
$$

Apply $R_{3} \rightarrow R_{3}-R_{2}$

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & : & 6 \\
1 & 4 & 6 & : & 20 \\
0 & 0 & \lambda-6 & : & \mu-20
\end{array}\right]
$$

For equation to have solution, rank of A and $A: B$ must be same. Thus for no solution; $\lambda=6, \mu \neq 20$
1.18 Option (C) is correct.

Total outcome are 36 out of which favorable outcomes are :
$(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)$;
$(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)$ which are 15 .

Thus

$$
P(E)=\frac{\text { No. of favourable outcomes }}{\text { No. of total outcomes }}=\frac{15}{36}=\frac{5}{12}
$$

1.19 Option (C) is correct.

Eigen value of a Skew-symmetric matrix are either zero or pure imaginary in conjugate pairs.
1.20 Option (C) is correct.

For a function $x(t)$ trigonometric fourier series is

$$
x(t)=A_{o}+\sum_{n=1}^{\infty}\left[A_{n} \cos n \omega t+B_{n} \sin n \omega t\right]
$$

Where,

$$
\begin{aligned}
A_{o} & =\frac{1}{T_{0}} \int_{T_{0}} x(t) d t T_{0} \rightarrow \text { fundamental period } \\
A_{n} & =\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos n \omega t d t \\
B_{n} & =\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin n \omega t d t
\end{aligned}
$$

For an even function $x(t), B_{n}=0$
Since given function is even function so coefficient $B_{n}=0$, only cosine

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW. nodia.co.in

and constant terms are present in its fourier series representation. Constant term :

$$
\begin{aligned}
A_{0} & =\frac{1}{T} \int_{T / 4}^{3 T / 4} x(t) d t=\frac{1}{T}\left[\int_{-T / 4}^{T / 4} A d t+\int_{T / 4}^{3 T / 4}-2 A d t\right] \\
& =\frac{1}{T}\left[\frac{T A}{2}-2 A \frac{T}{2}\right]=-\frac{A}{2}
\end{aligned}
$$

Constant term is negative.
1.21 Option (D) is correct.

Given differential equation

$$
\frac{d^{2} n(x)}{d x^{2}}-\frac{n(x)}{L^{2}}=0
$$

Let $n(x)=A e^{\lambda x}$
So, $\quad A \lambda^{2} e^{\lambda x}-\frac{A e^{\lambda x}}{L^{2}}=0$

$$
\lambda^{2}-\frac{1}{L^{2}}=0 \Rightarrow \lambda= \pm \frac{1}{L}
$$

Boundary condition, $n(\infty)=0$ so take $\lambda=-\frac{1}{L}$

So,

$$
\begin{aligned}
& n(x)=A e^{-\frac{x}{L}} \\
& n(0)=A e^{0}=K \Rightarrow A=K \\
& n(x)=K e^{-(x / L)}
\end{aligned}
$$

1.22 Option (A) is correct.

Given that

$$
e^{y}=x^{\frac{1}{x}}
$$

or

$$
\ln e^{y}=\ln x^{\frac{1}{x}}
$$

$$
y=\frac{1}{x} \ln x
$$

Now

$$
\frac{d y}{d x}=\frac{1}{x} \frac{1}{x}+\ln x\left(-x^{-\frac{1}{x^{2}}}\right)=\frac{1}{x^{2}}-\frac{\ln }{x^{2}}
$$

For maxima and minima :

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{x^{2}}(1-\ln x)=0 \\
\ln x & =1 \rightarrow x=e^{1}
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =-\frac{2}{x^{3}}-\ln x\left(-\frac{2}{x^{3}}\right)-\frac{1}{x^{2}}\left(\frac{1}{x}\right) \\
& =-\frac{2}{x^{2}}+\frac{2 \ln x}{x^{3}}-\frac{1}{x^{3}} \\
\left.\frac{d^{2} x}{d y^{2}}\right|_{\text {at } x=e^{1}} & =\frac{-2}{e^{2}}+\frac{2}{e^{3}}-\frac{1}{e^{3}}<0
\end{aligned}
$$

So, y has a maximum at $x=e^{1}$
Option (D) is correct.
According to given condition head should comes 3 times or 4 times

$$
P(\text { Heads comes } 3 \text { times or } 4 \text { times })={ }^{4} C_{4}\left(\frac{1}{2}\right)^{4}+{ }^{4} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)
$$

$=1 \cdot \frac{1}{16}+4 \cdot \frac{1}{8} \cdot \frac{1}{2}=\frac{5}{16}$
Option (C) is correct.

$$
\begin{aligned}
\vec{A} & =x y \hat{a}_{x}+x^{2} \hat{a}_{y} \\
\vec{d} l & =d x \hat{a}_{x}+d y \hat{a}_{y} \\
\oint_{C} \vec{A} \cdot \vec{d} l & =\oint_{C}\left(x y \hat{a}_{x}+x^{2} \hat{a}_{y}\right) \cdot\left(d x \hat{a}_{x}+d y \hat{a}_{y}\right)
\end{aligned}
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{aligned}
& =\oint_{C}\left(x y d x+x^{2} d y\right) \\
& =\int_{1 / \sqrt{3}}^{2 / \sqrt{3}} x d x+\int_{2 / \sqrt{3}}^{1 / \sqrt{3}} 3 x d x+\int_{1}^{3} \frac{4}{3} d y+\int_{3}^{1} \frac{1}{3} d y \\
& =\frac{1}{2}\left[\frac{4}{3}-\frac{1}{3}\right]+\frac{3}{2}\left[\frac{1}{3}-\frac{4}{3}\right]+\frac{4}{3}[3-1]+\frac{1}{3}[1-3] \\
& =1
\end{aligned}
$$

Option (C) is correct.
Given function

$$
X(z)=\frac{1-2 z}{z(z-1)(z-2)}
$$

Poles are located at $z=0, z=1$, and $z=2$
At $Z=0$ residues is

$$
R_{0}=\left.z \cdot X(z)\right|_{z=0}=\frac{1-2 \times 0}{(0-1)(0-2)}=\frac{1}{2}
$$

at $z=1$,

$$
\begin{aligned}
R_{1} & =\left.(Z-1) \cdot X(Z)\right|_{Z=1} \\
& =\frac{1-2 \times 1}{1(1-2)}=1
\end{aligned}
$$

At $z=2$,

$$
\begin{aligned}
R_{2} & =\left.(z-2) \cdot X(z)\right|_{z=2} \\
& =\frac{1-2 \times 2}{2(2-1)}=-\frac{3}{2}
\end{aligned}
$$

Option (B) is correct.
Taking step size $\quad h=0.1, y(0)=0$

x	y	$\frac{d y}{d x}=x+y$	$y_{i+1}=y_{i}+h \frac{d y}{d x}$
0	0	0	$y_{1}=0+0.1(0)=0$
0.1	0	0.1	$y_{2}=0+0.1(0.1)=0.01$
0.2	0.01	0.21	$y_{3}=0.01+0.21 \times 0.1=0.031$
0.3	0.031		

From table, at $x=0.3, y(x=0.3)=0.031$
Option (D) is correct.
Given that

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left[\frac{3 s+1}{s^{3}+4 s^{2}+(K-3) s}\right] \\
\lim _{t \rightarrow \infty} f(t) & =1
\end{aligned}
$$

By final value theorem

$$
\begin{array}{lr}
\qquad \lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)=1 \\
\text { or } & \lim _{s \rightarrow 0} \frac{s \cdot(3 s+1)}{s^{3}+4 s^{2}+(K-3) s}=1 \\
\text { or } & \lim _{s \rightarrow 0} \frac{s(3 s+1)}{s\left[s^{2}+4 s+(K-3)\right]}=1 \\
\text { or } & \frac{1}{K-3}=1 \\
& K=4
\end{array}
$$

1.28 Option (B) is correct.

The highest derivative terms present in DE is of 2nd order.
1.29 Option (C) is correct.

Number of elements in sample space is 2^{10}. Only one element $\{H, H, T, T, T, T, T, T, T, T\}$ is event. Thus probability is $\frac{1}{2^{10}}$
1.30 Option (C) is correct.

We have

$$
\begin{aligned}
& f(z)=c_{0}+c_{1} z^{-1} \\
& f_{1}(z)=\frac{1+f(z)}{z}=\frac{1+c_{0}+c_{1} z^{-1}}{z}=\frac{z\left(1+c_{0}\right)+c_{1}}{z^{2}}
\end{aligned}
$$

Since $f_{1}(z)$ has double pole at $z=0$, the residue at $z=0$ is

$$
\operatorname{Res} f_{1}(z)_{z=0}=\lim _{z \rightarrow 0} z^{2} \cdot f_{1}(z)=\lim _{z \rightarrow 0} z^{2} \cdot\left(\frac{z\left(1+c_{0}\right)+c_{1}}{z^{2}}\right)=c_{1}
$$

Hence

$$
\begin{aligned}
\oint_{\text {unit circle }} f(z) d z & \left.=\oint_{\text {unit circle }} \frac{[1+f(z)]}{z} d z=2 \pi j \text { [Residue at } z=0\right] \\
& =2 \pi j c_{1}
\end{aligned}
$$

1.31 Option (D) is correct.

We have

$$
f(x)=\frac{\sin x}{x-\pi}
$$

Substituting $x-\pi=y$, we get

$$
\begin{aligned}
f(y+\pi) & =\frac{\sin (y+\pi)}{y}=-\frac{\sin y}{y}=\frac{-1}{y}(\sin y) \\
& =\frac{-1}{y}\left(y-\frac{y^{3}}{3!}+\frac{y^{3}}{5!}-\ldots\right)
\end{aligned}
$$

For more GATE Resources, Mock Test and
 Study material join the community http://www.facebook.com/gateec2014

or

$$
f(y+\pi)=-1+\frac{y^{2}}{3!}-\frac{y^{4}}{5!}+\ldots
$$

Substituting $x-\pi=y$ we get

$$
f(x)=-1+\frac{(x-\pi)^{2}}{3!}-\frac{(x-\pi)^{4}}{5!}+\ldots
$$

Option (A) is correct.

$$
\begin{align*}
\frac{d y}{d x} & =\frac{y}{x} \tag{A}\\
\int \frac{d y}{y} & =\int \frac{d x}{x} \\
\log y & =\log x+\log c
\end{align*}
$$

or

$$
y=c x
$$

Straight Line
Thus option（A）and（C）may be correct．
（B）

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{y}{x} \\
\int \frac{d y}{y} & =-\int \frac{d x}{x} \\
\log y & =-\log x+\log c \\
\log y & =\log \frac{1}{x}+\log c \\
y & =\frac{c}{x}
\end{aligned}
$$

Hyperbola
Option（D）is correct．
Sum of the principal diagonal element of matrix is equal to the sum of Eigen values．Sum of the diagonal element is $-1-1+3=1$ ．In only option（D），the sum of Eigen values is 1 ．
Option（C）is correct．
The product of Eigen value is equal to the determinant of the matrix． Since one of the Eigen value is zero，the product of Eigen value is zero，thus determinant of the matrix is zero．

Thus

$$
p_{11} p_{22}-p_{12} p_{21}=0
$$

Option（B）is correct．
The given system is

$$
\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
7 \\
6
\end{array}\right]
$$

We have

$$
A=\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]
$$

and

$$
|A|=\left|\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right|=0 \quad \text { Rank of matrix } \rho(A)<2
$$

$$
C=\left[\begin{array}{ll|l}
4 & 2 & 7 \\
2 & 1 & 6
\end{array}\right]
$$

Rank of matrix $\rho(C)=2$
Since $\rho(A) \neq \rho(C)$ there is no solution．
Option（A）is correct．
$\sin z$ can have value between -1 to +1 ．Thus no solution．
Option（A）is correct．
We have $\quad f(x)=e^{x}+e^{-x}$
For $x>0, \quad e^{x}>1$ and $0<e^{-x}<1$
For $x<0, \quad 0<e^{x}<1$ and $e^{-x}>1$
Thus $f(x)$ have minimum values at $x=0$ and that is $e^{0}+e^{-0}=2$ ．
1．38 Option（A）is correct．

$$
\begin{aligned}
& \sin x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \\
& \cos x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots
\end{aligned}
$$

Thus only $\sin \left(x^{3}\right)$ will have odd power of x ．
Option（B）is correct．
We have

$$
\frac{d x(t)}{d t}+3 x(t)=0
$$

or
Since $m=-3, \quad x(t)=C e^{-3 t} \quad$ Thus only（B）may be solution．
Option（C）is correct．
We have

$$
x=e^{-x}
$$

or

$$
\begin{aligned}
& f(x)=x-e^{-x} \\
& f(x)=1+e^{-x}
\end{aligned}
$$

The Newton－Raphson iterative formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f\left(x_{n}\right)}
$$

Now

$$
f\left(x_{n}\right)=x_{n}-e^{-x_{n}}
$$

$$
f\left(x_{n}\right)=1+e^{-x_{n}}
$$

Thus

$$
x_{n+1}=x_{n}-\frac{x_{n}-e^{-x_{n}}}{1+e^{-x_{n}}}=\frac{\left(1+x_{n}\right) e^{-x_{n}}}{1+e^{-x_{n}}}
$$

Option（A）is correct．

$$
\text { Res } f(z)_{z=a}=\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left[(z-a)^{n} f(z)\right]_{z=a}
$$

Here we have $n=2$ and $a=2$
Thus Res $f(z)_{z=2}=\frac{1}{(2-1)!} \frac{d}{d z}\left[(z-2)^{2} \frac{1}{(z-2)^{2}(z+2)^{2}}\right]_{z=a}$

$$
\begin{aligned}
& =\frac{d}{d z}\left[\frac{1}{(z+2)^{2}}\right]_{z=a}=\left[\frac{-2}{(z+2)^{3}}\right]_{z=a} \\
& =-\frac{2}{64}=-\frac{1}{32}
\end{aligned}
$$

米え゙
At market Book is available in 3 volume i．e．in 3 book binding form．But at NODIA Online Store book is available in 10 book
binding form．Each unit of Book is in separate binding． Available Only at NODIA Online Store

Click to Buy

www．nodia．co．in

1．42 Option（D）is correct．

$$
\begin{aligned}
e^{P} & =L^{-1}\left[(s \boldsymbol{I}-\boldsymbol{A})^{-1}\right] \\
& =L^{-1}\left(\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right]\right)^{-1} \\
& =L^{-1}\left(\left[\begin{array}{ll}
s & -1 \\
2 & s+3
\end{array}\right]^{-1}\right) \\
& =L^{-1}\left(\left[\left[\begin{array}{ll}
\frac{s+3}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\
\frac{-2}{(s+1)(s+2)} & \frac{s}{(s+1)(s+2)}
\end{array}\right]\right)\right. \\
& =\left[\begin{array}{cc}
2 e^{-1}-e^{-2} & e^{-1}-e^{-2} \\
-2 e^{-1}+2 e^{-2} & -e^{-1}+2 e^{-2}
\end{array}\right]
\end{aligned}
$$

Option（B）is correct．
Taylor series is given as

$$
f(x)=f(a)+\frac{x-a}{1!} f(a)+\frac{(x-a)^{2}}{2!} f^{\prime}(a)+\ldots
$$

For $x=\pi$ we have
Thus

$$
f(x)=f(\pi)+\frac{x-\pi}{1!} f(\pi)+\frac{(x-\pi)^{2}}{2!} f^{\prime}(x) \ldots
$$

Now

$$
f(x)=e^{x}+\sin x
$$

$$
f(x)=e^{x}+\cos x
$$

$$
f^{\prime}(x)=e^{x}-\sin x
$$

$$
f^{\prime}(\pi)=e^{\pi}-\sin \pi=e^{\pi}
$$

Thus the coefficient of $(x-\pi)^{2}$ is $\frac{f^{\prime}(\pi)}{2!}$
1．44 Option（A）is correct．
The equation of straight line from $(0,0)$ to $(1,2)$ is $y=2 x$ ．
Now

$$
g(x, y)=4 x^{3}+10 y^{4}
$$

or，

$$
g(x, 2 x)=4 x^{3}+160 x^{4}
$$

Now

$$
\int_{0}^{1} g(x, 2 x)=\int_{0}^{1}\left(4 x^{3}+160 x^{4}\right) d x
$$

$$
=\left[x^{4}+32 x^{5}\right]_{0}^{1}=33
$$

Option (B) is correct.

$$
\begin{aligned}
I & =2 \int_{P}^{Q}(x d x+y d y)=2 \int_{P}^{Q} x d x+2 \int_{P}^{Q} y d y \\
& =2 \int_{1}^{0} x d x+2 \int_{0}^{1} y d y=0
\end{aligned}
$$

Option (B) is correct.
The given plot is straight line whose equation is

$$
\frac{x}{-1}+\frac{y}{1}=1
$$

or

$$
y=x+1
$$

Now

$$
\begin{aligned}
I & =\int_{1}^{2} y d x=\int_{1}^{2}(x+1) d x \\
& =\left[\frac{(x+1)^{2}}{2}\right]^{2}=\frac{9}{2}-\frac{4}{2}=2.5
\end{aligned}
$$

Option (C) is correct.

$$
\operatorname{coth} x=\frac{\cosh x}{\sinh x}
$$

as $|x| \ll 1, \cosh x \approx 1$ and $\sinh x \approx x$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Thus

$$
\operatorname{coth} x \approx \frac{1}{x}
$$

Option (A) is correct.

$$
\lim _{\theta \rightarrow 0} \frac{\sin \left(\frac{\theta}{2}\right)}{\theta}=\lim _{\theta \rightarrow 0} \frac{\sin \left(\frac{\theta}{2}\right)}{2\left(\frac{\theta}{2}\right)}=\frac{1}{2} \lim _{\theta \rightarrow 0} \frac{\sin \left(\frac{\theta}{2}\right)}{\left(\frac{\theta}{2}\right)}=\frac{1}{2}=0.5
$$

Option (D) is correct.

$$
\text { We have, } \begin{aligned}
\lim _{x \rightarrow 0} \frac{1}{x^{2}} & =\infty \\
\lim _{x \rightarrow \infty} x^{2} & =\infty \\
\lim _{x \rightarrow \infty} e^{-x} & =\infty \\
\lim _{x \rightarrow \infty} e^{-x^{2}} & =0
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} e^{-x^{2}}=1 \quad \text { Thus } e^{-x^{2}} \text { is strictly bounded. }
$$

Option (A) is correct.
We have

$$
\begin{aligned}
f(x) & =e^{-x}=e^{-(x-2)-2}=e^{-(x-2)} e^{-2} \\
& =\left[1-(x-2)+\frac{(x-2)^{2}}{2!} \ldots\right] e^{-2} \\
& =[1-(x-2)] e^{-2} \quad \text { Neglecting higher powers } \\
& =(3-x) e^{-2}
\end{aligned}
$$

Option (D) is correct.
We have

$$
k^{2} \frac{d^{2} y}{d x^{2}}=y-y_{2}
$$

or

$$
\frac{d^{2} y}{d x^{2}}-\frac{y}{k^{2}}=-\frac{y_{2}}{k^{2}}
$$

A.E.

$$
D^{2}-\frac{1}{k^{2}}=0
$$

or

$$
\begin{aligned}
D & = \pm \frac{1}{k} \\
\text { C.F. } & =C_{1} e^{-\frac{x}{k}}+C_{2} e^{\frac{x}{k}}
\end{aligned}
$$

Thus solution is

$$
\text { P.I. }=\frac{1}{D^{2}-\frac{1}{k^{2}}}\left(\frac{-y_{2}^{\llcorner }}{k^{2}}\right)=y_{2}
$$

$$
y=C_{1} e^{-\frac{x}{\kappa}}+C_{2} e^{\frac{x}{k}}+y_{2}
$$

From $y(0)=y_{1}$ we get

$$
C_{1}+C_{2}=y_{1}-y_{2}
$$

From $y(\infty)=y_{2}$ we get that C_{1} must be zero.

$$
\text { Thus } \begin{aligned}
C_{2} & =y_{1}-y_{2} \\
y & =\left(y_{1}-y_{2}\right) e^{-\frac{x}{k}}+y_{2}
\end{aligned}
$$

1.52 Option (B) is correct.

We have

$$
\begin{aligned}
f(x) & =x^{3}-x^{2}+4 x-4 \\
f(x) & =3 x^{2}-2 x+4
\end{aligned}
$$

Taking $x_{0}=2$ in Newton-Raphosn method

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{0}\right)}=2-\frac{2^{3}-2^{2}+4(2)-4}{3(2)^{2}-2(2)+4}=\frac{4}{3}
$$

Option (C) is correct.
For two orthogonal signal $f(x)$ and $g(x)$

$$
\int_{-\infty}^{+\infty} f(x) g(x) d x=0
$$

i.e. common area between $f(x)$ and $g(x)$ is zero.
1.54 Option (A) is correct.

We know that

$$
\oint_{D} \frac{1}{s^{2}-1} d s=2 \pi j
$$

[sum of residues]
Singular points are at $s= \pm 1$ but only $s=+1$ lies inside the given contour, Thus Residue at $s=+1$ is

$$
\begin{aligned}
\lim _{s \rightarrow 1}(s-1) f(s) & =\lim _{s \rightarrow 1}(s-1) \frac{1}{s^{2}-1}=\frac{1}{2} \\
\oint_{D} \frac{1}{s^{2}-1} d s & =2 \pi j\left(\frac{1}{2}\right)=\pi j
\end{aligned}
$$

1.55 Option (C) is correct.

For two orthogonal vectors, we require two dimensions to define them and similarly for three orthogonal vector we require three dimensions to define them. $2 M$ vectors are basically M orthogonal vector and we require M dimensions to define them.
1.56 Option (A) is correct.

We have

$$
f(x)=x^{2}-x+2
$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$
\begin{aligned}
& f(x)=2 x-1=0 \rightarrow x=\frac{1}{2} \\
& f^{\prime}(x)=2
\end{aligned}
$$

Since $f^{\prime}(x)=2>0$, thus $x=\frac{1}{2}$ is minimum point. The maximum value in closed interval $[-4,4]$ will be at $x=-4$ or $x=4$
Now maximum value

$$
\begin{aligned}
& =\max [f(-4), f(4)] \\
& =\max (18,10)=18
\end{aligned}
$$

1.57 Option (C) is correct.

Probability of failing in paper 1 is

$$
\begin{gathered}
P(A)=0.3 \\
P(B)=0.2
\end{gathered}
$$

Probability of failing in paper 1, when
student has failed in paper 2 is $\quad P\left(\frac{A}{B}\right)=0.6$
We know that

$$
P\left(\frac{A}{B}\right)=\frac{(P \cap B)}{P(B)}
$$

or $\quad P(A \cap B)=P(B) P\left(\frac{A}{B}\right)=0.6 \times 0.2=0.12$
Option (C) is correct.
We have

$$
A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
R_{3}-R_{1}
$$

Since one full row is zero, $\rho(A)<3$
Now

$$
\left|\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right|=-2 \neq 0, \text { thus } \rho(A)=2
$$

Option (D) is correct.
The vector Triple Product is

$$
\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=\boldsymbol{B}(\boldsymbol{A} \cdot \boldsymbol{C})-\boldsymbol{C}(\boldsymbol{A} \cdot \boldsymbol{B})
$$

Thus

$$
\nabla \times \nabla \times \boldsymbol{P}=\nabla(\nabla \cdot \boldsymbol{P})-\boldsymbol{P}(\nabla \cdot \nabla)
$$

$=\nabla(\nabla \cdot \boldsymbol{P})-\nabla^{2} \boldsymbol{P}$
Option (A) is correct.
The Stokes theorem is

$$
\iint(\nabla \times F) \cdot d s=\oint A \cdot d l
$$

Option (C) is correct.
We know

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

Thus

$$
\int_{-\infty}^{\infty} K e^{-\alpha|x|} d x=1
$$

or

$$
\int_{-\infty}^{0} K e^{\alpha x} d x+\int_{0}^{\infty} K e^{-\alpha x} d x=1
$$

or $\quad \frac{K}{\alpha}\left[e^{\alpha x}\right]_{-\infty}^{0}+\frac{k}{(-\alpha)}\left[e^{-\alpha x}\right]_{0}^{\infty}=1$
or

$$
\frac{K}{\alpha}+\frac{K}{\alpha}=1
$$

or
Option (A) is correct.

$$
K=\frac{\alpha}{2}
$$

We have

$$
\dot{x}(t)+2 x(t)=s(t)
$$

Taking Laplace transform both sides
or

$$
\begin{aligned}
s X(s)-x(0)+2 X(s) & =1 \\
s X(s)+2 X(s) & =1 \\
X(s) & =\frac{1}{s+2}
\end{aligned}
$$

1.66

Now $x=e^{u} \cos v$ and $y=e^{u} \sin v$
Thus $\quad x^{2}+y^{2}=e^{2 u}$
Equation of circle
1.65 Option (D) is correct.

We have

$$
\oint_{|z-j|=2} \frac{1}{z^{2}+4} d z=\int_{|z-j|=2} \frac{1}{(z+2 i)(z-2 i)} d z
$$

$P(0,2)$ lies inside the circle $|z-j|=2$ and $P(0,-2)$ does not lie.
Thus By cauchy's integral formula

$$
I=2 \pi i \lim _{z \rightarrow 2 i}(z-2 i) \frac{1}{(z+2 i)(z-2 i)}=\oint_{C} \frac{2 \pi i}{2 i+2 i}=\frac{\pi}{2}
$$

Option (C) is correct.

$$
\begin{aligned}
I & =\int_{0}^{\pi} \sin ^{3} \theta d \theta \\
& =\int_{0}^{\pi}\left(\frac{3 \sin \theta-\sin 3 \theta}{4}\right) d \theta \quad \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \\
& =\left[\frac{-3}{4} \cos \theta\right]_{0}^{\pi}=\left[\frac{\omega s 3 \theta}{12}\right]_{0}^{\pi}=\left[\frac{3}{4}+\frac{3}{4}\right]-\left[\frac{1}{12}+\frac{1}{12}\right]=\frac{4}{3}
\end{aligned}
$$

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

wWw.nodia.co.in
1.67 Option (D) is correct.

Let $d \rightarrow$ defective and $y \rightarrow$ supply by Y

$$
\begin{aligned}
p\left(\frac{y}{d}\right) & =\frac{P(y \cap d)}{P(d)} \\
P(y \cap d) & =0.3 \times 0.02=0.006 \\
P(d) & =0.6 \times 0.1+0.3 \times 0.02+0.1 \times 0.03=0.015 \\
P\left(\frac{y}{d}\right) & =\frac{0.006}{0.015}=0.4
\end{aligned}
$$

1.68 Option (C) is correct.

We have

$$
A=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]
$$

Now

$$
[A-\lambda I][X]=0
$$

$$
\left[\begin{array}{cc}
4-\lambda & 2 \\
2 & 4-\lambda
\end{array}\right]\left[\begin{array}{l}
101 \\
101
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\text { Since } x\left(0^{-}\right)=0
$$

or
$(101)(4-\lambda)+2(101)=0$
or

$$
\lambda=6
$$

1.69 Option (A) is correct.

We have

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}+k^{2} y & =0 \\
D^{2} y+k^{2} y & =0 \\
m^{2}+k^{2} & =0
\end{aligned}
$$

or
The AE is
The solution of $A E$ is $m= \pm i k$
Thus $y=A \sin k x+B \cos k x$
From $x=0, y=0$ we get $B=0$ and $x=a, y=0$ we get

$$
A \sin k a=0
$$

or

$$
\begin{aligned}
\sin k a & =0 \\
k & =\frac{m \pi x}{a} \\
y & =\sum_{m} A_{m} \sin \left(\frac{m \pi x}{a}\right)
\end{aligned}
$$

Option (A) is correct.
We have

$$
f(x)=\frac{e^{x}}{1+e^{x}}
$$

For $x \rightarrow \infty$, the value of $f(x)$ monotonically increases.
Option (B) is correct.
Order is the highest derivative term present in the equation and degree is the power of highest derivative term.
Order $=2$, degree $=1$
2.72 Option (D) is correct.

Probability of coming odd number is $\frac{1}{2}$ and the probability of coming even number is $\frac{1}{2}$. Both the events are independent to each other, thus probability of coming odd number after an even number is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
Option (B) is correct.
We have

$$
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0
$$

The A.E. is

$$
\begin{aligned}
m^{2}-5 m+6 & =0 \\
m & =3,2
\end{aligned}
$$

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

The CF is

$$
y_{c}=C_{1} e^{3 x}+C_{2} e^{2 x}
$$

Since $Q=0$, thus

$$
y=C_{1} e^{3 x}+C_{2} e^{2 x}
$$

Thus only (B) may be correct.
Option (A) is correct.
We have

$$
f(t)=e^{(a+2) t+5}=e^{5} \cdot e^{(a+2) t}
$$

Taking Laplace transform we get

$$
F(s)=e^{5}\left[\frac{1}{s-(a+2)}\right] \quad \text { Thus } \operatorname{Re}(s)>(a+2)
$$

Option (C) is correct.
For $x>0$ the slope of given curve is negative. Only (C) satisfy this condition.

Option (C) is correct.
Newton - Raphson
\rightarrow Method-Solving nonlinear eq.
Runge - kutta Method
\rightarrow Solving ordinary differential eq.
Simpson's Rule
\rightarrow Numerical Integration
Gauss elimination
\rightarrow Solving linear simultaneous eq.
Option (C) is correct.
We have

$$
A=\left[\begin{array}{rr}
-4 & 2 \\
4 & 3
\end{array}\right]
$$

Characteristic equation is

$$
\begin{aligned}
& |A-\lambda I| & =0 \\
\text { or } & \left|\begin{array}{cc}
4-\lambda & 2 \\
4 & 3-\lambda
\end{array}\right| & =0 \\
\text { or } & (-4-\lambda)(3-\lambda)-8 & =0 \\
\text { or } & -12+\lambda+\lambda^{2}-8 & =0 \\
\text { or } & \lambda^{2}+\lambda-20 & =0 \\
\text { or } & \lambda & =-5,4
\end{aligned}
$$ Eigen values

Eigen vector for $\lambda=-5$

$$
\begin{array}{rlr}
(A-\lambda I) X_{i} & =0 \\
{\left[\begin{array}{cc}
1-(-5) & 2 \\
4 & 8-4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] & R_{2}-4 R_{1}
\end{array}
$$

Let $-x_{1}=2 \Rightarrow x_{2}=-1$,
Thus

$$
X=\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \quad \text { Eigen vector }
$$

Option (A) is correct.
We have

Now

$$
A=\left[\begin{array}{cc}
2 & -0.1 \\
0 & 3
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & a \\
0 & b
\end{array}\right]
$$

$$
\text { or } \quad\left[\begin{array}{cc}
2 & -0.1 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & a \\
0 & b
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

or

$$
\left[\begin{array}{cc}
1 & 2 a-0.1 b \\
0 & 3 b
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
2 a-0.1=0 \text { and } 3 b=1
$$

or $\quad 2 a-0.1=0$ and $3 b=1$
Thus solving above we have $b=\frac{1}{3}$ and $a=\frac{1}{60}$
Therefore

$$
a+b=\frac{1}{3}+\frac{1}{60}=\frac{7}{20}
$$

Option (A) is correct.
Gaussian PDF is

$$
\begin{array}{ll}
\quad f(x)= & \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \quad \text { for }-\infty \leq x \leq \infty \\
\text { and } \quad \int_{-\infty}^{\infty} f(x) d x=1 &
\end{array}
$$

Substituting $\mu=0$ and $\sigma=2$ in above we get

$$
\begin{array}{rlrl}
& \frac{1}{\sqrt{2 \pi} 2} \int_{-\infty}^{\infty} e^{-\frac{\frac{y}{}_{8}^{8}}{8}} d x & =1 \\
\text { or } & \frac{1}{\sqrt{2 \pi} 2} 2 \int_{0}^{\infty} e^{-\frac{\partial^{2}}{8}} d x & =1 \\
& \text { or } & \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\frac{z^{2}}{8}} d x & =1
\end{array}
$$

1.80 Option (C) is correct.

From orthogonal matrix

$$
\left[A A^{T}\right]=I
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

Since the inverse of I is I, thus

$$
\left[A A^{T}\right]^{-1}=I^{-1}=I
$$

UNIT 2

NETWORKS

2013

ONE MARK
2.1 Consider a delta connection of resistors and its equivalent star connection as shown below. If all elements of the delta connection are scaled by a factor $k, k>0$, the elements of the corresponding star equivalent will be scaled by a factor of

(A) k^{2}
(B) k
(C) $1 / k$
(D) \sqrt{k}
2.2 The transfer function $\frac{V_{2}(s)}{V_{1}(s)}$ of the circuit shown below is

(A) $\frac{0.5 s+1}{s+1}$
(B) $\frac{3 s+6}{s+2}$
(C) $\frac{s+2}{s+1}$
(D) $\frac{s+1}{s+2}$
2.3 A source $v_{s}(t)=V \cos 100 \pi t$ has an internal impedance of $(4+j 3) \Omega$. If a purely resistive load connected to this source has to extract the maximum power out of the source, its value in Ω should be
(A) 3
(B) 4
(C) 5
(D) 7

2013

TWO MARKS
2.4 In the circuit shown below, if the source voltage $V_{S}=100 \angle 53.13^{\circ} \mathrm{V}$ then the Thevenin's equivalent voltage in Volts as seen by the load resistance R_{L} is

(A) $100 \angle 90^{\circ}$
(B) $800 \angle 0^{\circ}$
(C) $800 \angle 90^{\circ}$
(D) $100 \angle 60^{\circ}$

The following arrangement consists of an ideal transformer and an attenuator which attenuates by a factor of 0.8 . An ac voltage $V_{W X 1}=100 \mathrm{~V}$ is applied across WX to get an open circuit voltage $V_{Y Z 1}$ across YZ. Next, an ac voltage $V_{Y Z 2}=100 \mathrm{~V}$ is applied across YZ to get an open circuit voltage $V_{W X 2}$ across WX. Then, $V_{Y Z 1} / V_{W X 1}$, $V_{W X 2} / V_{Y Z 2}$ are respectively,

(A) $125 / 100$ and $80 / 100$
(B) 100/100 and 80/100
(C) 100/100 and 100/100
(D) 80/100 and 80/100
2.6 Three capacitors C_{1}, C_{2} and C_{3} whose values are $10 \mu \mathrm{~F}, 5 \mu \mathrm{~F}$, and $2 \mu \mathrm{~F}$ respectively, have breakdown voltages of $10 \mathrm{~V}, 5 \mathrm{~V}$ and 2 V respectively. For the interconnection shown below, the maximum safe voltage in Volts that can be applied across the combination, and the corresponding total charge in $\mu \mathrm{C}$ stored in the effective capacitance across the terminals are respectively,

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

(A) 2.8 and 36
(B) 7 and 119
(C) 2.8 and 32
(D) 7 and 80

Common Data For Q. 8 and 9:
Consider the following figure

2.7 The current I_{S} in Amps in the voltage source, and voltage V_{S} in Volts across the current source respectively, are
(A) $13,-20$
(B) $8,-10$
(C) $-8,20$
(D) $-13,20$
2.8 The current in the 1Ω resistor in Amps is
(A) 2
(B) 3.33
(C) 10
(D) 12
2.9 Two magnetically uncoupled inductive coils have Q factors q_{1} and q_{2}
at the chosen operating frequency. Their respective resistances are R_{1} and R_{2}. When connected in series, their effective Q factor at the same operating frequency is
(A) $q_{1}+q_{2}$
(B) $\left(1 / q_{1}\right)+\left(1 / q_{2}\right)$
(C) $\left(q_{1} R_{1}+q_{2} R_{2}\right) /\left(R_{1}+R_{2}\right)$
(D) $\left(q_{1} R_{2}+q_{2} R_{1}\right) /\left(R_{1}+R_{2}\right)$

2012

ONE MARK
In the following figure, C_{1} and C_{2} are ideal capacitors. C_{1} has been charged to 12 V before the ideal switch S is closed at $t=0$. The current $i(t)$ for all t is

(A) zero
(B) a step function

GATE Electronics \& Communication
 by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
(C) an exponentially decaying function
(D) an impulse function

The average power delivered to an impedance $(4-j 3) \Omega$ by a current $5 \cos (100 \pi t+100) \mathrm{A}$ is
(A) 44.2 W
(B) 50 W
(C) 62.5 W
(D) 125 W

In the circuit shown below, the current through the inductor is

(A) $\frac{2}{1+j} \mathrm{~A}$
(B) $\frac{-1}{1+j} \mathrm{~A}$
(C) $\frac{1}{1+j} \mathrm{~A}$
(D) 0 A

2012
Assuming both the voltage sources are in phase, the value of R for which maximum power is transferred from circuit A to circuit B is

(A) 0.8Ω
(B) 1.4Ω
(C) 2Ω
(D) 2.8Ω
2.14 If $V_{A}-V_{B}=6 \mathrm{~V}$ then $V_{C}-V_{D}$ is

(A) -5 V
(B) 2 V
(C) 3 V
(D) 6 V

Common Data For Q. 48 and 49 :

With 10 V dc connected at port A in the linear nonreciprocal twoport network shown below, the following were observed :
(i) 1Ω connected at port B draws a current of 3 A
(ii) 2.5Ω connected at port B draws a current of 2 A

2.15 With 10 V dc connected at port A, the current drawn by 7Ω connected at port B is
(A) $3 / 7 \mathrm{~A}$
(B) $5 / 7 \mathrm{~A}$
(C) 1 A
(D) $9 / 7 \mathrm{~A}$
2.16 For the same network, with 6 V dc connected at port $A, 1 \Omega$ connected at port B draws $7 / 3 \mathrm{~A}$. If 8 V dc is connected to port A , the open circuit voltage at port B is
(A) 6 V
(B) 7 V
(C) 8 V
(D) 9 V

2011
ONE MARK
For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014
2.17 In the circuit shown below, the Norton equivalent current in amperes with respect to the terminals P and Q is

(A) $6.4-j 4.8$
(B) $6.56-j 7.87$
(C) $10+j 0$
(D) $16+j 0$
2.18 In the circuit shown below, the value of R_{L} such that the power
transferred to R_{L} is maximum is

(A) 5Ω
(B) 10Ω
(C) 15Ω
(D) 20Ω

The circuit shown below is driven by a sinusoidal input $v_{i}=V_{p} \cos (t / R C)$. The steady state output v_{o} is

(A) $\left(V_{p} / 3\right) \cos (t / R C)$
(B) $\left(V_{p} / 3\right) \sin (t / R C)$
(C) $\left(V_{p} / 2\right) \cos (t / R C)$
(D) $\left(V_{p} / 2\right) \sin (t / R C)$

2011

TWO MARKS
In the circuit shown below, the current I is equal to

(A) $1.4 \angle 0^{\circ} \mathrm{A}$
(B) $2.0 \angle 0^{\circ} \mathrm{A}$
(C) $2.8 \angle 0^{\circ} \mathrm{A}$
(D) $3.2 \angle 0^{\circ} \mathrm{A}$

In the circuit shown below, the network N is described by the following Y matrix:
$Y=\left[\begin{array}{rr}0.1 \mathrm{~S} & -0.01 \mathrm{~S} \\ 0.01 \mathrm{~S} & 0.1 \mathrm{~S}\end{array}\right]$. the voltage gain $\frac{V_{2}}{V_{1}}$ is

(A) $1 / 90$
(B) $-1 / 90$
(C) $-1 / 99$
(D) $-1 / 11$

In the circuit shown below, the initial charge on the capacitor is 2.5 mC , with the voltage polarity as indicated. The switch is closed at time $t=0$. The current $i(t)$ at a time t after the switch is closed is

(A) $i(t)=15 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(B) $i(t)=5 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(C) $i(t)=10 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(D) $i(t)=-5 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$

2010
ONE MARK
2.23 For the two-port network shown below, the short-circuit admittance parameter matrix is

(A) $\left[\begin{array}{cr}4 & -2 \\ -2 & 4\end{array}\right] \mathrm{S}$
(B) $\left[\begin{array}{cc}1 & -0.5 \\ -0.5 & 1\end{array}\right] \mathrm{S}$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(C) $\left[\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right] \mathrm{S}$
(D) $\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right] \mathrm{S}$
2.24 For parallel $R L C$ circuit, which one of the following statements is NOT correct?
(A) The bandwidth of the circuit decreases if R is increased
(B) The bandwidth of the circuit remains same if L is increased
(C) At resonance, input impedance is a real quantity
(D) At resonance, the magnitude of input impedance attains its minimum value.

2010

TWO MARKS
2.25 In the circuit shown, the switch S is open for a long time and is closed at $t=0$. The current $i(t)$ for $t \geq 0^{+}$is

(A) $i(t)=0.5-0.125 e^{-1000 t} \mathrm{~A}$
(B) $i(t)=1.5-0.125 e^{-1000 t} \mathrm{~A}$
(C) $i(t)=0.5-0.5 e^{-1000 t} \mathrm{~A}$
(D) $i(t)=0.375 e^{-1000 t} \mathrm{~A}$
2.26 The current I in the circuit shown is

(A) $-j 1 \mathrm{~A}$
(B) $j 1 \mathrm{~A}$
(C) 0 A
(D) 20 A
2.27 In the circuit shown, the power supplied by the voltage source is

(A) 0 W
(B) 5 W
(C) 10 W
(D) 100 W

GATE 2009

ONE MARK
In the interconnection of ideal sources shown in the figure, it is known that the 60 V source is absorbing power.

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Which of the following can be the value of the current source I ?
(A) 10 A
(B) 13 A
(C) 15 A
(D) 18 A

If the transfer function of the following network is

$$
\frac{V_{o}(s)}{V_{i}(s)}=\frac{1}{2+s C R}
$$

The value of the load resistance R_{L} is
(A) $\frac{R}{4}$
(B) $\frac{R}{2}$
(C) R
(D) $2 R$
2.30 A fully charged mobile phone with a 12 V battery is good for a 10 minute talk-time. Assume that, during the talk-time the battery delivers a constant current of 2 A and its voltage drops linearly from 12 V to 10 V as shown in the figure. How much energy does the
battery deliver during this talk-time?

(A) 220 J
(B) 12 kJ
(C) 13.2 kJ
(D) 14.4 J

GATE 2009

TWO MARK
2.31 An AC source of RMS voltage 20 V with internal impedance $Z_{s}=(1+2 j) \Omega$ feeds a load of impedance $Z_{L}=(7+4 j) \Omega$ in the figure below. The reactive power consumed by the load is

(A) 8 VAR
(B) 16 VAR
(C) 28 VAR
(D) 32 VAR
2.32 The switch in the circuit shown was on position a for a long time, and is move to position b at time $t=0$. The current $i(t)$ for $t>0$ is given by

(A) $0.2 e^{-125 t} u(t) \mathrm{mA}$
(B) $20 e^{-1250 t} u(t) \mathrm{mA}$
(C) $0.2 e^{-1250 t} u(t) \mathrm{mA}$
(D) $20 e^{-1000 t} u(t) \mathrm{mA}$
${ }_{2.33}$ In the circuit shown, what value of R_{L} maximizes the power delivered to R_{L} ?

(A) 2.4Ω
(B) $\frac{8}{3} \Omega$
(C) 4Ω
(D) 6Ω

The time domain behavior of an $R L$ circuit is represented by

$$
L \frac{d i}{d t}+R i=V_{0}\left(1+B e^{-R t / L} \sin t\right) u(t)
$$

For an initial current of $i(0)=\frac{V_{0}}{R}$, the steady state value of the current is given by
(A) $i(t) \rightarrow \frac{V_{0}}{R}$
(B) $i(t) \rightarrow \frac{2 V_{0}}{R}$
(C) $i(t) \rightarrow \frac{V_{0}}{R}(1+B)$
(D) $i(t) \rightarrow \frac{2 V_{0}}{R}(1+B)$

GATE 2008

ONE MARK

In the following graph, the number of trees (P) and the number of cut-set (Q) are

(4)
(A) $P=2, Q=2$
(B) $P=2, Q=6$
(C) $P=4, Q=6$
(D) $P=4, Q=10$

In the following circuit, the switch S is closed at $t=0$. The rate of change of current $\frac{d i}{d t}\left(0^{+}\right)$is given by

(A) 0
(B) $\frac{R_{s} I_{s}}{L}$
(C) $\frac{\left(R+R_{s}\right) I_{s}}{L}$
(D) ∞

GATE 2008

TWO MARKS

The Thevenin equivalent impedance $Z_{t h}$ between the nodes P and Q in the following circuit is

(A) 1
(B) $1+s+\frac{1}{s}$
(C) $2+s+\frac{1}{s}$
(D) $\frac{s^{2}+s+1}{s^{2}+2 s+1}$
${ }^{2.38} \quad$ The driving point impedance of the following network is given by

$$
Z(s)=\frac{0.2 s}{s^{2}+0.1 s+2}
$$

The component values are
(A) $L=5 \mathrm{H}, R=0.5 \Omega, C=0.1 \mathrm{~F}$
(B) $L=0.1 \mathrm{H}, R=0.5 \Omega, C=5 \mathrm{~F}$
(C) $L=5 \mathrm{H}, R=2 \Omega, C=0.1 \mathrm{~F}$
(D) $L=0.1 \mathrm{H}, R=2 \Omega, C=5 \mathrm{~F}$
2.39 The circuit shown in the figure is used to charge the capacitor C alternately from two current sources as indicated. The switches S_{1} and S_{2} are mechanically coupled and connected as follows:
For $2 n T \leq t \leq(2 n+1) T,(n=0,1,2, ..) S_{1}$ to P_{1} and S_{2} to P_{2} For $(2 n+1) T \leq t \leq(2 n+2) T,(n=0,1,2, \ldots) S_{1}$ to Q_{1} and S_{2} to Q_{2}
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Assume that the capacitor has zero initial charge. Given that $u(t)$ is a unit step function, the voltage $v_{c}(t)$ across the capacitor is given by
(A) $\sum_{n=1}^{\infty}(-1)^{n} t u(t-n T)$
(B) $u(t)+2 \sum_{n=1}^{\infty}(-1)^{n} u(t-n T)$
(C) $t u(t)+2 \sum_{n=1}^{\infty}(-1)^{n} u(t-n T)(t-n T)$
(D) $\sum_{n=1}^{\infty}\left[0.5-e^{-(t-2 n T)}+0.5 e^{-(t-2 n T)}-T\right]$

Common Data For Q. 2.23 \& 2.24 :

The following series $R L C$ circuit with zero conditions is excited by a unit impulse functions $\delta(t)$.

For $t>0$, the output voltage $v_{C}(t)$ is
(A) $\frac{2}{\sqrt{3}}\left(e^{\frac{-1}{2} t}-e^{\frac{\sqrt{3}}{2} t}\right)$
(B) $\frac{2}{\sqrt{3}} t e^{\frac{-1}{2}} t$
(C) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)$
(D) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right)$

For $t>0$, the voltage across the resistor is
(A) $\frac{1}{\sqrt{3}}\left(e^{\frac{\sqrt{3}}{2} t}-e^{-\frac{1}{2} t}\right)$
(B) $e^{\frac{-1}{2} t}\left[\cos \left(\frac{\sqrt{3}}{2} t\right)-\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3} t}{2}\right)\right]$
(C) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2} t} \sin \left(\frac{\sqrt{3} t}{2}\right)$
(D) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)$

Statement for linked Answers Questions $2.25 \& 2.26:$

A two-port network shown below is excited by external DC source.
The voltage and the current are measured with voltmeters V_{1}, V_{2}

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
and ammeters. A_{1}, A_{2} (all assumed to be ideal), as indicated

Under following conditions, the readings obtained are:
(1) S_{1}-open, S_{2} - closed $A_{1}=0, V_{1}=4.5 \mathrm{~V}, V_{2}=1.5 \mathrm{~V}, A_{2}=1 \mathrm{~A}$
(2) S_{1}-open, S_{2} - closed $A_{1}=4 \mathrm{~A}, V_{1}=6 \mathrm{~V}, V_{2}=6 \mathrm{~V}, A_{2}=0$

The z-parameter matrix for this network is
(A) $\left[\begin{array}{ll}1.5 & 1.5 \\ 4.5 & 1.5\end{array}\right]$
(B) $\left[\begin{array}{ll}1.5 & 4.5 \\ 1.5 & 4.5\end{array}\right]$
(C) $\left[\begin{array}{ll}1.5 & 4.5 \\ 1.5 & 1.5\end{array}\right]$
(D) $\left[\begin{array}{ll}4.5 & 1.5 \\ 1.5 & 4.5\end{array}\right]$

The h-parameter matrix for this network is
(A) $\left[\begin{array}{cc}-3 & 3 \\ -1 & 0.67\end{array}\right]$
(B) $\left[\begin{array}{rr}-3 & -1 \\ 3 & 0.67\end{array}\right]$
(C) $\left[\begin{array}{cc}3 & 3 \\ 1 & 0.67\end{array}\right]$
(D) $\left[\begin{array}{cc}3 & 1 \\ -3 & -0.67\end{array}\right]$

GATE 2007

ONE MARK
An independent voltage source in series with an impedance $Z_{s}=R_{s}+j X_{s}$ delivers a maximum average power to a load impedance Z_{L} when
(A) $Z_{L}=R_{s}+j X_{s}$
(B) $Z_{L}=R_{s}$
(C) $Z_{L}=j X_{s}$
(D) $Z_{L}=R_{s}-j X_{s}$
2.45 The $R C$ circuit shown in the figure is

(A) a low-pass filter
(B) a high-pass filter
(C) a band-pass filter
(D) a band-reject filter

GATE 2007
TWO MARKS
2.46 Two series resonant filters are as shown in the figure. Let the $3-\mathrm{dB}$ bandwidth of Filter 1 be B_{1} and that of Filter 2 be B_{2}. the value $\frac{B_{1}}{B_{2}}$ is

(A) 4
(B) 1
(C) $1 / 2$
(D) $1 / 4$
2.47 For the circuit shown in the figure, the Thevenin voltage and resistance looking into $X-Y$ are

(A) $\frac{4}{3} \mathrm{~V}, 2 \Omega$
(B) $4 \mathrm{~V}, \frac{2}{3} \Omega$
(C) $\frac{4}{3} \mathrm{~V}, \frac{2}{3} \Omega$
(D) $4 \mathrm{~V}, 2 \Omega$
2.48 In the circuit shown, v_{C} is 0 volts at $t=0$ sec. For $t>0$, the capacitor current $i_{C}(t)$, where t is in seconds is given by

(A) $0.50 \exp (-25 t) \mathrm{mA}$
(B) $0.25 \exp (-25 t) \mathrm{mA}$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(C) $0.50 \exp (-12.5 t) \mathrm{mA}$
(D) $0.25 \exp (-6.25 t) \mathrm{mA}$

In the ac network shown in the figure, the phasor voltage V_{AB} (in Volts) is

(A) 0
(B) $5 \angle 30^{\circ}$
(C) $12.5 \angle 30^{\circ}$
(D) $17 \angle 30^{\circ}$

GATE 2006

TWO MARKS
A two-port network is represented by $A B C D$ parameters given by

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{r}
V_{2} \\
-I_{2}
\end{array}\right]
$$

If port-2 is terminated by R_{L}, the input impedance seen at port-1 is given by
(A) $\frac{A+B R_{L}}{C+D R_{L}}$
(B) $\frac{A R_{L}+C}{B R_{L}+D}$
(C) $\frac{D R_{L}+A}{B R_{L}+C}$
(D) $\frac{B+A R_{L}}{D+C R_{L}}$

In the two port network shown in the figure below, Z_{12} and Z_{21} and respectively

(A) r_{e} and βr_{0}
(B) 0 and $-\beta r_{0}$
(C) 0 and βr_{o}
(D) r_{e} and $-\beta r_{0}$

The first and the last critical frequencies (singularities) of a driving point impedance function of a passive network having two kinds of elements, are a pole and a zero respectively. The above property will be satisfied by
(A) $R L$ network only
(B) $R C$ network only
(C) $L C$ network only
(D) $R C$ as well as $R L$ networks

A 2 mH inductor with some initial current can be represented as shown below, where s is the Laplace Transform variable. The value of initial current is

(A) 0.5 A
(B) 2.0 A
(C) 1.0 A
(D) 0.0 A
2.54 In the figure shown below, assume that all the capacitors are initially uncharged. If $v_{i}(t)=10 u(t)$ Volts, $v_{o}(t)$ is given by

(A) $8 e^{-t / 0.004}$ Volts
(B) $8\left(1-e^{-t / 0.004}\right)$ Volts
(C) $8 u(t)$ Volts
(D) 8 Volts
2.55 A negative resistance $R_{\text {neg }}$ is connected to a passive network N having driving point impedance as shown below. For $Z_{2}(s)$ to be positive real,

(A) $\left|R_{\text {neg }}\right| \leq \operatorname{Re} Z_{1}(j \omega), \forall \omega$
(B) $\left|R_{\text {neg }}\right| \leq\left|Z_{1}(j \omega)\right|, \forall \omega$
(C) $\left|R_{\text {neg }}\right| \leq \operatorname{Im} Z_{1}(j \omega), \forall \omega$
(D) $\left|R_{\text {neg }}\right| \leq \angle Z_{1}(j \omega), \forall \omega$

GATE 2005

ONE MARK
2.56 The condition on R, L and C such that the step response $y(t)$ in the figure has no oscillations, is

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(A) $R \geq \frac{1}{2} \sqrt{\frac{L}{C}}$
(B) $R \geq \sqrt{\frac{L}{C}}$
(C) $R \geq 2 \sqrt{\frac{L}{C}}$
(D) $R=\frac{1}{\sqrt{L C}}$
2.57 The $A B C D$ parameters of an ideal $n: 1$ transformer shown in the figure are

The value of x will be
(A) n
(B) $\frac{1}{n}$
(C) n^{2}
(D) $\frac{1}{n^{2}}$

In a series $R L C$ circuit, $R=2 \mathrm{k} \Omega, L=1 \mathrm{H}$, and $C=\frac{1}{400} \mu \mathrm{~F}$ The resonant frequency is
(A) $2 \times 10^{4} \mathrm{~Hz}$
(B) $\frac{1}{\pi} \times 10^{4} \mathrm{~Hz}$
(C) $10^{4} \mathrm{~Hz}$
(D) $2 \pi \times 10^{4} \mathrm{~Hz}$
2.59 The maximum power that can be transferred to the load resistor R_{L} from the voltage source in the figure is

(A) 1 W
(B) 10 W
(C) 0.25 W
(D) 0.5 W
2.60 The first and the last critical frequency of an $R C$-driving point impedance function must respectively be
(A) a zero and a pole
(B) a zero and a zero
(C) a pole and a pole
(D) a pole and a zero

GATE 2005

TWO MARKS
For the circuit shown in the figure, the instantaneous current $i_{1}(t)$ is

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(A) $\frac{10 \sqrt{3}}{2} \angle 90^{\circ} \mathrm{A}$
(B) $\frac{10 \sqrt{3}}{2} \angle-90^{\circ} \mathrm{A}$
(C) $5 / 60^{\circ} \mathrm{A}$
(D) $5 /-60^{\circ} \mathrm{A}$
2.62 Impedance Z as shown in the given figure is

(A) $j 29 \Omega$
(B) $j 9 \Omega$
(C) $j 19 \Omega$
(D) $j 39 \Omega$

For the circuit shown in the figure, Thevenin's voltage and Thevenin's equivalent resistance at terminals $\mathrm{a}-\mathrm{b}$ is

(A) 5 V and 2Ω
(B) 7.5 V and 2.5Ω
(C) 4 V and 2Ω
(D) 3 V and 2.5Ω
the figure, then the reading in the ideal voltmeter connected between a and b is

(A) 0.238 V
(B) 0.138 V
(C) -0.238 V
(D) 1 V
2.65 The h parameters of the circuit shown in the figure are

(A) $\left[\begin{array}{rr}0.1 & 0.1 \\ -0.1 & 0.3\end{array}\right]$
(B) $\left[\begin{array}{cc}10 & -1 \\ 1 & 0.05\end{array}\right]$
(C) $\left[\begin{array}{ll}30 & 20 \\ 20 & 20\end{array}\right]$
(D) $\left[\begin{array}{cc}10 & 1 \\ -1 & 0.05\end{array}\right]$
2.66 A square pulse of 3 volts amplitude is applied to $C-R$ circuit shown in the figure. The capacitor is initially uncharged. The output voltage V_{2} at time $t=2 \mathrm{sec}$ is

(A) 3 V
(B) -3 V
(C) 4 V
(D) -4 V
2.67 Consider the network graph shown in the figure. Which one of the following is NOT a 'tree' of this graph ?

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec 2014

(A) a
(B) b
(C) c
(D) d

The equivalent inductance measured between the terminals 1 and 2 for the circuit shown in the figure is

(A) $L_{1}+L_{2}+M$
(B) $L_{1}+L_{2}-M$
(C) $L_{1}+L_{2}+2 M$
(D) $L_{1}+L_{2}-2 M$
2.69 The circuit shown in the figure, with $R=\frac{1}{3} \Omega, L=\frac{1}{4} \mathrm{H}$ and $C=3 \mathrm{~F}$ has input voltage $v(t)=\sin 2 t$. The resulting current $i(t)$ is

(A) $5 \sin \left(2 t+53.1^{\circ}\right)$
(B) $5 \sin \left(2 t-53.1^{\circ}\right)$
(C) $25 \sin \left(2 t+53.1^{\circ}\right)$
(D) $25 \sin \left(2 t-53.1^{\circ}\right)$

For the circuit shown in the figure, the time constant $R C=1 \mathrm{~ms}$. The input voltage is $v_{i}(t)=\sqrt{2} \sin 10^{3} t$. The output voltage $v_{o}(t)$ is equal to

(A) $\sin \left(10^{3} t-45^{\circ}\right)$
(B) $\sin \left(10^{3} t+45^{\circ}\right)$
(C) $\sin \left(10^{3} t-53^{\circ}\right)$
(D) $\sin \left(10^{3} t+53^{\circ}\right)$

For the $R-L$ circuit shown in the figure, the input voltage $v_{i}(t)=u(t)$. The current $i(t)$ is

(A)

(B)

(C)

(D)

GATE 2004
TWO MARKS
2.72 For the lattice shown in the figure, $Z_{a}=j 2 \Omega$ and $Z_{b}=2 \Omega$. The values of the open circuit impedance parameters $[z]=\left[\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right]$ are

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
 www.nodia.co.in

(A) $\left[\begin{array}{lll}1-j & 1+j \\ 1+j & 1+j\end{array}\right]$
(B) $\left[\begin{array}{cc}1-j & 1+j \\ -1+j & 1-j\end{array}\right]$
(C) $\left[\begin{array}{ll}1+j & 1+j \\ 1-j & 1-j\end{array}\right]$
(D) $\left[\begin{array}{cc}1+j & -1+j \\ -1+j & 1+j\end{array}\right]$
2.73 The circuit shown in the figure has initial current $i_{L}\left(0^{-}\right)=1 \mathrm{~A}$ through the inductor and an initial voltage $v_{C}\left(0^{-}\right)=-1 \mathrm{~V}$ across the capacitor. For input $v(t)=u(t)$, the Laplace transform of the current $i(t)$ for $t \geq 0$ is

(A) $\frac{s}{s^{2}+s+1}$
(B) $\frac{s+2}{s^{2}+s+1}$
(C) $\frac{s-2}{s^{2}+s+1}$
(D) $\frac{1}{s^{2}+s+1}$
2.74 The transfer function $H(s)=\frac{V_{o}(s)}{V_{i}(s)}$ of an $R L C$ circuit is given by

$$
H(s)=\frac{10^{6}}{s^{2}+20 s+10^{6}}
$$

The Quality factor (Q-factor) of this circuit is
(A) 25
(B) 50
(C) 100
(D) 5000
(C) 100
(D) 200
2.75 For the circuit shown in the figure, the initial conditions are zero. Its $\quad 2.8$ transfer function $H(s)=\frac{V_{c}(s)}{V_{i}(s)}$ is

(A) $\frac{1}{s^{2}+10^{6} s+10^{6}}$
(B) $\frac{10^{6}}{s^{2}+10^{3} s+10^{6}}$
(C) $\frac{10^{3}}{s^{2}+10^{3} s+10^{6}}$
(D) $\frac{10^{6}}{s^{2}+10^{6} s+10^{6}}$

Consider the following statements S1 and S2
S1: At the resonant frequency the impedance of a series $R L C$ circuit is zero.
S2 : In a parallel $G L C$ circuit, increasing the conductance G results in increase in its Q factor.

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Which one of the following is correct?
(A) S1 is FALSE and S 2 is TRUE
(B) Both S 1 and S 2 are TRUE
(C) S1 is TRUE and S 2 is FALSE
(D) Both S1 and S2 are FALSE

GATE 2003

The minimum number of equations required to analyze the circuit shown in the figure is

(A) 3
(B) 4
(C) 6
(D) 7
2.78 A source of angular frequency $1 \mathrm{rad} / \mathrm{sec}$ has a source impedance consisting of 1Ω resistance in series with 1 H inductance. The load that will obtain the maximum power transfer is
(A) 1Ω resistance
(B) 1Ω resistance in parallel with 1 H inductance
(C) 1Ω resistance in series with 1 F capacitor
(D) 1Ω resistance in parallel with 1 F capacitor
2.79 A series $R L C$ circuit has a resonance frequency of 1 kHz and a quality factor $Q=100$. If each of R, L and C is doubled from its original value, the new Q of the circuit is
(A) 25
(B) 50

The differential equation for the current $i(t)$ in the circuit of the figure is

(A) $2 \frac{d^{2} i}{d t^{2}}+2 \frac{d i}{d t}+i(t)=\sin t$
(B) $\frac{d^{2} i}{d t^{2}}+2 \frac{d i}{d t}+2 i(t)=\cos t$
(C) $2 \frac{d^{2} i}{d t^{2}}+2 \frac{d i}{d t}+i(t)=\cos t$
(D) $\frac{d^{2} i}{d t^{2}}+2 \frac{d i}{d t}+2 i(t)=\sin t$

GATE 2003
TWO MARKS
2.81 Twelve 1Ω resistance are used as edges to form a cube. The resistance between two diagonally opposite corners of the cube is
(A) $\frac{5}{6} \Omega$
(B) 1Ω
(C) $\frac{6}{5} \Omega$
(D) $\frac{3}{2} \Omega$
2.82 The current flowing through the resistance R in the circuit in the figure has the form $P \cos 4 t$ where P is

(A) $(0.18+j 0.72)$
(B) $(0.46+j 1.90)$
(C) $-(0.18+j 1.90)$
(D) $-(0.192+j 0.144)$

The circuit for $Q .2 .66 \& 2.67$ is given below.
Assume that the switch S is in position 1 for a long time and thrown to position 2 at $t=0$.

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

2.83 At $t=0^{+}$, the current i_{1} is
(A) $\frac{-V}{2 R}$
(B) $\frac{-V}{R}$
(C) $\frac{-V}{4 R}$
(D) zero
2.84 $\quad I_{1}(s)$ and $I_{2}(s)$ are the Laplace transforms of $i_{1}(t)$ and $i_{2}(t)$ respectively. The equations for the loop currents $I_{1}(s)$ and $I_{2}(s)$ for the circuit shown in the figure, after the switch is brought from position 1 to position 2 at $t=0$, are
(A) $\left[\begin{array}{cc}R+L s+\frac{1}{C s} & -L s \\ -L s & R+\frac{1}{C s}\end{array}\right]\left[\begin{array}{l}I_{1}(s) \\ I_{2}(s)\end{array}\right]=\left[\begin{array}{c}\frac{V}{s} \\ 0\end{array}\right]$
(B) $\left[\begin{array}{cc}R+L s+\frac{1}{C s} & -L s \\ -L s & R+\frac{1}{C s}\end{array}\right]\left[\begin{array}{c}I_{1}(s) \\ I_{2}(s)\end{array}\right]=\left[\begin{array}{r}-\frac{V}{s} \\ 0\end{array}\right]$
(C) $\left[\begin{array}{cc}R+L s+\frac{1}{C s} & -L s \\ -L s & R+L s+\frac{1}{C s}\end{array}\right]\left[\begin{array}{c}I_{1}(s) \\ I_{2}(s)\end{array}\right]=\left[\begin{array}{r}-\frac{V}{s} \\ 0\end{array}\right]$
(D) $\left[\begin{array}{cc}R+L s+\frac{1}{C s} & -C s \\ -L s & R+L s+\frac{1}{C s}\end{array}\right]\left[\begin{array}{c}I_{1}(s) \\ I_{2}(s)\end{array}\right]=\left[\begin{array}{c}\frac{V}{s} \\ 0\end{array}\right]$
2.85 The driving point impedance $Z(s)$ of a network has the pole-zero locations as shown in the figure. If $Z(0)=3$, then $Z(s)$ is

(A) $\frac{3(s+3)}{s^{2}+2 s+3}$
(B) $\frac{2(s+3)}{s^{2}+2 s+2}$
(C) $\frac{3(s+3)}{s^{2}+2 s+2}$
(D) $\frac{2(s-3)}{s^{2}-2 s-3}$

An input voltage $v(t)=10 \sqrt{2} \cos \left(t+10^{\circ}\right)+10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)$ V is applied to a series combination of resistance $R=1 \Omega$ and an inductance $L=1 \mathrm{H}$. The resulting steady-state current $i(t)$ in ampere is
(A) $10 \cos \left(t+55^{\circ}\right)+10 \cos \left(2 t+10^{\circ}+\tan ^{-1} 2\right)$
(B) $10 \cos \left(t+55^{\circ}\right)+10 \sqrt{\frac{3}{2}} \cos \left(2 t+55^{\circ}\right)$
(C) $10 \cos \left(t-35^{\circ}\right)+10 \cos \left(2 t+10^{\circ}-\tan ^{-1} 2\right)$
(D) $10 \cos \left(t-35^{\circ}\right)+\sqrt{\frac{3}{2}} \cos \left(2 t-35^{\circ}\right)$

The impedance parameters z_{11} and z_{12} of the two-port network in the figure are

(A) $z_{11}=2.75 \Omega$ and $z_{12}=0.25 \Omega$
(B) $z_{11}=3 \Omega$ and $z_{12}=0.5 \Omega$
(C) $z_{11}=3 \Omega$ and $z_{12}=0.25 \Omega$
(D) $z_{11}=2.25 \Omega$ and $z_{12}=0.5 \Omega$

GATE 2002

ONE MARK
The dependent current source shown in the figure

(A) delivers 80 W
(B) absorbs 80 W
(C) delivers 40 W
(D) absorbs 40 W

In the figure, the switch was closed for a long time before opening at $t=0$. The voltage v_{x} at $t=0^{+}$is

(A) 25 V
(B) 50 V
(C) -50 V
(D) 0 V

GATE 2002

TWO MARKS
In the network of the fig, the maximum power is delivered to R_{L} if its value is

(A) 16Ω
(B) $\frac{40}{3} \Omega$
(C) 60Ω
(D) 20Ω

If the 3-phase balanced source in the figure delivers 1500 W at

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
a leading power factor 0.844 then the value of Z_{L} (in ohm) is approximately

(A) $90 \angle 32.44^{\circ}$
(B) $80 \angle 32.44^{\circ}$
(C) $80 \angle-32.44^{\circ}$
(D) $90 \angle-32.44^{\circ}$

GATE 2001

ONE MARK
The Voltage e_{0} in the figure is

(A) 2 V
(B) $4 / 3 \mathrm{~V}$
(C) 4 V
(D) 8 V
${ }_{2}{ }^{3}$ If each branch of Delta circuit has impedance $\sqrt{3} Z$, then each branch of the equivalent Wye circuit has impedance
(A) $\frac{Z}{\sqrt{3}}$
(B) $3 Z$
(C) $3 \sqrt{3} Z$
(D) $\frac{Z}{3}$
2.94 The admittance parameter Y_{12} in the 2-port network in Figure is

(A) -0.02 mho
(B) 0.1 mho
(C) -0.05 mho
(D) 0.05 mho

GATE 2001

TWO MARKS
The voltage e_{0} in the figure is

(A) 48 V
(B) 24 V
(C) 36 V
(D) 28 V

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

When the angular frequency ω in the figure is varied 0 to ∞, the locus of the current phasor I_{2} is given by

(A)

(B)

(C)

(D)

In the figure, the value of the load resistor R_{L} which maximizes the power delivered to it is

(A) 14.14Ω
(B) 10Ω
(C) 200Ω
(D) 28.28Ω

The z parameters z_{11} and z_{21} for the 2-port network in the figure are

(A) $z_{11}=\frac{6}{11} \Omega ; z_{21}=\frac{16}{11} \Omega$
(B) $z_{11}=\frac{6}{11} \Omega ; z_{21}=\frac{4}{11} \Omega$
(C) $z_{11}=\frac{6}{11} \Omega ; z_{21}=-\frac{16}{11} \Omega$
(D) $z_{11}=\frac{4}{11} \Omega ; z_{21}=\frac{4}{11} \Omega$

GATE 2000
ONE MARK
2.99 The circuit of the figure represents a

(A) Low pass filter
(B) High pass filter
(C) band pass filter
(D) band reject filter
2.100 In the circuit of the figure, the voltage $v(t)$ is

(A) $e^{a t}-e^{b t}$
(B) $e^{a t}+e^{b t}$
(C) $a e^{a t}-b e^{b t}$
(D) $a e^{a t}+b e^{b t}$
2.101 In the circuit of the figure, the value of the voltage source E is

(A) -16 V
(B) 4 V

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(C) -6 V
(D) 16 V
2.102 Use the data of the figure (a). The current i in the circuit of the figure (b)

(a)

(b)
(A) -2 A
(B) 2 A
(C) -4 A
(D) 4 A

GATE 1999

ONE MARK

Identify which of the following is NOT a tree of the graph shown in the given figure is

(A) begh
(B) $d e f g$
(C) $a b f g$
(D) aegh

A 2-port network is shown in the given figure. The parameter h_{21} for this network can be given by

(A) $-1 / 2$
(B) $+1 / 2$
(C) $-3 / 2$
(D) $+3 / 2$

GATE 1999

TWO MARK
The Thevenin equivalent voltage $V_{T H}$ appearing between the terminals A and B of the network shown in the given figure is given by

(A) $j 16(3-j 4)$
(B) $j 16(3+j 4)$
(C) $16(3+j 4)$
(D) $16(3-j 4)$

The value of R (in ohms) required for maximum power transfer in the network shown in the given figure is

(A) 2
(B) 4
(C) 8
(D) 16
2.107 A Delta-connected network with its Wye-equivalent is shown in the given figure. The resistance R_{1}, R_{2} and R_{3} (in ohms) are respectively

(A) $1.5,3$ and 9
(B) 3, 9 and 1.5
(C) 9,3 and 1.5
(D) $3,1.5$ and 9

GATE 1998

ONE MARK
2.108 A network has 7 nodes and 5 independent loops. The number of branches in the network is
(A) 13
(B) 12
(C) 11
(D) 10
2.109 The nodal method of circuit analysis is based on

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
 WWW.nodia.co.in

(A) KVL and Ohm's law
(B) KCL and Ohm's law
(C) KCL and KVL
(D) KCL, KVL and Ohm's law
2.110 Superposition theorem is NOT applicable to networks containing
(A) nonlinear elements
(B) dependent voltage sources
(C) dependent current sources
(D) transformers
2.111 The parallel RLC circuit shown in the figure is in resonance. In this circuit

(A) $\left|I_{R}\right|<1 \mathrm{~mA}$
(B) $\left|I_{R}+I_{L}\right|>1 \mathrm{~mA}$
(C) $\left|I_{R}+I_{C}\right|<1 \mathrm{~mA}$
(D) $\left|I_{R}+I_{C}\right|>1 \mathrm{~mA}$
2.112
The short-circuit admittance matrix a two-port network is $\left[\begin{array}{cc}0 & -1 / 2 \\ 1 / 2 & 0\end{array}\right]$
The two-port network is
(A) non-reciprocal and passive
(B) non-reciprocal and active
(C) reciprocal and passive
(D) reciprocal and active
2.113 The voltage across the terminals a and b in the figure is

(A) 0.5 V
(B) 3.0 V
(C) 3.5 V
(D) 4.0 V
2.114 A high-Q quartz crystal exhibits series resonance at the frequency
ω_{s} and parallel resonance at the frequency ω_{p}. Then
(A) ω_{s} is very close to, but less than ω_{p}
(B) $\omega_{s} \ll \omega_{p}$
(C) ω_{s} is very close to, but greater than ω_{p}
(D) $\omega_{s} \gg \omega_{p}$

GATE 1997

ONE MARK
2.115 The current i_{4} in the circuit of the figure is equal to

(A) 12 A
(B) -12 A
(C) 4 A
(D) None or these
2.116 The voltage V in the figure equal to

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(A) 3 V
(B) -3 V
(C) 5 V
(D) None of these
2.117 The voltage V in the figure is always equal to

(A) 9 V
(B) 5 V
(C) 1 V
(D) None of the above
2.118 The voltage V in the figure is

(A) 10 V
(B) 15 V
(C) 5 V
(D) None of the above
2.119 In the circuit of the figure is the energy absorbed by the 4Ω resistor in the time interval $(0, \infty)$ is

(A) 36 Joules
(B) 16 Joules
(C) 256 Joules
(D) None of the above
2.120 In the circuit of the figure the equivalent impedance seen across terminals a, b, is

(A) $\left(\frac{16}{3}\right) \Omega$
(B) $\left(\frac{8}{3}\right) \Omega$
(C) $\left(\frac{8}{3}+12 j\right) \Omega$
(D) None of the above

GATE 1996
ONE MARK
In the given figure, A_{1}, A_{2} and A_{3} are ideal ammeters. If A_{2} and A_{3} read 3 A and 4 A respectively, then A_{1} should read

(A) 1 A
(B) 5 A

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(C) 7 A
(D) None of these
2.122 The number of independent loops for a network with n nodes and b branches is
(A) $n-1$
(B) $b-n$
(C) $b-n+1$
(D) independent of the number of nodes
the given figure, under steady state, are respectively.

(A) $80 \mathrm{~V}, 32 \mathrm{~V}, 48 \mathrm{~V}$
(B) $80 \mathrm{~V}, 48 \mathrm{~V}, 32 \mathrm{~V}$
(C) $20 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}$
(D) $20 \mathrm{~V}, 12 \mathrm{~V}, 8 \mathrm{~V}$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
www.nodia.co.in

SOLUTIONS

Option (B) is correct.
In the equivalent star connection, the resistance can be given as

$$
\begin{aligned}
R_{C} & =\frac{R_{b} R_{a}}{R_{a}+R_{b}+R_{c}} \\
R_{B} & =\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} \\
R_{A} & =\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}
\end{aligned}
$$

So, if the delta connection components R_{a}, R_{b} and R_{c} are scaled by a factor k then

$$
\begin{aligned}
R_{A}^{\prime} & =\frac{\left(k R_{b}\right)\left(k R_{c}\right)}{k R_{a}+k R_{b}+k R_{c}} \\
& =\frac{k^{2}}{k} \frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}
\end{aligned}
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
=k R_{A}
$$

hence, it is also scaled by a factor k
Option (D) is correct.
For the given capacitance, $C=100 \mu F$ in the circuit, we have the reactance.

$$
X_{C}=\frac{1}{s c}=\frac{1}{s \times 100 \times 10^{-6}}=\frac{10^{4}}{s}
$$

So,

$$
\begin{aligned}
\frac{V_{2}(s)}{V_{1}(s)} & =\frac{\frac{10^{4}}{s}+10^{4}}{\frac{10^{4}}{s}+10^{4}+\frac{10^{4}}{s}} \\
& =\frac{s+1}{s+2}
\end{aligned}
$$

Option (C) is correct.
For the purely resistive load, maximum average power is transferred when

$$
R_{L}=\sqrt{R_{T h}^{2}+X_{T h}^{2}}
$$

where $R_{T h}+j X_{T h}$ is the equivalent thevinin (input) impedance of the circuit. Hence, we obtain

$$
\begin{aligned}
& R_{L}=\sqrt{4^{2}+3^{2}} \\
& \quad 5 \Omega
\end{aligned}
$$

Option (C) is correct.
For evaluating the equivalent thevenin voltage seen by the load R_{L} , we open the circuit across it (also if it consist dependent source).
The equivalent circuit is shown below

As the circuit open across R_{L} so

$$
\begin{aligned}
I_{2} & =0 \\
\text { or, } \quad j 40 I_{2} & =0
\end{aligned}
$$

i.e., the dependent source in loop 1 is short circuited. Therefore,

$$
V_{L 1}=\frac{(j 4) V_{s}}{j 4+3}
$$

$$
\begin{aligned}
V_{T h}=10 V_{L 1} & =\frac{j 40}{j 4+3} 100 / 53.13^{\circ} \\
& =\frac{40 / 90^{\circ}}{5 / 53.13^{\circ}} 100 \angle 53.13^{\circ} \\
& =800 \angle 90^{\circ}
\end{aligned}
$$

Option (C) is correct.
For the given transformer, we have

$$
\frac{V}{V_{W X}}=\frac{1.25}{1}
$$

Since,

$$
\text { So, } \quad \frac{V_{Y Z}}{V_{W X}}=(0.8)(1.25)=1
$$

$$
\text { or, } \quad V_{Y Z}=V_{W X}
$$

$$
\begin{aligned}
\frac{V_{Y Z}}{V} & =0.8 \text { (attenuation factor) } \\
\frac{V_{Y Z}}{V_{W X}} & =(0.8)(1.25)=1 \\
V_{Y Z} & =V_{W X} \\
V_{W X_{1}} & =100 \mathrm{~V} ; \frac{V_{Y Z_{1}}}{V_{W X_{1}}}=\frac{100}{100} \\
V_{W Z_{2}} & =100 \mathrm{~V} ; \frac{V_{W X_{2}}}{V_{Y Z_{2}}}=\frac{100}{100}
\end{aligned}
$$

at

Option (C) is correct.
The quality factor of the inductances are given by
and

$$
\begin{aligned}
& q_{1}=\frac{\omega L_{1}}{R_{1}} \\
& q_{2}=\frac{\omega L_{2}}{R_{2}}
\end{aligned}
$$

So, in series circuit, the effective quality factor is given by

$$
\begin{aligned}
Q & =\frac{\left|X_{\text {Leq }}\right|}{R_{e q}}=\frac{\omega L_{1}+\omega L_{2}}{R_{1}+R_{2}} \\
& =\frac{\frac{\omega L_{1}}{R_{1} R_{2}}+\frac{\omega L_{2}}{R_{1} R_{2}}}{\frac{1}{R_{2}}+\frac{1}{R_{1}}}=\frac{\frac{q_{1}}{R_{2}}+\frac{q_{2}}{R_{2}}}{\frac{1}{R_{2}}+\frac{1}{R_{1}}}=\frac{q_{1} R_{1}+q_{2} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

2.7 Option (C) is correct.

Consider that the voltage across the three capacitors C_{1}, C_{2} and C_{3} are V_{1}, V_{2} and V_{3} respectively. So, we can write

$$
\begin{equation*}
\frac{V_{2}}{V_{3}}=\frac{C_{3}}{C_{2}} \tag{1}
\end{equation*}
$$

Since, Voltage is inversely proportional to capacitance Now, given that

$$
\begin{aligned}
& C_{1}=10 \mu F ;\left(V_{1}\right)_{\max }=10 \mathrm{~V} \\
& C_{2}=5 \mu F ;\left(V_{2}\right)_{\max }=5 \mathrm{~V} \\
& C_{3}=2 \mu F ;\left(V_{3}\right)_{\max }=2 \mathrm{~V}
\end{aligned}
$$

So, from Eq (1) we have

$$
\frac{V_{2}}{V_{3}}=\frac{2}{5}
$$

for $\quad\left(V_{3}\right)_{\text {max }}=2$
We obtain,

$$
V_{2}=\frac{2 \times 2}{5}=0.8 \text { volt }<5
$$

i.e., $\quad V_{2}<\left(V_{2}\right)_{\text {max }}$

Hence, this is the voltage at C_{2}. Therefore,

$$
\begin{aligned}
& V_{3}=2 \mathrm{volt} \\
& V_{2}=0.8 \mathrm{volt} \\
& V_{1}=V_{2}+V_{3}=2.8 \mathrm{volt}
\end{aligned}
$$

and
Now, equivalent capacitance across the terminal is

$$
C_{e q}=\frac{C_{2} C_{3}}{C_{2}+C_{3}}+C_{1}=\frac{5 \times 2}{5+2}+10=\frac{80}{7} \mu \mathrm{~F}
$$

Equivalent voltage is (max. value)

$$
V_{\max }=V_{1}=2.8
$$

So, charge stored in the effective capacitance is

$$
Q=C_{e q} V_{\max }=\left(\frac{80}{7}\right) \times(2.8)=32 \mu \mathrm{C}
$$

Option (D) is correct.

At the node 1, voltage is given as

$$
V_{1}=10 \text { volt }
$$

Applying KCL at node 1

$$
\begin{aligned}
& I_{S}+\frac{V_{1}}{2}+\frac{V_{1}}{1}-2=0 \\
& I_{S}+\frac{10}{2}+\frac{10}{1}-2=0 \\
& I_{S}=-13 \mathrm{~A}
\end{aligned}
$$

Also, from the circuit,

$$
\begin{aligned}
V_{S}-5 \times 2 & =V_{1} \\
V_{S} & =10+V_{1} \\
& =20 \mathrm{volt}
\end{aligned}
$$

Option (C) is correct.
Again from the shown circuit, the current in 1Ω resistor is

$$
I=\frac{V_{1}}{1}=\frac{10}{1}=10 \mathrm{~A}
$$

Option (D) is correct.
The s-domain equivalent circuit is shown as below.

$$
\begin{aligned}
& I(s)=\frac{v_{c}(0) / s}{\frac{1}{C_{1} s}+\frac{1}{C_{2} s}}=\frac{v_{c}(0)}{\frac{1}{C_{1}}+\frac{1}{C_{2}}} \\
& I(s)=\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)(12 \mathrm{~V})=12 C_{e q} \quad v_{C}(0)=12 \mathrm{~V}
\end{aligned}
$$

Taking inverse Laplace transform for the current in time domain,

$$
i(t)=12 C_{e q} \delta(t)
$$

(Impulse)
2.11 Option (B) is correct.

In phasor form,

$$
\begin{aligned}
Z & =4-j 3=5 \angle-36.86^{\circ} \Omega \\
I & =5 / 100^{\circ} \mathrm{A}
\end{aligned}
$$

Average power delivered.

$$
P_{\text {avg. }}=\frac{1}{2}|\boldsymbol{I}|^{2} Z \cos \theta=\frac{1}{2} \times 25 \times 5 \cos 36.86^{\circ}=50 \mathrm{~W}
$$

Alternate method:

$$
Z=(4-j 3) \Omega, \quad I=5 \cos (100 \pi t+100) \mathrm{A}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{2} \operatorname{Re}\left\{|I|^{2} Z\right\}=\frac{1}{2} \times \operatorname{Re}\left\{(5)^{2} \times(4-j 3)\right\} \\
= & \frac{1}{2} \times 100=50 \mathrm{~W}
\end{aligned}
$$

2.12 Option (C) is correct

Applying nodal analysis at top node.

$$
\begin{aligned}
& \frac{\boldsymbol{V}_{1}+1 / 0^{\circ}}{1}+\frac{\boldsymbol{V}_{1}+1 / 0^{\circ}}{j 1}=1 / 0^{\circ} \\
& \boldsymbol{V}_{1}(j 1+1)+j 1+1 / 0^{\circ}=j 1 \\
& \boldsymbol{V}_{1}=\frac{-1}{1+j 1} \\
& \boldsymbol{I}_{1}=\frac{\boldsymbol{V}_{1}+1 / 0^{\circ}}{j 1}=\frac{-\frac{1}{1+j}+1}{j 1} \\
& \quad=\frac{j}{(1+j) j}=\frac{1}{1+j} \mathrm{~A}
\end{aligned}
$$

Current
2.13 Option (A) is correct.

We obtain Thevenin equivalent of circuit B.

Thevenin Impedance :

$$
Z_{T h}=R
$$

Thevenin Voltage :

$$
\boldsymbol{V}_{T h}=3 \angle 0^{\circ} \mathrm{V}
$$

Now, circuit becomes as

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Current in the circuit,

$$
I_{1}=\frac{10-3}{2+R}
$$

Power transfer from circuit A to B

$$
\begin{aligned}
& P=\left(I_{1}^{2}\right)^{2} R+3 I_{1} \\
& P=\left[\frac{10-3}{2+R}\right]^{2} R+3\left[\frac{10-3}{2+R}\right] \\
& P=\frac{49 R}{(2+R)^{2}}+\frac{21}{(2+R)} \\
& P=\frac{49 R+21(2+R)}{(2+R)^{2}} \\
& P=\frac{42+70 R}{(2+R)^{2}} \\
& \frac{d P}{d R}=\frac{(2+R)^{2} 70-(42+70 R) 2(2+R)}{(2+R)^{4}}=0 \\
&(2+R)[(2+R) 70-(42+70 R) 2]=0 \\
& 140+70 R-84-140 R=0 \\
& 56=70 R \\
& R=0.8 \Omega
\end{aligned}
$$

Option (A) is correct.
In the given circuit

$$
V_{A}-V_{B}=6 \mathrm{~V}
$$

So current in the branch will be

$$
I_{A B}=\frac{6}{2}=3 \mathrm{~A}
$$

We can see, that the circuit is a one port circuit looking from terminal $B D$ as shown below

For a one port network current entering one terminal, equals the current leaving the second terminal. Thus the outgoing current from A to B will be equal to the incoming current from D to C as shown i.e. $\quad I_{D C}=I_{A B}=3 \mathrm{~A}$

The total current in the resistor 1Ω will be

$$
\begin{aligned}
I_{1} & =2+I_{D C} \quad(\text { By writing KCL at node } D) \\
& =2+3=5 \mathrm{~A}
\end{aligned}
$$

So,

$$
V_{C D}=1 \times\left(-I_{1}\right)=-5 \mathrm{~V}
$$

Option (C) is correct.
When 10 V is connected at port A the network is

Now, we obtain Thevenin equivalent for the circuit seen at load terminal, let Thevenin voltage is $V_{T h, 10 \mathrm{~V}}$ with 10 V applied at port A and Thevenin resistance is $R_{T h}$.

For more GATE Resources, Mock Test and

 Study material join the community http://www.facebook.com/gateec2014

$$
I_{L}=\frac{V_{T h, 10 \mathrm{~V}}}{R_{T h}+R_{L}}
$$

For $R_{L}=1 \Omega, I_{L}=3 \mathrm{~A}$

$$
\begin{gather*}
3=\frac{V_{T h, 10}}{R_{T h}+1} \tag{i}\\
=2 \mathrm{~A} \tag{ii}\\
=\frac{V_{T h, 10} \mathrm{~V}}{R_{T h}+2.5}
\end{gather*}
$$

Dividing above two

$$
\begin{aligned}
\frac{3}{2} & =\frac{R_{T h}+2.5}{R_{T h}+1} \\
3 R_{T h}+3 & =2 R_{T h}+5 \\
R_{T h} & =2 \Omega
\end{aligned}
$$

Substituting $R_{T h}$ into equation (i)

$$
V_{T h, 10 \mathrm{v}}=3(2+1)=9 \mathrm{~V}
$$

Note that it is a non reciprocal two port network. Thevenin voltage seen at port B depends on the voltage connected at port A. Therefore we took subscript $V_{T h, 10 \mathrm{v}}$. This is Thevenin voltage only when 10 V source is connected at input port A. If the voltage connected to port A is different, then Thevenin voltage will be different. However, Thevenin's resistance remains same.
Now, the circuit is as shown below :

For $R_{L}=7 \Omega$,

$$
I_{L}=\frac{V_{T h, 10 \mathrm{~V}}}{2+R_{L}}=\frac{9}{2+7}=1 \mathrm{~A}
$$

Option (B) is correct.
Now, when 6 V connected at port A let Thevenin voltage seen at port B is $V_{T h, 6 \mathrm{~V}}$. Here $R_{L}=1 \Omega$ and $I_{L}=\frac{7}{3} \mathrm{~A}$

$$
V_{T h, 6 \mathrm{~V}}=R_{T h} \times \frac{7}{3}+1 \times \frac{7}{3}=2 \times \frac{7}{3}+\frac{7}{3}=7 \mathrm{~V}
$$

This is a linear network, so $V_{T h}$ at port B can be written as

$$
V_{T h}=V_{1} \alpha+\beta
$$

where V_{1} is the input applied at port A.
We have $V_{1}=10 \mathrm{~V}, V_{T h, 10 \mathrm{~V}}=9 \mathrm{~V}$

$$
\begin{equation*}
\therefore \quad 9=10 \alpha+\beta \tag{i}
\end{equation*}
$$

When $V_{1}=6 \mathrm{~V}, V_{T h, 6 \mathrm{~V}}=9 \mathrm{~V}$
$\therefore \quad 7=6 \alpha+\beta$
Solving (i) and (ii)

$$
\alpha=0.5, \beta=4
$$

Thus, with any voltage V_{1} applied at port A, Thevenin voltage or open circuit voltage at port B will be
So,

$$
\begin{aligned}
V_{T h, V_{1}} & =0.5 V_{1}+4 \\
V_{1} & =8 \mathrm{~V} \\
V_{T h, 8 \mathrm{~V}} & =0.5 \times 8+4=8=V_{o c} \text { (open circuit voltage) }
\end{aligned}
$$

Option (A) is correct.
Replacing $P-Q$ by short circuit as shown below we have

Using current divider rule the current $I_{s c}$ is

$$
I_{S C}=\frac{25}{25+15+j 30}(16 \angle 0)=(6.4-j 4.8) \mathrm{A}
$$

2.18 Option (C) is correct.

Power transferred to R_{L} will be maximum when R_{L} is equal to the Thevenin resistance. We determine Thevenin resistance by killing all source as follows :

$$
R_{T H}=\frac{10 \times 10}{10+10}+10=15 \Omega
$$

2.19 Option (A) is correct.

The given circuit is shown below

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

For parallel combination of R and C equivalent impedance is

$$
Z_{\mathrm{p}}=\frac{R \cdot \frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{R}{1+j \omega R C}
$$

Transfer function can be written as

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{Z_{\mathrm{p}}}{Z_{\mathrm{s}}+Z_{\mathrm{p}}}=\frac{\frac{R}{1+j \omega R C}}{R+\frac{1}{j \omega C}+\frac{R}{1+j \omega R C}} \\
& =\frac{j \omega R C}{j \omega R C+(1+j \omega R C)^{2}} \\
& =\frac{j}{j+(1+j)^{2}} \quad \text { Here } \omega=\frac{1}{R C} \\
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{j}{(1+j)^{2}+j}=\frac{1}{3} \\
v_{\text {out }} & =\left(\frac{V_{p}}{3}\right) \cos (t / R C)
\end{aligned}
$$

Thus
2.20 Option (B) is correct.

From star delta conversion we have

Thus $R_{1}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}=\frac{6.6}{6+6+6}=2 \Omega$

Here
$R_{1}=R_{2}=R_{3}=2 \Omega$
Replacing in circuit we have the circuit shown below :

Now the total impedance of circuit is

$$
Z=\frac{(2+j 4)(2-j 4)}{(2+j 4)(2-j 4)}+2=7 \Omega
$$

Current

$$
I=\frac{14 \angle 0^{\circ}}{7}=2 \angle 0^{\circ}
$$

Option (D) is correct.

GATE Electronics \& Communication
 by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

From given admittance matrix we get

$$
\begin{align*}
& I_{1}=0.1 V_{1}-0.01 V_{2} \text { and } \tag{1}\\
& I_{2}=0.01 V_{1}+0.1 V_{2} \tag{2}
\end{align*}
$$

Now, applying KVL in outer loop;

$$
\begin{align*}
& V_{2}
\end{align*}=-100 I_{2},
$$

From eq (2) and eq (3) we have

$$
\begin{aligned}
-0.01 V_{2} & =0.01 V_{1}+0.1 V_{2} \\
-0.11 V_{2} & =0.01 V_{1} \\
\frac{V_{2}}{V_{1}} & =\frac{-1}{11}
\end{aligned}
$$

Option (A) is correct.
Here we take the current flow direction as positive.
At $t=0^{-}$voltage across capacitor is

$$
V_{C}\left(0^{-}\right)=-\frac{Q}{C}=-\frac{2.5 \times 10^{-3}}{50 \times 10^{-6}}=-50 \mathrm{~V}
$$

Thus

$$
V_{C}\left(0^{+}\right)=-50 \mathrm{~V}
$$

In steady state capacitor behave as open circuit thus

$$
V(\infty)=100 \mathrm{~V}
$$

Now,

$$
\begin{aligned}
V_{C}(t) & =V_{C}(\infty)+\left(V_{C}\left(0^{+}\right)-V_{C}(\infty)\right) e^{-t / R C} \\
& =100+(-50-100) e^{\frac{-t}{10 \times 50 \times 10^{-6}}} \\
& =100-150 e^{-\left(2 \times 10^{8} t\right)}
\end{aligned}
$$

Now

$$
\begin{aligned}
i_{c}(t) & =C \frac{d V}{d t} \\
& =50 \times 10^{-6} \times 150 \times 2 \times 10^{3} e^{-2 \times 10^{3} t} \mathrm{~A} \\
& =15 e^{-2 \times 10^{3} t} \\
i_{c}(t) & =15 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}
\end{aligned}
$$

Option (A) is correct

Given circuit is as shown below

By writing node equation at input port

$$
\begin{equation*}
I_{1}=\frac{V_{1}}{0.5}+\frac{V_{1}-V_{2}}{0.5}=4 V_{1}-2 V_{2} \tag{1}
\end{equation*}
$$

By writing node equation at output port

$$
\begin{equation*}
I_{2}=\frac{V_{2}}{0.5}+\frac{V_{2}-V_{1}}{0.5}=-2 V_{1}+4 V_{2} \tag{2}
\end{equation*}
$$

From (1) and (2), we have admittance matrix

$$
Y=\left[\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right]
$$

Option (D) is correct.
A parallel $R L C$ circuit is shown below :

Input impedance

$$
Z_{\text {in }}=\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}
$$

At resonance

$$
\frac{1}{\omega L}=\omega C
$$

So,
$Z_{\text {in }}=\frac{1}{1 / R}=R \quad$ (maximum at resonance)
Thus (D) is not true.
Furthermore bandwidth is ω_{B} i.e $\omega_{B} \propto \frac{1}{R}$ and is independent of L

Hence statements A, B, C, are true.
2.25 Option (A) is correct.

Let the current
$i(t)=A+B e^{-t / \tau} \quad \tau \rightarrow$ Time constant
When the switch S is open for a long time before $t<0$, the circuit is

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

At $t=0$, inductor current does not change simultaneously, So the circuit is

Current is resistor (AB)

$$
i(0)=\frac{0.75}{2}=0.375 \mathrm{~A}
$$

Similarly for steady state the circuit is as shown below

$$
\begin{aligned}
& & \left.\begin{array}{rl}
i(\infty) & =\frac{15}{3}=0.5 \mathrm{~A} \\
\tau & =\frac{L}{R_{e q}}=\frac{15 \times 10^{-3}}{10+(10 \| 10)}=10^{-3} \mathrm{sec} \\
& \\
\text { Now } & i(t)
\end{array}\right)=A+B e^{-\frac{t}{1 \times 10^{-3}}}=A+B e^{-100 t} \\
\text { and } & i(0) & =A+B=0.375 \\
\text { So, } & i(\infty) & =A=0.5 \\
\text { Hence } & B & =0.375-0.5=-0.125 \\
\text { He } & i(t) & =0.5-0.125 e^{-1000 t} \mathrm{~A}
\end{aligned}
$$

$$
\text { Now } \quad i(0)=A+B=0.375
$$

$$
\text { and } \quad i(\infty)=A=0.5
$$

Option (A) is correct.
Circuit is redrawn as shown below

Where,

$$
\begin{aligned}
Z_{1} & =j \omega L=j \times 10^{3} \times 20 \times 10^{-3}=20 j \\
Z_{2} & =R \| X_{C} \\
X_{C} & =\frac{1}{j \omega C}=\frac{1}{j \times 10^{3} \times 50 \times 10^{-6}}=-20 j \\
Z_{2} & =\frac{1(-20 j)}{1-20 j} \quad R=1 \Omega
\end{aligned}
$$

Voltage across Z_{2}

$$
\begin{aligned}
V_{Z_{2}} & =\frac{Z_{2}}{Z_{1}+Z_{2}} \cdot 20 \angle 0=\frac{\left(\frac{-20 j}{1-20 j}\right)}{\left(20 j-\frac{20 j}{1-20 j}\right)} \cdot 20 \\
& =\left(\frac{(-20 j)}{20 j+400-20 j}\right) \cdot 20=-j
\end{aligned}
$$

Current in resistor R is

$$
I=\frac{V_{Z_{2}}}{R}=-\frac{j}{1}=-j \mathrm{~A}
$$

Option (A) is correct.
The circuit can be redrawn as

Applying nodal analysis

$$
\begin{aligned}
\frac{V_{A}-10}{2}+1+\frac{V_{A}-0}{2} & =0 \\
2 V_{A}-10+2 & =0=V_{4}=4 \mathrm{~V}
\end{aligned}
$$

Current,

$$
I_{1}=\frac{10-4}{2}=3 \mathrm{~A}
$$

Current from voltage source is

$$
I_{2}=I_{1}-3=0
$$

Since current through voltage source is zero, therefore power delivered is zero.
2.28 Option (A) is correct.

Circuit is as shown below

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

Since 60 V source is absorbing power. So, in 60 V source current flows from + to - ve direction

$$
\text { So, } \quad \begin{aligned}
I+I_{1} & =12 \\
I & =12-I_{1}
\end{aligned}
$$

I is always less then 12 A So, only option (A) satisfies this conditions.

Option (C) is correct.
For given network we have

$$
\begin{aligned}
V_{0} & =\frac{\left(R_{L} \| X_{C}\right) V_{i}}{R+\left(R_{L} \| X_{C}\right)} \\
\frac{V_{0}(s)}{V_{i}(s)} & =\frac{\frac{R_{L}}{1+s R_{L} C}}{R+\frac{R_{L}}{1+s R_{L} C}}=\frac{R_{L}}{R+R R_{L} s C+R_{L}} \\
& =\frac{R_{L}}{R+R R_{L} s C+R_{L}}=\frac{1}{1+\frac{R}{R_{L}}+R s C}
\end{aligned}
$$

But we have been given

Comparing, we get

$$
1+\frac{R}{R_{L}}=2 \quad \Rightarrow \quad R_{L}=R
$$

2.30 Option (C) is correct.

The energy delivered in 10 minutes is

$$
\begin{aligned}
E & =\int_{0}^{t} V I d t=I \int_{0}^{t} V d t=I \times \text { Area } \\
& =2 \times \frac{1}{2}(10+12) \times 600=13.2 \mathrm{~kJ}
\end{aligned}
$$

Option (B) is correct.
From given circuit the load current is

$$
\begin{aligned}
I_{L} & =\frac{V}{Z_{s}+Z_{L}}=\frac{20 \angle 0^{\circ}}{(1+2 j)+(7+4 j)}=\frac{20 \angle 0^{\circ}}{8+6 j} \\
& =\frac{1}{5}(8-6 j)=\frac{20 \angle 0^{\circ}}{10 \angle \phi}=2 \angle-\phi \quad \text { where } \phi=\tan ^{-1} \frac{3}{4}
\end{aligned}
$$

The voltage across load is

$$
V_{L}=I_{L} Z_{L}
$$

The reactive power consumed by load is

$$
\begin{aligned}
P_{r} & =V_{L} I_{L}^{*}=I_{L} Z_{L} \times I_{L}^{*}=Z_{L}\left|I_{L}\right|^{2} \\
& =(7 \times 4 j)\left|\frac{20 \angle 0^{\circ}}{8+6 j}\right|^{2}=(7+4 j)=28+16 j
\end{aligned}
$$

Thus average power is 28 and reactive power is 16 .
Option (B) is correct.

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

At $t=0^{-}$, the circuit is as shown in fig below :

$V\left(0^{-}\right)=100 \mathrm{~V}$
$V\left(0^{+}\right)=100 \mathrm{~V}$
Thus

$$
V\left(0^{+}\right)=100 \mathrm{~V}
$$

At $t=0^{+}$, the circuit is as shown below

$$
I\left(0^{+}\right)=\frac{100}{5 k}=20 \mathrm{~mA}
$$

At steady state i.e. at $t=\infty$ is $I(\infty)=0$
Now

$$
\begin{aligned}
i(t) & =I\left(0^{+}\right) e^{-\frac{t}{R C_{q}}} u(t) \\
C_{e q} & =\frac{(0.5 \mu+0.3 \mu) 0.2 \mu}{0.5 \mu+0.3 \mu+0.2 \mu}=0.16 \mu \mathrm{~F} \\
\frac{1}{R C_{e q}} & =\frac{1}{5 \times 10^{3} \times 0.16 \times 10^{-6}}=1250 \\
i(t) & =20 e^{-1250 t} u(t) \mathrm{mA}
\end{aligned}
$$

Option (C) is correct.
For $P_{\max }$ the load resistance R_{L} must be equal to thevenin resistance $R_{e q}$ i.e. $R_{L}=R_{e q}$. The open circuit and short circuit is as shown below

The open circuit voltage is

From fig

$$
\begin{aligned}
V_{o c} & =100 \mathrm{~V} \\
I_{1} & =\frac{100}{8}=12.5 \mathrm{~A} \\
V_{x} & =-4 \times 12.5=-50 \mathrm{~V} \\
I_{2} & =\frac{100+V_{x}}{4}=\frac{100-50}{4}=12.5 \mathrm{~A} \\
I_{s c} & =I_{1}+I_{2}=25 \mathrm{~A} \\
R_{t h} & =\frac{V_{o c}}{I_{s c}}=\frac{100}{25}=4 \Omega
\end{aligned}
$$

Thus for maximum power transfer $R_{L}=R_{e q}=4 \Omega$
Option (A) is correct.
Steady state all transient effect die out and inductor act as short circuits and forced response acts only. It doesn't depend on initial current state. From the given time domain behavior we get that circuit has only R and L in series with V_{0}. Thus at steady state

$$
i(t) \rightarrow i(\infty)=\frac{V_{0}}{R}
$$

Option (C) is correct.
The given graph is

(4)

There can be four possible tree of this graph which are as follows:

There can be 6 different possible cut-set.

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

Option (B) is correct.
Initially $i\left(0^{-}\right)=0$ therefore due to inductor $i\left(0^{+}\right)=0$. Thus all current I_{s} will flow in resistor R and voltage across resistor will be $I_{s} R_{s}$. The voltage across inductor will be equal to voltage across R_{s} as no current flow through R.

Thus $\quad v_{L}\left(0^{+}\right)=I_{s} R_{s}$
but $\quad v_{L}\left(0^{+}\right)=L \frac{d i\left(0^{+}\right)}{d t}$
Thus $\quad \frac{d i\left(0^{+}\right)}{d t}=\frac{v_{L}\left(0^{+}\right)}{L}=\frac{I_{s} R_{s}}{L}$
Option (A) is correct.
Killing all current source and voltage sources we have,

$$
\begin{aligned}
Z_{t h} & =(1+s) \|\left(\frac{1}{s}+1\right) \\
& =\frac{(1+s)\left(\frac{1}{s}+1\right)}{(1+s)+\left(\frac{1}{s}+1\right)}=\frac{\left[\frac{1}{s}+1+1+s\right]}{s+\frac{1}{s}+1+1}
\end{aligned}
$$

or

$$
Z_{t h}=1
$$

Alternative :

Here at DC source capacitor act as open circuit and inductor act as short circuit. Thus we can directly calculate thevenin Impedance as 1Ω
Option (D) is correct.

$$
Z(s)=R\left\|\frac{1}{s C}\right\| s L=\frac{\frac{s}{C}}{s^{2}+\frac{s}{R C}+\frac{1}{L C}}
$$

We have been given

$$
Z(s)=\frac{0.2 s}{s^{2}+0.1 s+2}
$$

Comparing with given we get

$$
\begin{aligned}
\frac{1}{C} & =0.2 \text { or } C=5 \mathrm{~F} \\
\frac{1}{R C} & =0.1 \text { or } R=2 \Omega \\
\frac{1}{L C} & =2 \text { or } L=0.1 \mathrm{H}
\end{aligned}
$$

Option (C) is correct.
Voltage across capacitor is

$$
V_{c}=\frac{1}{C} \int_{0}^{t} i d t
$$

Here $C=1 \mathrm{~F}$ and $i=1 \mathrm{~A}$. Therefore

$$
V_{c}=\int_{0}^{t} d t
$$

For $0<t<T$, capacitor will be charged from 0 V

$$
V_{c}=\int_{0}^{t} d t=t
$$

At $t=T, V_{c}=T$ Volts
For $T<t<2 T$, capacitor will be discharged from T volts as

$$
V_{c}=T-\int_{T}^{t} d t=2 T-t
$$

At $t=2 T, V_{c}=0$ volts
For $2 T<t<3 T$, capacitor will be charged from 0 V

$$
V_{c}=\int_{2 T}^{t} d t=t-2 T
$$

At $t=3 T, V_{c}=T$ Volts
For $3 T<t<4 T$, capacitor will be discharged from T Volts

$$
V_{c}=T-\int_{3 T}^{t} d t=4 T-t
$$

At $t=4 T, V_{c}=0$ Volts

For $4 T<t<5 T$, capacitor will be charged from 0 V

$$
V_{c}=\int_{4 T}^{t} d t=t-4 T
$$

At $t=5 T, V_{c}=T$ Volts
Thus the output waveform is

Only option C satisfy this waveform.
2.40 Option (D) is correct.

Writing in transform domain we have

$$
\frac{V_{c}(s)}{V_{s}(s)}=\frac{\frac{1}{s}}{\left(\frac{1}{s}+s+1\right)}=\frac{1}{\left(s^{2}+s+1\right)}
$$

Since $V_{s}(t)=\delta(t) \rightarrow V_{s}(s)=1$ and

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
or

$$
\begin{aligned}
& V_{c}(s)=\frac{1}{\left(s^{2}+s+1\right)} \\
& V_{c}(s)=\frac{2}{\sqrt{3}}\left[\frac{\frac{\sqrt{ }}{2}}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}}\right]
\end{aligned}
$$

Taking inverse Laplace transform we have

$$
V_{t}=\frac{2}{\sqrt{3}} e^{-\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t\right)
$$

2.41 Option (B) is correct.

Let voltage across resistor be v_{R}

$$
\frac{V_{R}(s)}{V_{S}(s)}=\frac{1}{\left(\frac{1}{s}+s+1\right)}=\frac{s}{\left(s^{2}+s+1\right)}
$$

Since $v_{s}=\delta(t) \rightarrow V_{s}(s)=1$ we get

$$
\begin{aligned}
V_{R}(s) & =\frac{s}{\left(s^{2}+s+1\right)}=\frac{s}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}} \\
& =\frac{\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}}-\frac{\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}} \\
v_{R}(t) & =e^{-\frac{1}{2}} \cos \frac{\sqrt{3}}{2} t-\frac{1}{2} \times \frac{2}{\sqrt{3}} e^{-\frac{1}{2}} \sin \frac{\sqrt{3}}{2} t \\
& =e^{-\frac{t}{2}}\left[\cos \frac{\sqrt{3}}{2} t-\frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t\right]
\end{aligned}
$$

or
2.42 Option (C) is correct.

From the problem statement we have

$$
\begin{aligned}
& z_{11}=\left.\frac{v_{1}}{i_{1}}\right|_{i_{2}=0}=\frac{6}{4}=1.5 \Omega \\
& z_{12}=\left.\frac{v_{1}}{i_{2}}\right|_{i_{1}=0}=\frac{4.5}{1}=4.5 \Omega \\
& z_{21}=\left.\frac{v_{2}}{i_{1}}\right|_{i_{2}=0}=\frac{6}{4}=1.5 \Omega \\
& z_{22}=\left.\frac{v_{2}}{i_{2}}\right|_{i_{2}=0}=\frac{1.5}{1}=1.5 \Omega
\end{aligned}
$$

Thus z-parameter matrix is

$$
\left[\begin{array}{ll}
z_{11} & z_{21} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{ll}
1.5 & 4.5 \\
1.5 & 1.5
\end{array}\right]
$$

Option (A) is correct.
From the problem statement we have

$$
\begin{aligned}
& h_{12}=\left.\frac{v_{1}}{v_{2}}\right|_{i=0}=\frac{4.5}{1.5}=3 \\
& h_{22}=\left.\frac{i_{2}}{v_{2}}\right|_{i=0}=\frac{1}{1.5}=0.67
\end{aligned}
$$

From z matrix, we have

$$
\begin{aligned}
& v_{1}=z_{11} i_{1}+z_{12} i_{2} \\
& v_{2}=z_{21} i_{1}+z_{22} i_{2}
\end{aligned}
$$

If $v_{2}=0$
Then $\quad \frac{i_{2}}{i_{1}}=\frac{-z_{21}}{z_{22}}=\frac{-1.5}{1.5}=-1=h_{21}$
or $\quad i_{2}=-i_{1}$
Putting in equation for v_{1}, we get

$$
\begin{aligned}
v_{1} & =\left(z_{11}-z_{12}\right) i_{1} \\
\left.\frac{v_{1}}{i_{1}}\right|_{v_{2}=0} & =h_{11}=z_{11}-z_{12}=1.5-4.5=-3
\end{aligned}
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Hence h-parameter will be

$$
\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 3 \\
-1 & 0.67
\end{array}\right]
$$

Option (D) is correct.
According to maximum Power Transform Theorem

$$
Z_{L}=Z_{s}^{*}=\left(R_{s}-j X_{s}\right)
$$

Option (C) is correct.
At $\omega \rightarrow \infty$, capacitor acts as short circuited and circuit acts as shown in fig below

Here we get $\frac{V_{0}}{V_{i}}=0$
At $\omega \rightarrow 0$, capacitor acts as open circuited and circuit look like as shown in fig below

Here we get also $\frac{V_{0}}{V_{i}}=0$
So frequency response of the circuit is as shown in fig and circuit is a Band pass filter.

2.46 Option (D) is correct.

We know that bandwidth of series $R L C$ circuit is $\frac{R}{L}$. Therefore
Bandwidth of filter 1 is $B_{1}=\frac{R}{L_{1}}$
Bandwidth of filter 2 is $B_{2}=\frac{R}{L_{2}}=\frac{R}{L_{1} / 4}=\frac{4 R}{L_{1}}$
Dividing above equation $\frac{B_{1}}{B_{2}}=\frac{1}{4}$
2.47 Option (D) is correct.

Here $V_{t h}$ is voltage across node also. Applying nodal analysis we get

$$
\frac{V_{t h}}{2}+\frac{V_{t h}}{1}+\frac{V_{t h}-2 i}{1}=2
$$

But from circuit $\quad i=\frac{V_{\text {th }}}{1}=V_{\text {th }}$
Therefore

$$
\begin{aligned}
& \frac{V_{t h}}{2}+\frac{V_{t h}}{1}+\frac{V_{t h}-2 V_{t h}}{1}=2 \\
& \text { or } \quad \\
& V_{\text {th }}=4 \mathrm{volt}
\end{aligned}
$$

From the figure shown below it may be easily seen that the short circuit current at terminal $X Y$ is $i_{s c}=2 \mathrm{~A}$ because $i=0$ due to short circuit of 1Ω resistor and all current will pass through short circuit.

Therefore

$$
R_{t h}=\frac{V_{t h}}{i_{s c}}=\frac{4}{2}=2 \Omega
$$

Option (A) is correct.
The voltage across capacitor is
At $t=0^{+}, \quad V_{c}\left(0^{+}\right)=0$
At $t=\infty, \quad V_{C}(\infty)=5 \mathrm{~V}$
The equivalent resistance seen by capacitor as shown in fig is

$$
R_{e q}=20 \| 20=10 k \Omega
$$

For more GATE Resources, Mock Test and Study material join the community
http:/lwww.facebook.com/gateec2014

Time constant of the circuit is

$$
\tau=R_{e q} C=10 k \times 4 \mu=0.04 \mathrm{~s}
$$

Using direct formula

$$
\begin{aligned}
V_{c}(t) & =V_{C}(\infty)-\left[V_{c}(\infty)-V_{c}(0)\right] e^{-t / \tau} \\
& =V_{C}(\infty)\left(1-e^{-t / \tau}\right)+V_{C}(0) e^{-t / \tau}=5\left(1-e^{-t / 0.04}\right)
\end{aligned}
$$

or

Now

$$
\begin{aligned}
I_{C}(t) & =C \frac{d V_{C}(t)}{d t} \\
& =4 \times 10^{-6} \times\left(-5 \times 25 e^{-25 t}\right)=0.5 e^{-25 t} \mathrm{~mA}
\end{aligned}
$$

Option (D) is correct.
Impedance

$$
\begin{aligned}
& =(5-3 j) \|(5+3 j)=\frac{(5-3 j) \times(5+3 j)}{5-3 j+5+3 j} \\
& =\frac{(5)^{2}-(3 j)^{2}}{10}=\frac{25+9}{10}=3.4
\end{aligned}
$$

$V_{A B}=$ Current \times Impedance
$=5 \angle 30^{\circ} \times 34=17 \angle 30^{\circ}$
Option (D) is correct.
The network is shown in figure below.

$$
\begin{array}{ll}
\text { Now } & V_{1}=A V_{2}-B I_{2} \\
\text { and } & I_{1}=C V_{2}-D I_{2} \\
\text { also } & V_{2}=-I_{2} R_{L} \tag{3}
\end{array}
$$

From (1) and (2) we get
Thus

$$
\frac{V_{1}}{I_{1}}=\frac{A V_{2}-B I_{2}}{C V_{2}-D I_{2}}
$$

Substituting value of V_{2} from (3) we get

$$
\begin{array}{ll}
\text { Input Impedance } & Z_{i n}=\frac{-A \times I_{2} R_{L}-B I_{2}}{-C \times I_{2} R_{L}-D I_{2}} \\
\text { or } & Z_{i n}=\frac{A R_{L}+B}{C R_{L}+D}
\end{array}
$$

Option (B) is correct.
The circuit is as shown below.

At input port
$V_{1}=r_{e} I_{1}$
At output port
$V_{2}=r_{0}\left(I_{2}-\beta I_{1}\right)=-r_{0} \beta I_{1}+r_{0} I_{2}$

Comparing standard equation

$$
\begin{aligned}
V_{1} & =z_{11} I_{1}+z_{12} I_{2} \\
V_{2} & =z_{21} I_{1}+z_{22} I_{2} \\
z_{12} & =0 \text { and } z_{21}=-r_{0} \beta
\end{aligned}
$$

Option (B) is correct.
For series RC network input impedance is

$$
Z_{\text {ins }}=\frac{1}{s C}+R=\frac{1+s R C}{s C}
$$

Thus pole is at origin and zero is at $-\frac{1}{R C}$
For parallel $R C$ network input impedance is

$$
Z_{\text {in }}=\frac{\frac{1}{s C} R}{\frac{1}{s C}+R}=\frac{s C}{1+s R C}
$$

Thus pole is at $-\frac{1}{R C}$ and zero is at infinity.
Option (A) is correct.
We know

$$
v=\frac{L d i}{d t}
$$

Taking Laplace transform we get

$$
V(s)=s L I(s)-L i\left(0^{+}\right)
$$

As per given in question

$$
\text { Thus } \quad \begin{aligned}
-L i\left(0^{+}\right) & =-1 \mathrm{mV} \\
\quad i\left(0^{+}\right) & =\frac{1 \mathrm{mV}}{2 \mathrm{mH}}=0.5 \mathrm{~A}
\end{aligned}
$$

2.54 Option (B) is correct.

At initial all voltage are zero. So output is also zero.
Thus $\quad v_{0}\left(0^{+}\right)=0$
At steady state capacitor act as open circuit.

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
Thus, $\quad v_{0}(\infty)=\frac{4}{5} \times v_{i}=\frac{4}{5} \times 10=8$
The equivalent resistance and capacitance can be calculate after killing all source

$$
\begin{aligned}
R_{e q} & =1 \| 4=0.8 \mathrm{k} \Omega \\
C_{e q} & =4 \| 1=5 \mu \mathrm{~F} \\
\tau & =R_{e q} C_{e q}=0.8 \mathrm{k} \Omega \times 5 \mu \mathrm{~F}=4 \mathrm{~ms} \\
v_{0}(t) & =v_{0}(\infty)-\left[v_{0}(\infty)-v_{0}\left(0^{+}\right)\right] e^{-t / \tau} \\
& =8-(8-0) e^{-t / 0.004} \\
v_{0}(t) & =8\left(1-e^{-t / 0.004}\right) \text { Volts }
\end{aligned}
$$

2.55 Option (A) is correct.
$\begin{array}{ll}\text { Here } & Z_{2}(s)=R_{\text {neg }}+Z_{1}(s) \\ \text { or } & Z_{2}(s)=R_{\text {neg }}+\operatorname{Re} Z_{1}(s)+j \operatorname{Im} Z_{1}(s)\end{array}$
For $Z_{2}(s)$ to be positive real, $\operatorname{Re} Z_{2}(s) \geq 0$
Thus $\quad R_{\text {neg }}+\operatorname{Re} Z_{1}(s) \geq 0$
or $\quad \operatorname{Re} Z_{1}(s) \geq-R_{\text {neg }}$
But $R_{\text {neg }}$ is negative quantity and $-R_{\text {neg }}$ is positive quantity.
Therefore

$$
\begin{aligned}
\operatorname{Re} Z_{1}(s) & \geq\left|R_{\text {neg }}\right| \\
\left|R_{\text {neg }}\right| & \leq \operatorname{Re} Z_{1}(j \omega)
\end{aligned}
$$

or
For all ω.
2.56 Option (C) is correct.

Transfer function is
$\frac{Y(s)}{U(s)}=\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}}=\frac{1}{s^{2} L C+s c R+1}$
$s^{2}+\frac{R}{L} s+\frac{1}{L C}$
Comparing with $s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$ we have
Here

$$
2 \xi \omega_{n}=\frac{R}{L},
$$

and $\quad \omega_{n}=\frac{1}{\sqrt{L C}}$
Thus $\quad \xi=\frac{R}{2 L} \sqrt{L C}=\frac{R}{2} \sqrt{\frac{C}{L}}$
For no oscillations, $\xi \geq 1$

$$
\begin{array}{lrl}
\text { Thus } & \frac{R}{2} \sqrt{\frac{C}{L}} & \geq 1 \\
\text { or } & R & \geq 2 \sqrt{\frac{L}{C}}
\end{array}
$$

Option (B) is correct.
For given transformer

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
or

$$
\frac{I_{2}}{I_{1}}=\frac{V_{1}}{V_{2}}=\frac{n}{1}
$$

Comparing with standard equation

$$
\begin{aligned}
V_{1} & =A V_{2}+B I_{2} \\
I_{1} & =C V_{2}+D I_{2} \\
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] } & =\left[\begin{array}{ll}
n & 0 \\
0 & \frac{1}{n}
\end{array}\right]
\end{aligned}
$$

Thus

$$
x=\frac{1}{n}
$$

Option (B) is correct.
We have $L=1 H$ and $C=\frac{1}{400} \times 10^{-6}$
Resonant frequency

$$
\begin{aligned}
f_{0} & =\frac{1}{2 \pi \sqrt{L C}}==\frac{1}{2 \pi \sqrt{1 \times \frac{1}{400} \times 10^{-6}}} \\
& =\frac{10^{3} \times 20}{2 \pi}=\frac{10^{4}}{\pi} \mathrm{~Hz}
\end{aligned}
$$

Option (C) is correct.
Maximum power will be transferred when $R_{L}=R_{s}=100 \Omega$
In this case voltage across R_{L} is 5 V , therefore

$$
P_{\max }=\frac{V^{2}}{R}=\frac{5 \times 5}{100}=0.25 \mathrm{~W}
$$

Option (C) is correct.
For stability poles and zero interlace on real axis. In $R C$ series network the driving point impedance is

$$
Z_{\text {ins }}=R+\frac{1}{C s}=\frac{1+s R C}{s C}
$$

Here pole is at origin and zero is at $s=-1 / R C$, therefore first critical frequency is a pole and last critical frequency is a zero.

For $R C$ parallel network the driving point impedance is

$$
Z_{i n p}=\frac{R \frac{1}{C s}}{R+\frac{1}{C s}}=\frac{R}{1+s R C}
$$

Here pole is $s=-1 / R C$ and zero is at ∞, therefore first critical frequency is a pole and last critical frequency is a zero.
2.61 Option (A) is correct.

Applying KCL we get

$$
\begin{array}{rlrl}
& & i_{1}(t)+5 \angle 0^{\circ} & =10 \angle 60^{\circ} \\
\text { or } & i_{1}(t) & =10 \angle 60^{\circ}-5 \angle 0^{\circ}=5+5 \sqrt{3 j}-5 \\
\text { or } & i_{1}(t) & =5 \sqrt{3} \angle 90^{\circ}=\frac{10}{2} \sqrt{3} \angle 90^{\circ}
\end{array}
$$

2.62 Option (B) is correct.

If $L_{1}=j 5 \Omega$ and $L_{3}=j 2 \Omega$ the mutual induction is subtractive because current enters from dotted terminal of $j 2 \Omega$ coil and exit from dotted terminal of $j 5 \Omega$. If $L_{2}=j 2 \Omega$ and $L_{3}=j 2 \Omega$ the mutual induction is additive because current enters from dotted terminal of both coil.
Thus

$$
\begin{aligned}
Z & =L_{1}-M_{13}+L_{2}+M_{23}+L_{3}-M_{31}+M_{32} \\
& =j 5+j 10+j 2+j 10+j 2-j 10+j 10=j 9
\end{aligned}
$$

2.63 Option (B) is correct.

Open circuit at terminal ab is shown below

Applying KCL at node we get

$$
\begin{array}{rlrl}
& & \frac{V_{a b}}{5}+\frac{V_{a b}-10}{5} & =1 \\
\text { or } \quad & V_{a b} & =7.5=V_{t h}
\end{array}
$$

Short circuit at terminal ab is shown below

Short circuit current from terminal ab is

$$
I_{s c}=1+\frac{10}{5}=3 \mathrm{~A}
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

Thus

$$
R_{t h}=\frac{V_{t h}}{I_{s c}}=\frac{7.5}{3}=2.5 \Omega
$$

Here current source being in series with dependent voltage source make it ineffective.
2.64 Option (C) is correct.

Here $V_{a}=5 \mathrm{~V}$ because $R_{1}=R_{2}$ and total voltage drop is 10 V .
Now

$$
\begin{aligned}
V_{b} & =\frac{R_{3}}{R_{3}+R_{4}} \times 10=\frac{1.1}{2.1} \times 10=5.238 \mathrm{~V} \\
V & =V_{a}-V_{b}=5-5.238=-0.238 \mathrm{~V}
\end{aligned}
$$

2.65 Option (D) is correct.

For h parameters we have to write V_{1} and I_{2} in terms of I_{1} and V_{2}.

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2} \text { Applying KVL at input port } \\
& V_{1}=1 I_{1}+V_{2}
\end{aligned}
$$

Applying KCL at output port

$$
\text { or } \quad I_{2}=-I_{1}+\frac{V_{2}}{20}
$$

$$
\begin{aligned}
\frac{V_{2}}{20} & =I_{1}+I_{2} \\
I_{2} & =-I_{1}+\frac{V_{2}}{20}
\end{aligned}
$$

Thus from above equation we get

$$
\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right]=\left[\begin{array}{cc}
10 & 1 \\
-1 & 0.05
\end{array}\right]
$$

Option (B) is correct.
Time constant $\quad R C=0.1 \times 10^{-6} \times 10^{3}=10^{-4} \mathrm{sec}$
Since time constant $R C$ is very small, so steady state will be reached in 2 sec . At $t=2 \mathrm{sec}$ the circuit is as shown in fig.

$$
\begin{aligned}
& V_{c}=3 \mathrm{~V} \\
& V_{2}=-V_{c}=-3 \mathrm{~V}
\end{aligned}
$$

Option (B) is correct.
For a tree there must not be any loop. So a, c, and d don't have any loop. Only b has loop.
$2.68 \quad$ Option (D) is correct.
The sign of M is as per sign of L If current enters or exit the dotted terminals of both coil. The sign of M is opposite of L If current enters in dotted terminal of a coil and exit from the dotted terminal of other coil.
Thus

$$
L_{e q}=L_{1}+L_{2}-2 M
$$

Option (A) is correct.
Here $\omega=2$ and $V=1 \angle 0^{\circ}$

$$
\begin{aligned}
& Y=\frac{1}{R}+j \omega C+\frac{1}{j \omega L} \\
& =3+j 2 \times 3+\frac{1}{j 2 \times \frac{1}{4}}=3+j 4 \\
& =5 \angle \tan ^{-1} \frac{4}{3}=5 \angle 53.11^{\circ} \\
& I=V^{*} Y=\left(1 \angle 0^{\circ}\right)\left(5 \angle 53.1^{\circ}\right)=5 \angle 53.1^{\circ} \\
& \text { Thus } \quad i(t)=5 \sin \left(2 t+53.1^{\circ}\right)
\end{aligned}
$$

Option (A) is correct.

$$
v_{i}(t)=\sqrt{2} \sin 10^{3} t
$$

Here $\omega=10^{3} \mathrm{rad}$ and $V_{i}=\sqrt{2} \angle 0^{\circ}$

Now

$$
\begin{aligned}
V_{0} & =\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}} . V_{t}=\frac{1}{1+j \omega C R} V_{i} \\
& =\frac{1}{1+j \times 10^{3} \times 10^{-3}} \sqrt{2} \angle 0^{\circ} \\
& =1 \angle-45^{\circ} \\
v_{0}(t) & =\sin \left(10^{3} t-45^{\circ}\right)
\end{aligned}
$$

Option (C) is correct.
Input voltage
Taking Laplace transform

$$
\begin{aligned}
& v_{i}(t)=u(t) \\
& \quad V_{i}(s)=\frac{1}{s}
\end{aligned}
$$

Impedance

$$
\begin{aligned}
Z(s) & =s+2 \\
I(s) & =\frac{V_{i}(s)}{s+2}=\frac{1}{s(s+2)} \\
I(s) & =\frac{1}{2}\left[\frac{1}{s}-\frac{1}{s+2}\right]
\end{aligned}
$$

Taking inverse Laplace transform

$$
i(t)=\frac{1}{2}\left(1-e^{-2 t}\right) u(t)
$$

At $t=0, \quad i(t)=0$
At $t=\frac{1}{2}, \quad i(t)=0.31$
At $t=\infty, \quad i(t)=0.5$
Graph (C) satisfies all these conditions.
2.72 Option (D) is correct.

We know that

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
& V_{2}=z_{11} I_{1}+z_{22} I_{2}
\end{aligned}
$$

where

$$
z_{11}=\frac{V_{1}}{I_{1}}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{1}=0}
$$

Consider the given lattice network, when $I_{2}=0$. There is two similar path in the circuit for the current I_{1}. So $I=\frac{1}{2} I_{1}$

For z_{11} applying KVL at input port we get

Thus

$$
\begin{aligned}
V_{1} & =I\left(Z_{a}+Z_{b}\right) \\
V_{1} & =\frac{1}{2} I_{1}\left(Z_{a}+Z_{b}\right) \\
z_{11} & =\frac{1}{2}\left(Z_{a}+Z_{b}\right)
\end{aligned}
$$

For Z_{21} applying KVL at output port we get

$$
V_{2}=Z_{a} \frac{I_{1}}{2}-Z_{b} \frac{I_{1}}{2}
$$

Thus $\quad V_{2}=\frac{1}{2} I_{1}\left(Z_{a}-Z_{b}\right)$

$$
z_{21}=\frac{1}{2}\left(Z_{a}-Z_{b}\right)
$$

For this circuit $z_{11}=z_{22}$ and $z_{12}=z_{21}$. Thus

$$
\left[\begin{array}{cc}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{Z_{a}+Z_{b}}{2} & \frac{Z_{a}-Z_{b}}{2} \\
\frac{Z_{a}-Z_{b}}{2} & \frac{Z_{a}+Z_{b}}{2}
\end{array}\right]
$$

Here $Z_{a}=2 j$ and $Z_{b}=2 \Omega$
Thus

$$
\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{ll}
1+j & j-1 \\
j-1 & 1+j
\end{array}\right]
$$

Option (B) is correct.
Applying KVL,

$$
v(t)=\operatorname{Ri}(t)+\frac{L d i(t)}{d t}+\frac{1}{C} \int_{0}^{\infty} i(t) d t
$$

Taking L.T. on both sides,

$$
\begin{aligned}
V(s) & =R I(s)+L s I(s)-L i\left(0^{+}\right)+\frac{I(s)}{s C}+\frac{v_{c}\left(0^{+}\right)}{s C} \\
v(t) & =u(t) \text { thus } V(s)=\frac{1}{s} \\
\frac{1}{s} & =I(s)+s I(s)-1+\frac{I(s)}{s}-\frac{1}{s} \\
\frac{2}{s}+1 & =\frac{I(s)}{s}\left[s^{2}+s+1\right]
\end{aligned}
$$

Hence

$$
\text { or } \quad I(s)=\frac{s+2}{s^{2}+s+1}
$$

Option (B) is correct.
Characteristics equation is

$$
s^{2}+20 s+10^{6}=0
$$

Comparing with $s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$ we have

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{aligned}
\omega_{n} & =\sqrt{10^{6}}=10^{3} \\
2 \xi \omega & =20 \\
2 \xi & =\frac{20}{10^{3}}=0.02 \\
Q & =\frac{1}{2 \xi}=\frac{1}{0.02}=50
\end{aligned}
$$

Thus
Now
Option (D) is correct.

$$
\begin{aligned}
H(s) & =\frac{V_{0}(s)}{V_{i}(s)} \\
& =\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}}=\frac{1}{s^{2} L C+s C R+1} \\
& =\frac{1}{s^{2}\left(10^{-2} \times 10^{-4}\right)+s\left(10^{-4} \times 10^{4}\right)+1} \\
& =\frac{1}{10^{-6} s^{2}+s+1}=\frac{10^{6}}{s^{2}+10^{6} s+10^{6}}
\end{aligned}
$$

Option (D) is correct.
Impedance of series $R L C$ circuit at resonant frequency is minimum, not zero. Actually imaginary part is zero.

$$
Z=R+j\left(\omega L-\frac{1}{\omega C}\right)
$$

At resonance $\omega L-\frac{1}{\omega C}=0$ and $Z=R$ that is purely resistive.
Thus S_{1} is false
Now quality factor

$$
\begin{aligned}
Q & =R \sqrt{\frac{C}{L}} \\
Q & =\frac{1}{G} \sqrt{\frac{C}{L}}
\end{aligned}
$$

Since $G=\frac{1}{R}$,
If $G \uparrow$ then $Q \downarrow$ provided C and L are constant. Thus S_{2} is also false.
Option (B) is correct.
Number of loops $=b-n+1$
$=$ minimum number of equation
Number of branches $=b=8$
Number of nodes $=n=5$
Minimum number of equation

$$
=8-5+1=4
$$

Option (C) is correct.
For maximum power transfer

$$
\begin{aligned}
Z_{L} & =Z_{S}^{*}=R_{s}-j X_{s} \\
Z_{L} & =1-1 j
\end{aligned}
$$

Thus
2.79 Option (B) is correct.

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

When R, L and C are doubled,

Thus

$$
\begin{aligned}
Q^{\prime} & =\frac{1}{2 R} \sqrt{\frac{2 L}{2 C}}=\frac{1}{2 R} \sqrt{\frac{L}{C}}=\frac{Q}{2} \\
Q^{\prime} & =\frac{100}{2}=50
\end{aligned}
$$

2.80 Option (C) is correct.

Applying KVL we get,
or

$$
\begin{aligned}
& \sin t=R i(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int i(t) d t \\
& \sin t=2 i(t)+2 \frac{d i(t)}{d t}+\int i(t) d t
\end{aligned}
$$

Differentiating with respect to t, we get

$$
\cos t=\frac{2 d i(t)}{d t}+\frac{2 d^{2} i(t)}{d t^{2}}+i(t)
$$

Option (A) is correct.
For current i there is 3 similar path. So current will be divide in three path

so, we get

$$
V_{a b}-\left(\frac{i}{3} \times 1\right)-\left(\frac{i}{6} \times 1\right)-\left(\frac{1}{3} \times 1\right)=0
$$

For more GATE Resources, Mock Test and

 Study material join the community http:/lwww.facebook.com/gateec2014$$
\frac{V_{a b}}{i}=R_{e q}=\frac{1}{3}+\frac{1}{6}+\frac{1}{3}=\frac{5}{6} \Omega
$$

2.82 Option () is correct.

Data are missing in question as $L_{1} \& L_{2}$ are not given.
2.83 Option (A) is correct.

At $t=0^{-}$circuit is in steady state. So inductor act as short circuit and capacitor act as open circuit.

At $t=0^{-}$,

$$
\begin{aligned}
i_{1}\left(0^{-}\right) & =i_{2}\left(0^{-}\right)=0 \\
v_{c}\left(0^{-}\right) & =V
\end{aligned}
$$

At $t=0^{+}$the circuit is as shown in fig. The voltage across capacitor and current in inductor can't be changed instantaneously. Thus

At $t=0^{+}, \quad i_{1}=i_{2}=-\frac{V}{2 R}$
Option (C) is correct.
When switch is in position 2, as shown in fig in question, applying KVL in loop (1),

$$
\begin{array}{r}
R I_{1}(s)+\frac{V}{s}+\frac{1}{s C} I_{1}(s)+s L\left[I_{1}(s)-I_{2}(s)\right]=0 \\
I_{1}(s)\left[R+\frac{1}{s c}+s L\right]-I_{2}(s) s L=\frac{-V}{s} \\
z_{11} I_{1}+z_{12} I_{2}=V_{1}
\end{array}
$$

or

Applying KVL in loop 2,

$$
\begin{aligned}
s L\left[I_{2}(s)-I_{1}(s)\right]+R I_{2}(s)+\frac{1}{s C} I_{2}(s) & =0 \\
Z_{12} I_{1}+Z_{22} I_{2} & =V_{2} \\
\text { or } \quad & -s L I_{1}(s)+\left[R+s L+\frac{1}{s c}\right] I_{2}(s)
\end{aligned}
$$

Now comparing with

$$
\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

we get

$$
\left[\begin{array}{cc}
R+s L+\frac{1}{s C} & -s L \\
-s L & R+s L+\frac{1}{s C}
\end{array}\right]\left[\begin{array}{l}
I_{1}(s) \\
I_{2}(s)
\end{array}\right]=\left[\begin{array}{c}
-\frac{V}{s} \\
0
\end{array}\right]
$$

Option (B) is correct.

$$
\begin{aligned}
\text { Zeros } & =-3 \\
\text { Pole }^{1} & =-1+j \\
\text { Pole }^{2} & =-1-j \\
Z(s) & =\frac{K(s+3)}{(s+1+j)(s+1-j)} \\
& =\frac{K(s+3)}{(s+1)^{2}-j^{2}}=\frac{K(s+3)}{(s+1)^{2}+1}
\end{aligned}
$$

From problem statement $\left.Z(0)\right|_{\omega=0}=3$
Thus $\frac{3 K}{2}=3$ and we get $K=2$

$$
Z(s)=\frac{2(s+3)}{s^{2}+2 s+2}
$$

Option (C) is correct.

$$
v(t)=\underbrace{10 \sqrt{2} \cos \left(t+10^{\circ}\right)}_{v_{1}}+\underbrace{10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)}_{v_{2}}
$$

Thus we get $\omega_{1}=1$ and $\omega_{2}=2$

Now

$$
\begin{aligned}
Z_{1} & =R+j \omega_{1} L=1+j 1 \\
Z_{2} & =R+j \omega_{2} L=1+j 2 \\
i(t) & =\frac{v_{1}(t)}{Z_{1}}+\frac{v_{2}(t)}{Z_{2}} \\
& =\frac{10 \sqrt{2} \cos \left(t+10^{\circ}\right)}{1+j}+\frac{10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)}{1+j 2} \\
& =\frac{10 \sqrt{2} \cos \left(t+10^{\circ}\right)}{\sqrt{1^{2}+2^{2}} \angle \tan ^{-1} 1}+\frac{10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)}{\sqrt{1^{2}+2^{2}} \tan ^{-1} 2} \\
& =\frac{10 \sqrt{2} \cos \left(t+10^{\circ}\right)}{\sqrt{2} \angle \tan ^{-1} 45^{\circ}}+\frac{10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)}{\sqrt{5} \tan ^{-1} 2} \\
i(t) & =10 \cos \left(t-35^{\circ}\right)+10 \cos \left(2 t+10^{\circ}-\tan ^{-1} 2\right)
\end{aligned}
$$

2.87 Option (A) is correct.

Using $\triangle-Y$ conversion

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding.
Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
\begin{aligned}
& R_{1}=\frac{2 \times 1}{2+1+1}=\frac{2}{4}=0.5 \\
& R_{2}=\frac{1 \times 1}{2+1+1}=\frac{1}{4}=0.25 \\
& R_{3}=\frac{2 \times 1}{2+1+1}=0.5
\end{aligned}
$$

Now the circuit is as shown in figure below.

Now

$$
\begin{aligned}
& z_{11}=\left.\frac{v_{1}}{I_{1}}\right|_{I_{2}=0}=2+0.5+0.25=2.75 \\
& z_{12}=R_{3}=0.25
\end{aligned}
$$

Option (A) is correct.
Applying KCL at for node 2,

$$
\frac{V_{2}}{5}+\frac{V_{2}-V_{1}}{5}=\frac{V_{1}}{5}
$$

or

$$
V_{2}=V_{1}=20 \mathrm{~V}
$$

Voltage across dependent current source is 20 thus power delivered by it is

$$
P V_{2} \times \frac{V_{1}}{5}=20 \times \frac{20}{5}=80 \mathrm{~W}
$$

It deliver power because current flows from its +ive terminals.
Option (C) is correct.
When switch was closed, in steady state, $i_{L}\left(0^{-}\right)=2.5 \mathrm{~A}$

At $t=0^{+}, i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=2.5 \mathrm{~A}$ and all this current of will pass through 2Ω resistor. Thus

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

$$
V_{x}=-2.5 \times 20=-50 \mathrm{~V}
$$

Option (A) is correct.
For maximum power delivered, R_{L} must be equal to $R_{t h}$ across same terminal.

Applying KCL at Node, we get

$$
0.5 I_{1}=\frac{V_{t h}}{20}+I_{1}
$$

or $\quad V_{t h}+10 I_{1}=0$
but $\quad I_{1}=\frac{V_{t h}-50}{40}$
Thus

$$
V_{t h}+\frac{V_{t h}-50}{4}=0
$$

or

$$
V_{t h}=10 \mathrm{~V}
$$

For $I_{s c}$ the circuit is shown in figure below.

but

$$
I_{s c}=0.5 I_{1}-I_{1}=-0.5 I_{1}
$$

$$
\begin{aligned}
I_{1} & =-\frac{50}{40}=-1.25 \mathrm{~A} \\
I_{s c} & =-0.5 \times-12.5=0.625 \mathrm{~A} \\
R_{t h} & =\frac{V_{t h}}{I_{s c}}=\frac{10}{0.625}=16 \Omega
\end{aligned}
$$

2.91 Option (D) is correct.
$I_{P}, V_{P} \rightarrow$ Phase current and Phase voltage
$I_{L}, V_{L} \rightarrow$ Line current and line voltage
Now

$$
V_{P}=\left(\frac{V_{L}}{\sqrt{3}}\right) \text { and } I_{P}=I_{L}
$$

So, \quad Power $=3 V_{P} I_{L} \cos \theta$

$$
\begin{aligned}
1500 & =3\left(\frac{V_{L}}{\sqrt{3}}\right)\left(I_{L}\right) \cos \theta \\
I_{L} & =\left(\frac{V_{L}}{\sqrt{3} Z_{L}}\right) \\
1500 & =3\left(\frac{V_{L}}{\sqrt{3}}\right)\left(\frac{V_{L}}{\sqrt{3} Z_{L}}\right) \cos \theta \\
Z_{L} & =\frac{(400)^{2}(.844)}{1500}=90 \Omega
\end{aligned}
$$

also

As power factor is leading
So, $\quad \cos \theta=0.844 \rightarrow \theta=32.44$
As phase current leads phase voltage

$$
Z_{L}=90 \angle-\theta=90 \angle-32.44^{\circ}
$$

Option (C) is correct.
Applying KCL, we get

$$
\begin{aligned}
& \qquad \frac{e_{0}-12}{4}+\frac{e_{0}}{4}+\frac{e_{0}}{2+2}=0 \\
& \text { or } \quad e_{0}=4 \mathrm{~V} \\
& \text { Option (A) is correct. }
\end{aligned}
$$

The star delta circuit is shown as below

Here

$$
Z_{A B}=Z_{B C}=Z_{C A}=\sqrt{3} Z
$$

and $\quad Z_{A}=\frac{Z_{A B} Z_{C A}}{Z_{A B}+Z_{B C}+Z_{C A}}$

$$
Z_{B}=\frac{Z_{A B} Z_{B C}}{Z_{A B}+Z_{B C}+Z_{C A}}
$$

$$
Z_{C}=\frac{Z_{B C} Z_{C A}}{}
$$

For more GATE Rêsources, Mock Test and

Study material join the community
http://www.facebook.com/gateec2014

Now

$$
Z_{A}=Z_{B}=Z_{C}=\frac{\sqrt{3} Z \sqrt{3} Z}{\sqrt{3} Z+\sqrt{3} Z+\sqrt{3} Z}=\frac{Z}{\sqrt{3}}
$$

2.94 Option (C) is correct.

$$
\begin{aligned}
{\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
y_{1}+y_{3} & -y_{3} \\
-y_{3} & y_{2}+y_{3}
\end{array}\right] \\
y_{12} & =-y_{3} \\
y_{12} & =-\frac{1}{20}=-0.05 \mathrm{mho}
\end{aligned}
$$

2.95 Option (D) is correct.

We apply source conversion the circuit as shown in fig below.

Now applying nodal analysis we have
or

$$
\begin{aligned}
\frac{e_{0}-80}{10+2}+\frac{e_{0}}{12}+\frac{e_{0}-16}{6} & =0 \\
4 e_{0} & =112 \\
e_{0} & =\frac{112}{4}=28 \mathrm{~V}
\end{aligned}
$$

Option (A) is correct.

$$
\begin{aligned}
I_{2} & =\frac{E_{m} \angle 0^{\circ}}{R_{2}+\frac{1}{j \omega C}}=E_{m} \angle 0^{\circ} \frac{j \omega C}{1+j \omega C R_{2}} \\
\angle I_{2} & =\frac{\angle 90^{\circ}}{\angle \tan ^{-1} \omega C R_{2}} \\
I_{2} & =\frac{E_{m} \omega C}{\sqrt{1+\omega^{2} C^{2} R_{2}^{2}}} \angle\left(90^{\circ}-\tan ^{-1} \omega C R_{2}\right)
\end{aligned}
$$

At $\omega=0$

$$
I_{2}=0
$$

and at $\omega=\infty$,

$$
I_{2}=\frac{E_{m}}{R_{2}}
$$

Only fig. given in option (A) satisfies both conditions.
Option (A) is correct.

$$
X_{s}=\omega L=10 \Omega
$$

For maximum power transfer

$$
R_{L}=\sqrt{R_{s}^{2}+X_{s}^{2}}=\sqrt{10^{2}+10^{2}}=14.14 \Omega
$$

Option (C) is correct.
Applying KVL in LHS loop
or $\quad E_{1}=\frac{6 I_{1}}{11}+\frac{4 I_{2}}{11}$
Thus $z_{11}=\frac{6}{11}$
Applying KVL in RHS loop

$$
\begin{aligned}
E_{2} & =4\left(I_{1}+I_{2}\right)-10 E_{1} \\
& =4\left(I_{1}+I_{2}\right)-10\left(\frac{6 I_{1}}{11}+\frac{4 I_{2}}{11}\right) \\
& =-\frac{16 I_{1}}{11}+\frac{4 I_{2}}{11}
\end{aligned}
$$

Thus $z_{21}=-\frac{16}{11}$
Option (D) is correct.
At $\omega=0$, circuit act as shown in figure below.

$$
\frac{V_{0}}{V_{s}}=\frac{R_{L}}{R_{L}+R_{s}}
$$

(finite value)
At $w=\infty$, circuit act as shown in figure below:

$$
\frac{V_{0}}{V_{s}}=\frac{R_{L}}{R_{L}+R_{s}}
$$

(finite value)
At resonant frequency $\omega=\sqrt{\frac{1}{L C}}$ circuit acts as shown in fig and $V_{0}=0$.

Thus it is a band reject filter.

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
2.100 Option (D) is correct.

Applying KCL we get

$$
i_{L}=e^{a t}+e^{b t}
$$

Now

$$
V(t)=v_{L}=L \frac{d i_{L}}{d t}=L \frac{d}{d t}\left[e^{a t}+e^{b t}\right]=a e^{a t}+b e^{b t}
$$

2.101 Option (A) is correct.

Going from 10 V to 0 V

$$
\begin{array}{rlrl}
\text { or } \quad & & 10+5+E+1 & =0 \\
& E & =-16 \mathrm{~V}
\end{array}
$$

2.102 Option (C) is correct.

This is a reciprocal and linear network. So we can apply reciprocity theorem which states "Two loops A \& B of a network N and if an ideal voltage source E in loop A produces a current I in loop B, then interchanging positions an identical source in loop B produces the same current in loop A. Since network is linear, principle of homogeneity may be applied and when volt source is doubled, current also doubles.
Now applying reciprocity theorem

$$
\begin{aligned}
& i=2 \mathrm{~A} \text { for } 10 \mathrm{~V} \\
& V=10 \mathrm{~V}, i=2 \mathrm{~A} \\
& V=-20 \mathrm{~V}, i=-4 \mathrm{~A}
\end{aligned}
$$

Option (C) is correct.
Tree is the set of those branch which does not make any loop and
connects all the nodes.
$a b f g$ is not a tree because it contains a loop l node (4) is not connected

Option (A) is correct.
For a 2-port network the parameter h_{21} is defined as

$$
h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0(\text { short circuit) }}
$$

Applying node equation at node a we get

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{aligned}
\frac{V_{a}-V_{1}}{R}+\frac{V_{a}-0}{R}+\frac{V_{a}-0}{R} & =0 \\
3 V_{a}=V_{1} \quad \Rightarrow V_{a} & =\frac{V_{1}}{3}
\end{aligned}
$$

Now

$$
I_{1}=\frac{V_{1}-V_{a}}{R}=\frac{V_{1}-\frac{V_{1}}{3}}{R}=\frac{2 V_{1}}{3 R}
$$

$$
I_{2}=\frac{0-V_{a}}{R}=\frac{0-\frac{V_{1}}{3}}{R}=\frac{-V_{1}}{3 R}
$$

Thus

$$
\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}=h_{21}=\frac{-V_{1} / 3 R}{2 V_{1} / 3 R}=\frac{-1}{2}
$$

Option (A) is correct.
Applying node equation at node A

$$
\begin{aligned}
\frac{V_{t h}-100(1+j 0)}{3}+\frac{V_{t h}-0}{4 j} & =0 \\
4 j V_{t h}-4 j 100+3 V_{t h} & =0 \\
V_{t h}(3+4 j) & =4 j 100 \\
V_{t h} & =\frac{4 j 100}{3+4 j}
\end{aligned}
$$

By simplifying

$$
\begin{aligned}
V_{t h} & =\frac{4 j 100}{3+4 j} \times \frac{3-4 j}{3-4 j} \\
V_{t h} & =16 j(3-j 4)
\end{aligned}
$$

Option (C) is correct.
For maximum power transfer R_{L} should be equal to $R_{T h}$ at same terminal.
so, equivalent Resistor of the circuit is

$$
\begin{aligned}
& R_{e q}=5 \Omega \| 20 \Omega+4 \Omega \\
& R_{e q}=\frac{5.20}{5+20}+4=4+4=8 \Omega
\end{aligned}
$$

Option (D) is correct.
Delta to star conversion

$$
\begin{aligned}
R_{1} & =\frac{R_{a b} R_{a c}}{R_{a b}+R_{a c}+R_{b c}}=\frac{5 \times 30}{5+30+15}=\frac{150}{50}=3 \Omega \\
R_{2} & =\frac{R_{a b} R_{b c}}{R_{a b}+R_{a c}+R_{b c}}=\frac{5 \times 15}{5+30+15}=1.5 \Omega \\
R_{3} & =\frac{R_{a c} R_{b c}}{R_{a b}+R_{a c}+R_{b c}}=\frac{15 \times 30}{5+30+15}=9 \Omega
\end{aligned}
$$

2.108 Option (C) is correct.

$$
\text { No. of branches }=n+l-1=7+5-1=11
$$

2.109 Option (B) is correct.

In nodal method we sum up all the currents coming \& going at the node So it is based on KCL. Furthermore we use ohms law to determine current in individual branch. Thus it is also based on ohms law.

Option (A) is correct.
Superposition theorem is applicable to only linear circuits.
Option (B) is correct.
2.112 Option (B) is correct.

For reciprocal network $y_{12}=y_{21}$ but here $y_{12}=-\frac{1}{2} \neq y_{21}=\frac{1}{2}$. Thus circuit is non reciprocal. Furthermore only reciprocal circuit are passive circuit.
2.113 Option (C) is correct.

Taking b as reference node and applying KCL at a we get

$$
\begin{aligned}
& \begin{aligned}
\frac{V_{a b}-1}{2}+\frac{V_{a b}}{2} & =3 \\
\text { or } & V_{a b}-1+V_{a b}
\end{aligned}=6 \\
\text { or } & V_{a b}
\end{aligned}=\frac{6+1}{2}=3.5 \mathrm{~V}
$$

2.114 Option (A) is correct.
2.115 Option (B) is correct.

The given figure is shown below.

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

Applying KCL at node a we have

$$
I=i_{0}+i_{1}=7+5=12 \mathrm{~A}
$$

Applying KCL at node f

$$
\begin{aligned}
I & =-i_{4} \\
i_{4} & =-12 \mathrm{amp}
\end{aligned}
$$

2.116 Option (A) is correct.

so $\quad V=3-0=3$ volt
2.117 Option (D) is correct.

Can not determined V without knowing the elements in box.
2.118 Option (A) is correct

The voltage V is the voltage across voltage source and that is 10 V .
2.119 Option (B) is correct.

Voltage across capacitor

$$
V_{C}(t)=V_{C}(\infty)+\left(V_{C}(0)-V_{C}(\infty)\right) e^{\frac{-t}{R C}}
$$

Here $V_{C}(\infty)=10 \mathrm{~V}$ and $\left(V_{C}(0)=6 \mathrm{~V}\right.$. Thus

$$
\begin{aligned}
V_{C}(t) & =10+(6-10) e^{\frac{-t}{R C}}=10-4 e^{\frac{-t}{R C}}=10-4 e^{\frac{-t}{8}} \\
V_{R}(t) & =10-V_{C}(t) \\
& =10-10+4 e^{\frac{-t}{R C}}=4 e^{\frac{-t}{R C}}
\end{aligned}
$$

Now

Energy absorbed by resistor

$$
E \int_{0}^{\infty} \frac{V_{R}^{2}(t)}{R}=\int_{0}^{\infty} \frac{16 e^{\frac{-t}{4}}}{4}=\int_{0}^{\infty} 4 e^{\frac{-t}{4}}=16 \mathrm{~J}
$$

2.120 Option (B) is correct.

It is a balanced whetstone bridge

$$
\left(\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}\right)
$$

so equivalent circuit is

$$
Z_{e q}=(4 \Omega \| 8 \Omega)=\frac{4 \times 8}{4+8}=\frac{8}{3}
$$

2.121 Option (B) is correct.

Current in $A_{2}, \quad I_{2}=3 \mathrm{amp}$
Inductor current can be defined as $I_{2}=-3 j$

$$
\begin{aligned}
& \text { Current in } A_{3} \text {, } \\
& I_{3}=4 \\
& \text { Total current } \\
& I_{1}=I_{2}+I_{3} \\
& I_{1}=4-3 j \\
& |I|=\sqrt{(4)^{2}+(3)^{2}}=5 \mathrm{amp}
\end{aligned}
$$

Option (C) is correct.
For a tree we have $(n-1)$ branches. Links are the branches which from a loop, when connect two nodes of tree.
so if total no. of branches $=b$

$$
\text { No. of links }=b-(n-1)=b-n+1
$$

Total no. of links in equal to total no. of independent loops.
2.123 Option (B) is correct.

In the steady state condition all capacitors behaves as open circuit \& Inductors behaves as short circuits as shown below :

Thus voltage across capacitor C_{1} is

$$
V_{C_{1}}=\frac{100}{10+40} \times 40=80 \mathrm{~V}
$$

Now the circuit faced by capacitor C_{2} and C_{3} can be drawn as below :

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

Voltage across capacitor C_{2} and C_{3} are

$$
\begin{aligned}
& V_{C_{2}}=80 \frac{C_{3}}{C_{2}+C_{3}}=80 \times \frac{3}{5}=48 \mathrm{volt} \\
& V_{C_{3}}=80 \frac{C_{2}}{C_{2}+C_{3}}=80 \times \frac{2}{5}=32 \mathrm{volt}
\end{aligned}
$$

2013

ONE MARK
3.1 In a forward biased pn junction diode, the sequence of events that best describes the mechanism of current flow is
(A) injection, and subsequent diffusion and recombination of minority carriers
(B) injection, and subsequent drift and generation of minority carriers
(C) extraction, and subsequent diffusion and generation of minority carriers
(D) extraction, and subsequent drift and recombination of minority carriers

In IC technology, dry oxidation (using dry oxygen) as compared to wet oxidation (using steam or water vapor) produces
(A) superior quality oxide with a higher growth rate
(B) inferior quality oxide with a higher growth rate
(C) inferior quality oxide with a lower growth rate
(D) superior quality oxide with a lower growth rate

In a MOSFET operating in the saturation region, the channel length modulation effect causes
(A) an increase in the gate-source capacitance
(B) a decrease in the transconductance
(C) a decrease in the unity-gain cutoff frequency
(D) a decrease in the output resistance

2013

TWO MARKS
The small-signal resistance (i.e., $d V_{B} / d I_{D}$) in $\mathrm{k} \Omega$ offered by the n-channel MOSFET M shown in the figure below, at a bias point of $V_{B}=2 \mathrm{~V}$ is (device data for M : device transconductance parameter $k_{N}=\mu_{n} C_{0 x}^{\prime}(W / L)=40 \mu \mathrm{~A} / \mathrm{V}^{2}$, threshold voltage $V_{T N}=1 \mathrm{~V}$, and neglect body effect and channel length modulation effects)

(A) 12.5
(B) 25
(C) 50
(D) 100

2012

TWO MARKS

3.5 The source of a silicon $\left(n_{i}=10^{10}\right.$ per $\left.\mathrm{cm}^{3}\right) n$-channel MOS transistor has an area of $1 \mathrm{sq} \mu \mathrm{m}$ and a depth of $1 \mu \mathrm{~m}$. If the dopant density in the source is $10^{19} / \mathrm{cm}^{3}$, the number of holes in the source region with the above volume is approximately
(A) 10^{7}
(B) 100
(C) 10
(D) 0
3.6 In the CMOS circuit shown, electron and hole mobilities are equal, and M_{1} and M_{2} are equally sized. The device M_{1} is in the linear region if

(A) $V_{i n}<1.875 \mathrm{~V}$
(B) $1.875 \mathrm{~V}<V_{i n}<3.125 \mathrm{~V}$
(C) $V_{i n}>3.125 \mathrm{~V}$
(D) $0<V_{i n}<5 \mathrm{~V}$

Common Data For Q. 2 and 3 :

In the three dimensional view of a silicon n-channel MOS transistor shown below, $\delta=20 \mathrm{~nm}$. The transistor is of width $1 \mu \mathrm{~m}$. The depletion width formed at every $p-n$ junction is 10 nm . The rela-

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
tive permittivity of Si and SiO_{2}, respectively, are 11.7 and 3.9 , and $\varepsilon_{0}=8.9 \times 10^{-12} \mathrm{~F} / \mathrm{m}$.

3.7 The gate source overlap capacitance is approximately
(A) 0.7 fF
(B) 0.7 pF
(C) 0.35 fF
(D) 0.24 pF
3.8 The source-body junction capacitance is approximately
(A) 2 fF
(B) 7 fF
(C) 2 pF
(D) 7 pF

2011

ONE MARK
3.9 Drift current in the semiconductors depends upon
(A) only the electric field
(B) only the carrier concentration gradient
(C) both the electric field and the carrier concentration
(D) both the electric field and the carrier concentration gradient
3.10 A Zener diode, when used in voltage stabilization circuits, is biased
in
(A) reverse bias region below the breakdown voltage
(B) reverse breakdown region
(C) forward bias region
(D) forward bias constant current mode
3.11 A silicon PN junction is forward biased with a constant current at room temperature. When the temperature is increased by $10^{\circ} \mathrm{C}$, the forward bias voltage across the PN junction
(A) increases by 60 mV
(B) decreases by 60 mV
(C) increases by 25 mV
(D) decreases by 25 mV

2011 TWO MARKS

Common Data For Q. 3.12 \& 3.13 :

The channel resistance of an N-channel JFET shown in the fig-

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
ure below is 600Ω when the full channel thickness $\left(t_{c h}\right)$ of $10 \mu \mathrm{~m}$ is available for conduction. The built-in voltage of the gate $P^{+} N$ junction $\left(V_{b i}\right)$ is -1 V . When the gate to source voltage $\left(V_{G S}\right)$ is 0 V , the channel is depleted by $1 \mu \mathrm{~m}$ on each side due to the built in voltage and hence the thickness available for conduction is only 8 $\mu \mathrm{m}$

The channel resistance when $V_{G S}=-3 \mathrm{~V}$ is
(A) 360Ω
(B) 917Ω
(C) 1000Ω
(D) 3000Ω
3.13 The channel resistance when $V_{G S}=0 \mathrm{~V}$ is
(A) 480Ω
(B) 600Ω
(C) 750Ω
(D) 1000Ω

2010

ONE MARK
3.14 At room temperature, a possible value for the mobility of electrons in the inversion layer of a silicon n-channel MOSFET is
(A) $450 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
(B) $1350 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
(C) $1800 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
(D) $3600 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
3.15 Thin gate oxide in a CMOS process in preferably grown using
(A) wet oxidation
(B) dry oxidation
(C) epitaxial oxidation
(D) ion implantation

2010

TWO MARKS

${ }^{3.16}$ In a uniformly doped BJT, assume that N_{E}, N_{B} and N_{C} are the emitter, base and collector doping in atoms $/ \mathrm{cm}^{3}$, respectively. If the emitter injection efficiency of the BJT is close unity, which one of the following condition is TRUE
(A) $N_{E}=N_{B}=N_{C}$
(B) $N_{E} \gg N_{B}$ and $N_{B}>N_{C}$
(C) $N_{E}=N_{B}$ and $N_{B}<N_{C}$
(D) $N_{E}<N_{B}<N_{C}$
3.17 Compared to a p-n junction with $N_{A}=N_{D}=10^{14} / \mathrm{cm}^{3}$, which one of the following statements is TRUE for a p-n junction with $N_{A}=N_{D}=10^{20} / \mathrm{cm}^{3}$?
(A) Reverse breakdown voltage is lower and depletion capacitance is lower
(B) Reverse breakdown voltage is higher and depletion capacitance is lower
(C) Reverse breakdown voltage is lower and depletion capacitance is higher
(D) Reverse breakdown voltage is higher and depletion capacitance is higher

Statements for Linked Answer Question : 3.10 \& 3.11 :

The silicon sample with unit cross-sectional area shown below is in thermal equilibrium. The following information is given: $T=300 \mathrm{~K}$ electronic charge $=1.6 \times 10^{-19} \mathrm{C}$, thermal voltage $=26 \mathrm{mV}$ and electron mobility $=1350 \mathrm{~cm}^{2} / \mathrm{V}$-s

3.18 The magnitude of the electric field at $x=0.5 \mu \mathrm{~m}$ is
(A) $1 \mathrm{kV} / \mathrm{cm}$
(B) $5 \mathrm{kV} / \mathrm{cm}$
(C) $10 \mathrm{kV} / \mathrm{cm}$
(D) $26 \mathrm{kV} / \mathrm{cm}$
3.19 The magnitude of the electron of the electron drift current density at $x=0.5 \mu \mathrm{~m}$ is
(A) $2.16 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$
(B) $1.08 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(C) $4.32 \times 10^{3} \mathrm{~A} / \mathrm{cm}^{2}$
(D) $6.48 \times 10^{2} \mathrm{~A} / \mathrm{cm}^{2}$

2009

ONE MARK
3.20 In an n-type silicon crystal at room temperature, which of the following can have a concentration of $4 \times 10^{19} \mathrm{~cm}^{-3}$?
(A) Silicon atoms
(B) Holes
(C) Dopant atoms
(D) Valence electrons
3.21 The ratio of the mobility to the diffusion coefficient in a semiconductor has the units
(A) V^{-1}
(B) $\mathrm{cm} \cdot V^{1}$
(C) $V \cdot \mathrm{~cm}^{-1}$
(D) V.s

2009

 TWO MARKS3.22 Consider the following two statements about the internal conditions in a n-channel MOSFET operating in the active region.
S1 : The inversion charge decreases from source to drain
S2 : The channel potential increases from source to drain.
Which of the following is correct?
(A) Only S 2 is true
(B) Both S1 and S2 are false
(C) Both S 1 and S 2 are true, but S 2 is not a reason for S 1
(D) Both S1 and S2 are true, and S2 is a reason for S 1

Common Data For Q. 3.13 and 3.14

Consider a silicon $p-n$ junction at room temperature having the following parameters:
Doping on the n-side $=1 \times 10^{17} \mathrm{~cm}^{-3}$
Depletion width on the n-side $=0.1 \mu \mathrm{~m}$
Depletion width on the p-side $=1.0 \mu \mathrm{~m}$
Intrinsic carrier concentration $=1.4 \times 10^{10} \mathrm{~cm}^{-3}$
Thermal voltage $=26 \mathrm{mV}$
Permittivity of free space $=8.85 \times 10^{-14} \mathrm{~F} . \mathrm{cm}^{-1}$
Dielectric constant of silicon $=12$
3.23 The built-in potential of the junction
(A) is 0.70 V
(B) is 0.76 V
(C) is 0.82 V
(D) Cannot be estimated from the data given
3.24 The peak electric field in the device is
(A) $0.15 \mathrm{MV} . \mathrm{cm}^{-1}$, directed from p-region to n-region
(B) $0.15 \mathrm{MV} . \mathrm{cm}^{-1}$, directed from n-region to p-region
(C) $1.80 \mathrm{MV} . \mathrm{cm}^{-1}$, directed from p-region to n-region
(D) 1.80 MV. cm^{-1}, directed from n-region to p-region

2008

ONE MARK
3.25 Which of the following is NOT associated with a $p-n$ junction ?
(A) Junction Capacitance
(B) Charge Storage Capacitance
(C) Depletion Capacitance
(D) Channel Length Modula- tions
(A)

(B)

3.30 Silicon is doped with boron to a concentration of 4×10^{17} atoms cm^{3} . Assume the intrinsic carrier concentration of silicon to be 1.5×10^{10} $/ \mathrm{cm}^{3}$ and the value of $k T / q$ to be 25 mV at 300 K . Compared to undopped silicon, the fermi level of doped silicon
(A) goes down by 0.31 eV
(B) goes up by 0.13 eV
(C) goes down by 0.427 eV
(D) goes up by 0.427 eV

The cross section of a JFET is shown in the following figure. Let V_{c} be -2 V and let V_{P} be the initial pinch -off voltage. If the width W is doubled (with other geometrical parameters and doping levels remaining the same), then the ratio between the mutual trans conductances of the initial and the modified JFET is

(A) 4
(B) $\frac{1}{2}\left(\frac{1-\sqrt{ } 2 / V_{p}}{1-\sqrt{1 / 2 V_{p}}}\right)$
(C) $\left(\frac{1-\sqrt{ } 2 / V_{p}}{1-\sqrt{1 / 2 V_{p}}}\right)$
(D) $\frac{1-\left(2-\sqrt{V_{p}}\right)}{1-\left[1\left(2 \sqrt{V_{p}}\right)\right]}$

Consider the following assertions.
S1:For Zener effect to occur, a very abrupt junction is required.
S2 :For quantum tunneling to occur, a very narrow energy barrier is required.
Which of the following is correct?
(A) Only S2 is true
(B) S1 and S2 are both true but S2 is not a reason for S1

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(C) S1 and S2 and are both true but S2 is not a reason for S1
(D) Both S1 and S2 are false

2007

ONE MARK
The electron and hole concentrations in an intrinsic semiconductor are n_{i} per cm^{3} at 300 K . Now, if acceptor impurities are introduced with a concentration of N_{A} per cm^{3} (where $N_{A} \gg n_{i}$, the electron concentration per cm^{3} at 300 K will be)
(A) n_{i}
(B) $n_{i}+N_{A}$
(C) $N_{A}-n_{i}$
(D) $\frac{n_{i}^{2}}{N_{A}}$

In a $p^{+} n$ junction diode under reverse biased the magnitude of electric field is maximum at
(A) the edge of the depletion region on the p-side
(B) the edge of the depletion region on the n-side
(C) the $p^{+} n$ junction
(D) the centre of the depletion region on the n-side

2007

TWO MARKS
Group I lists four types of $p-n$ junction diodes. Match each device in Group I with one of the option in Group II to indicate the bias condition of the device in its normal mode of operation.

Group - I

Group-II

(P) Zener Diode
(1) Forward bias
(Q) Solar cell
(2) Reverse bias
(R) LASER diode
(S) Avalanche Photodiode
(A) $\mathrm{P}-1, \mathrm{Q}-2, \mathrm{R}-1, \mathrm{~S}-2$
(B) $\mathrm{P}-2, \mathrm{Q}-1, \mathrm{R}-1, \mathrm{~S}-2$
(C) $\mathrm{P}-2, \mathrm{Q}-2, \mathrm{R}-1, \mathrm{~S}--2$
(D) $\mathrm{P}-2, \mathrm{Q}-1, \mathrm{R}-2, \mathrm{~S}-2$
3.36 Group I lists four different semiconductor devices. match each device in Group I with its charactecteristic property in Group II Group-I Group-II
(P) BJT
(Q) MOS capacitor
(R) LASER diode
(S) JFET
(1) Population iniversion
(2) Pinch-off voltage
(3) Early effect
(4) Flat-band voltage
(A) $\mathrm{P}-3, \mathrm{Q}-1, \mathrm{R}-4, \mathrm{~S}-2$
(B) $\mathrm{P}-1, \mathrm{Q}-4, \mathrm{R}-3, \mathrm{~S}-2$
(C) $\mathrm{P}-3, \mathrm{Q}-4, \mathrm{R}-1, \mathrm{~S}-2$
(D) $\mathrm{P}-3, \mathrm{Q}-2, \mathrm{R}-1, \mathrm{~S}-4$
3.37 A $p^{+} n$ junction has a built-in potential of 0.8 V . The depletion layer width a reverse bias of 1.2 V is $2 \mu \mathrm{~m}$. For a reverse bias of 7.2 V , the depletion layer width will be
(A) $4 \mu \mathrm{~m}$
(B) $4.9 \mu \mathrm{~m}$
(C) $8 \mu \mathrm{~m}$
(D) $12 \mu \mathrm{~m}$
3.38 The DC current gain (β) of a BJT is 50 . Assuming that the emitter injection efficiency is 0.995 , the base transport factor is
(A) 0.980
(B) 0.985
(C) 0.990
(D) 0.995

Common Data For Q. 2.29, 2.30 and 2.31 :

The figure shows the high-frequency capacitance - voltage characteristics of Metal/Sio ${ }^{2} /$ silicon (MOS) capacitor having an area of $1 \times 10^{-4} \mathrm{~cm}^{2}$. Assume that the permittivities $\left(\varepsilon_{0} \varepsilon_{r}\right)$ of silicon and SiO_{2} are $1 \times 10^{-12} \mathrm{~F} / \mathrm{cm}$ and $3.5 \times 10^{-13} \mathrm{~F} / \mathrm{cm}$ respectively.

The gate oxide thickness in the MOS capacitor is
(A) 50 nm
(B) 143 nm
(C) 350 nm
(D) $1 \mu \mathrm{~m}$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

3.40 The maximum depletion layer width in silicon is
(A) $0.143 \mu \mathrm{~m}$
(B) $0.857 \mu \mathrm{~m}$
(C) $1 \mu \mathrm{~m}$
(D) $1.143 \mu \mathrm{~m}$
3.41 Consider the following statements about the $C-V$ characteristics plot :
S1: The MOS capacitor has as n-type substrate
S 2 : If positive charges are introduced in the oxide, the $C-V$ polt will shift to the left.

Then which of the following is true?
(A) Both S1 and S2 are true
(B) S 1 is true and S 2 is false
(C) S 1 is false and S 2 is true
(D) Both S1 and S2 are false

2006

ONE MARK
The values of voltage $\left(V_{D}\right)$ across a tunnel-diode corresponding to peak and valley currents are V_{p}, V_{D} respectively. The range of tunneldiode voltage for V_{D} which the slope of its $I-V_{D}$ characteristics is negative would be
(A) $V_{D}<0$
(B) $0 \leq V_{D}<V_{p}$
(C) $V_{p} \leq V_{D}<V_{v}$
(D) $V_{D} \geq V_{v}$

The concentration of minority carriers in an extrinsic semiconductor under equilibrium is
(A) Directly proportional to doping concentration
(B) Inversely proportional to the doping concentration
(C) Directly proportional to the intrinsic concentration
(D) Inversely proportional to the intrinsic concentration
3.44 Under low level injection assumption, the injected minority carrier current for an extrinsic semiconductor is essentially the
(A) Diffusion current
(B) Drift current
(C) Recombination current
(D) Induced current

The phenomenon known as "Early Effect" in a bipolar transistor refers to a reduction of the effective base-width caused by
(A) Electron - hole recombination at the base
(B) The reverse biasing of the base - collector junction
(C) The forward biasing of emitter-base junction
(D) The early removal of stored base charge during saturation-tocut off switching

2006

TWO MARKS
In the circuit shown below, the switch was connected to position 1 at $t<0$ and at $t=0$, it is changed to position 2. Assume that the diode has zero voltage drop and a storage time t_{s}. For $0<t \leq t_{s}, v_{R}$ is given by (all in Volts)

(A) $v_{R}=-5$
(B) $v_{R}=+5$
(C) $0 \leq v_{R}<5$
(D) $-5 \leq v_{R}<0$

The majority carriers in an n-type semiconductor have an average drift velocity v in a direction perpendicular to a uniform magnetic field B. The electric field E induced due to Hall effect acts in the direction
(A) $v \times B$
(B) $B \times v$
(C) along v
(D) opposite to v

Find the correct match between Group 1 and Group 2
Group $1 \quad$ Group 2
E - Varactor diode

1. Voltage reference

F - PIN diode
2. High frequency switch

G - Zener diode
3. Tuned circuits

H - Schottky diode
4. Current controlled attenuator
(B) $\mathrm{E}-3, \mathrm{~F}-4, \mathrm{G}-1, \mathrm{H}-3$
(C) $\mathrm{E}-2, \mathrm{~F}-4, \mathrm{G}-1, \mathrm{H}-2$
(D) $\mathrm{E}-1, \mathrm{~F}-3, \mathrm{G}-2, \mathrm{H}-4$
3.49 A heavily doped n - type semiconductor has the following data: Hole-electron ratio :0.4
Doping concentration $: 4.2 \times 10^{8}$ atoms $/ \mathrm{m}^{3}$
Intrinsic concentration $: 1.5 \times 10^{4}$ atoms $/ \mathrm{m}^{3}$
The ratio of conductance of the n-type semiconductor to that of the intrinsic semiconductor of same material and ate same temperature is given by
(A) 0.00005
(B) 2000
(C) 10000
(D) 20000
3.50 The bandgap of Silicon at room temperature is
(A) 1.3 eV
(B) 0.7 eV

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
WWW.nodia.co.in
(C) 1.1 eV
(D) 1.4 eV
3.51 A Silicon PN junction at a temperature of $20^{\circ} \mathrm{C}$ has a reverse saturation current of 10 pico - Ameres (pA). The reserve saturation current at $40^{\circ} \mathrm{C}$ for the same bias is approximately
(A) 30 pA
(B) 40 pA
(C) 50 pA
(D) 60 pA
3.52 The primary reason for the widespread use of Silicon in semiconductor device technology is
(A) abundance of Silicon on the surface of the Earth.
(B) larger bandgap of Silicon in comparison to Germanium.
(C) favorable properties of Silicon - dioxide $\left(\mathrm{SiO}_{2}\right)$
(D) lower melting point
3.53 A Silicon sample A is doped with 10^{18} atoms $/ \mathrm{cm}^{3}$ of boron. Another sample B of identical dimension is doped with 10^{18} atoms $/ \mathrm{cm}^{3}$ phosphorus. The ratio of electron to hole mobility is 3 . The ratio of conductivity of the sample A to B is
(A) 3
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{2}$
3.54 A Silicon PN junction diode under reverse bias has depletion region of width $10 \mu \mathrm{~m}$. The relative permittivity of Silicon, $\varepsilon_{r}=11.7$ and the permittivity of free space $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$. The depletion capacitance of the diode per square meter is
(A) $100 \mu \mathrm{~F}$
(B) $10 \mu \mathrm{~F}$
(C) $1 \mu \mathrm{~F}$
(D) $20 \mu \mathrm{~F}$
3.55 A MOS capacitor made using p type substrate is in the accumulation mode. The dominant charge in the channel is due to the presence of
(A) holes
(B) electrons
(C) positively charged icons
(D) negatively charged ions
3.56 For an n-channel MOSFET and its transfer curve shown in the figure, the threshold voltage is

(A) 1 V and the device is in active region
(B) -1 V and the device is in saturation region
(C) 1 V and the device is in saturation region
(D) -1 V and the device is an active region

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
3.57 The impurity commonly used for realizing the base region of a silicon $n-p-n$ transistor is
(A) Gallium
(B) Indium
(C) Boron
(D) Phosphorus
3.58 If for a silicon npn transistor, the base-to-emitter voltage ($V_{B E}$) is 0.7 V and the collector-to-base voltage $\left(V_{C B}\right)$ is 0.2 V , then the transistor is operating in the
(A) normal active mode
(B) saturation mode
(C) inverse active mode
(D) cutoff mode

Consider the following statements S1 and S2.
S1 : The β of a bipolar transistor reduces if the base width is increased.

S2 : The β of a bipolar transistor increases if the dopoing concentration in the base is increased.
Which remarks of the following is correct?
(A) S 1 is FALSE and S 2 is TRUE
(B) Both S1 and S2 are TRUE
(C) Both S1 and S2 are FALSE
(D) S1 is TRUE and S2 is FALSE

Given figure is the voltage transfer characteristic of

(A) an NOMS inverter with enhancement mode transistor as load
(B) an NMOS inverter with depletion mode transistor as load
(C) a CMOS inverter
(D) a BJT inverter

Assuming $V_{\text {CEsat }}=0.2 \mathrm{~V}$ and $\beta=50$, the minimum base current $\left(I_{B}\right)$ required to drive the transistor in the figure to saturation is

(A) $56 \mu \mathrm{~A}$
(B) 140 mA
(C) 60 mA
(D) 3 mA

2004

3.62 In an abrupt $p-n$ junction, the doping concentrations on the $p-$ side and n-side are $N_{A}=9 \times 10^{16} / \mathrm{cm}^{3}$ respectively. The $p-n$ junction is reverse biased and the total depletion width is $3 \mu \mathrm{~m}$. The depletion width on the p-side is
(A) $2.7 \mu \mathrm{~m}$
(B) $0.3 \mu \mathrm{~m}$
(C) $2.25 \mu \mathrm{~m}$
(D) $0.75 \mu \mathrm{~m}$
3.63 The resistivity of a uniformly doped n-type silicon sample is 0.5Ω mc. If the electron mobility $\left(\mu_{n}\right)$ is $1250 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{sec}$ and the charge of an electron is 1.6×10^{-19} Coulomb, the donor impurity concentration $\left(N_{D}\right)$ in the sample is
(A) $2 \times 10^{16} / \mathrm{cm}^{3}$
(B) $1 \times 10^{16} / \mathrm{cm}^{3}$
(C) $2.5 \times 10^{15} / \mathrm{cm}^{3}$
(D) $5 \times 10^{15} / \mathrm{cm}^{3}$
3.64 Consider an abrupt $p-n$ junction. Let $V_{b i}$ be the built-in potential of this junction and V_{R} be the applied reverse bias. If the junction capacitance $\left(C_{j}\right)$ is 1 pF for $V_{b i}+V_{R}=1 \mathrm{~V}$, then for $V_{b i}+V_{R}=4 \mathrm{~V}$, C_{j} will be
(A) 4 pF
(B) 2 pF
(C) 0.25 pF
(D) 0.5 pF
${ }^{3.65} \quad$ Consider the following statements Sq and S2.
S1 : The threshold voltage $\left(V_{T}\right)$ of MOS capacitor decreases with increase in gate oxide thickness.
S2 : The threshold voltage $\left(V_{T}\right)$ of a MOS capacitor decreases with increase in substrate doping concentration.
Which Marks of the following is correct?

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) S 1 is FALSE and S 2 is TRUE
(B) Both S1 and S2 are TRUE
(C) Both S1 and S2 are FALSE
(D) S 1 is TRUE and S 2 is FALSE
3.66 The drain of an n-channel MOSFET is shorted to the gate so that $V_{G S}=V_{D S}$. The threshold voltage $\left(V_{T}\right)$ of the MOSFET is 1 V . If the drain current $\left(I_{D}\right)$ is 1 mA for $V_{G S}=2 \mathrm{~V}$, then for $V_{G S}=3 \mathrm{~V}, I_{D}$ is
(A) 2 mA
(B) 3 mA
(C) 9 mA
(D) 4 mA
3.67 The longest wavelength that can be absorbed by silicon, which has
the bandgap of 1.12 eV , is $1.1 \mu \mathrm{~m}$. If the longest wavelength that can be absorbed by another material is $0.87 \mu \mathrm{~m}$, then bandgap of this material is
(A) $1.416 \mathrm{~A} / \mathrm{cm}^{2}$
(B) 0.886 eV
(C) 0.854 eV
(D) 0.706 eV

The neutral base width of a bipolar transistor, biased in the active region, is $0.5 \mu \mathrm{~m}$. The maximum electron concentration and the diffusion constant in the base are $10^{14} / \mathrm{cm}^{3}$ and $D_{n}=25 \mathrm{~cm}^{2} /$ sec respectively. Assuming negligible recombination in the base, the collector current density is (the electron charge is 1.6×10^{-19} Coulomb)
(A) $800 \mathrm{~A} / \mathrm{cm}^{2}$
(B) $8 \mathrm{~A} / \mathrm{cm}^{2}$
(C) $200 \mathrm{~A} / \mathrm{cm}^{2}$
(D) $2 \mathrm{~A} / \mathrm{cm}^{2}$

2003

ONE MARK
n-type silicon is obtained by doping silicon with
(A) Germanium
(B) Aluminium
(C) Boron
(D) Phosphorus

The Bandgap of silicon at 300 K is
(A) 1.36 eV
(B) 1.10 eV
(C) 0.80 eV
(D) 0.67 eV

The intrinsic carrier concentration of silicon sample at 300 K is $1.5 \times 10^{16} / \mathrm{m}^{3}$. If after doping, the number of majority carriers is $5 \times 10^{20} / \mathrm{m}^{3}$, the minority carrier density is
(A) $4.50 \times 10^{11} / \mathrm{m}^{3}$
(B) $3.333 \times 10^{4} / \mathrm{m}^{3}$
(C) $5.00 \times 10^{20} / \mathrm{m}^{3}$
(D) $3.00 \times 10^{-5} / \mathrm{m}^{3}$

Choose proper substitutes for X and Y to make the following statement correct Tunnel diode and Avalanche photo diode are operated in X bias ad Y bias respectively
(A) X : reverse, Y : reverse
(B) X : reverse, Y : forward
(C) X : forward, Y : reverse
(D) X : forward, Y : forward

For an n - channel enhancement type MOSFET, if the source is connected at a higher potential than that of the bulk (i.e. $V_{S B}>0$), the threshold voltage V_{T} of the MOSFET will
(A) remain unchanged
(B) decrease
(C) change polarity
(D) increase

2003
TWO MARKS
An n-type silicon bar 0.1 cm long and $100 \mu \mathrm{~m}^{2}$ i cross-sectional area has a majority carrier concentration of $5 \times 10^{20} / \mathrm{m}^{2}$ and the carrier mobility is $0.13 \mathrm{~m}^{2} / \mathrm{V}$-s at 300 K . If the charge of an electron is 1.5×10^{-19} coulomb, then the resistance of the bar is
(A) $10^{6} \mathrm{Ohm}$
(B) $10^{4} \mathrm{Ohm}$
(C) $10^{-1} \mathrm{Ohm}$
(D) $10^{-4} \mathrm{Ohm}$

The electron concentration in a sample of uniformly doped n-type silicon at 300 K varies linearly from $10^{17} / \mathrm{cm}^{3}$ at $x=0$ to $6 \times 10^{16} /$ cm^{3} at $x=2 \mu \mathrm{~m}$. Assume a situation that electrons are supplied to keep this concentration gradient constant with time. If electronic charge is 1.6×10^{-19} coulomb and the diffusion constant $D_{n}=35 \mathrm{~cm}$ $2 / \mathrm{s}$, the current density in the silicon, if no electric field is present, is
(A) zero
(B) $-112 \mathrm{~A} / \mathrm{cm}^{2}$
(C) $+1120 \mathrm{~A} / \mathrm{cm}^{2}$
(D) $-1120 \mathrm{~A} / \mathrm{cm}^{2}$

Group 1
P. LED
Q. Avalanche photo diode
R. Tunnel diode
S. LASER
(A) P-1, $\mathrm{Q}-2, \mathrm{R}-4, \mathrm{~S}-3$
(B) $\mathrm{P}-2, \mathrm{Q}-3, \mathrm{R}-1, \mathrm{~S}-4$
(C) $\mathrm{P}-3 \mathrm{Q}-4, \mathrm{R}-1, \mathrm{~S}-2$
(D) $\mathrm{P}-2, \mathrm{Q}-1, \mathrm{R}-4, \mathrm{~S}-3$
3.77 At 300 K , for a diode current of 1 mA , a certain germanium diode requires a forward bias of 0.1435 V , whereas a certain silicon diode requires a forward bias of 0.718 V . Under the conditions state above, the closest approximation of the ratio of reverse saturation current in germanium diode to that in silicon diode is
(A) 1
(B) 5
(C) 4×10^{3}
(D) 8×10^{3}
3.78 A particular green LED emits light of wavelength $5490 \mathrm{~A}^{\circ}$. The *
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
energy bandgap of the semiconductor material used there is (Plank's constant $=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$)
(A) 2.26 eV
(B) 1.98 eV
(C) 1.17 eV
(D) 0.74 eV
3.79 When the gate-to-source voltage ($V_{G s}$) of a MOSFET with threshold voltage of 400 mV , working in saturation is 900 mV , the drain current is observed to be 1 mA . Neglecting the channel width modulation effect and assuming that the MOSFET is operating at saturation, the drain current for an applied $V_{G S}$ of 1400 mV is
(A) 0.5 mA
(B) 2.0 mA
(C) 3.5 mA
(D) 4.0 mA
${ }_{3.80}$ If P is Passivation, Q is n-well implant, R is metallization and S is source/drain diffusion, then the order in which they are carried out in a standard n-well CMOS fabrication process, is
(A) $P-Q-R-S$
(B) $Q-S-R-P$
(C) $R-P-S-Q$
(D) $S-R-Q-P$
3.81 The action of JFET in its equivalent circuit can best be represented as a
(A) Current controlled current source
(B) Current controlled voltage source
(C) Voltage controlled voltage source
(D) Voltage controlled current source
3.82 In the figure, silicon diode is carrying a constant current of 1 mA . When the temperature of the diode is $20^{\circ} C, V_{D}$ is found to be 700 mV . If the temperature rises to $40^{\circ} C, V_{D}$ becomes approximately equal to

(A) 740 mV
(B) 660 mV
(C) 680 mV
(D) 700 mV
3.83 If the transistor in the figure is in saturation, then

(A) I_{C} is always equal to $\beta_{d c} I_{B}$
(B) I_{C} is always equal to $-\beta_{d e} I_{B}$
(C) I_{C} is greater than or equal to $\beta_{d c} I_{B}$
(D) I_{C} is less than or equal to $\beta_{d c} I_{B}$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

2001

ONE MARK

3.84 MOSFET can be used as a

(A) current controlled capacitor
(B) voltage controlled capacitor
(C) current controlled inductor
(D) voltage controlled inductor

The effective channel length of MOSFET in saturation decreases with increase in
(A) gate voltage
(B) drain voltage
(C) source voltage
(D) body voltage

1999

ONE MARK

The early effect in a bipolar junction transistor is caused by
(A) fast turn-on
(B) fast turn-off
(C) large collector-base reverse bias
(D) large emitter-base forward bias

1999

TWO MARKS
An n-channel JEFT has $I_{D S S}=2 \mathrm{~mA}$ and $V_{p}=-4 \mathrm{~V}$. Its transconductance g_{m} (in milliohm) for an applied gate-to-source voltage $V_{G S}$ of -2 V is
(A) 0.25
(B) 0.5
(C) 0.75
(D) 1.0
3.88 An $n p n$ transistor (with $C=0.3 \mathrm{pF}$) has a unity-gain cutoff frequency f_{T} of 400 MHz at a dc bias current $I_{c}=1 \mathrm{~mA}$. The value of its $C_{\mu}(\mathrm{in} \mathrm{pF})$ is approximately $\left(V_{T}=26 \mathrm{mV}\right)$
(A) 15
(B) 30
(C) 50
(D) 96
3.89 The electron and hole concentrations in a intrinsic semiconductor are n_{i} and p_{i} respectively. When doped with a p-type material, these change to n and p, respectively, Then
(A) $n+p=n_{i}+p_{i}$
(B) $n+n i=p+p_{i}$
(C) $n p_{i}=n_{i} p$
(D) $n p=n_{i} p_{i}$
${ }^{3.90}$ The f_{T} of a BJT is related to its g_{m}, C_{π} and C_{μ} as follows
(A) $f_{T}=\frac{C_{\pi}+C_{\mu}}{g_{m}}$
(B) $f_{T}=\frac{2 \pi\left(C_{\pi}+C_{\mu}\right)}{g_{m}}$
(C) $f_{T}=\frac{g_{m}}{C_{\pi}+C_{\mu}}$
(D) $f_{T}=\frac{g_{m}}{2 \pi\left(C_{\pi}+C_{\mu}\right)}$
3.91 The static characteristic of an adequately forward biased $p-n$ junction is a straight line, if the plot is of
(A) $\log I$ vs $\log V$
(B) $\log I$ vs V
(C) I vs $\log V$
(D) I vs V
3.92 A long specimen of p-type semiconductor material
(A) is positively charged
(B) is electrically neutral
(C) has an electric field directed along its length
(D) acts as a dipole
3.93 Two identical FETs, each characterized by the parameters g_{m} and r_{d} are connected in parallel. The composite FET is then characterized by the parameters
(A) $\frac{g_{m}}{2}$ and $2 r_{d}$
(B) $\frac{g_{m}}{2}$ and $\frac{r_{d}}{2}$
(C) $2 g_{m}$ and $\frac{r_{d}}{2}$
(D) $2 g_{m}$ and $2 r_{d}$
3.94 The units of $\frac{q}{k T}$ are
(A) V
(B) V^{-1}
(C) J
(D) J / K
3.95 For a MOS capacitor fabricated on a p-type semiconductor, strong inversion occurs when
(A) surface potential is equal to Fermi potential
(B) surface potential is zero
(C)
surface potential is negative and equal to Fermi potential in magnitude
(D) surface potential is positive and equal to twice the Fermi po-

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

tential

3.96 The intrinsic carrier density at 300 K is $1.5 \times 10^{10} / \mathrm{cm}^{3}$, in silicon. For n-type silicon doped to 2.25×10^{15} atoms $/ \mathrm{cm}^{3}$, the equilibrium electron and hole densities are
(A) $n=1.5 \times 10^{15} / \mathrm{cm}^{3}, p=1.5 \times 10^{10} / \mathrm{cm}^{3}$
(B) $n=1.5 \times 10^{10} / \mathrm{cm}^{3}, p=2.25 \times 10^{15} / \mathrm{cm}^{3}$
(C) $n=2.25 \times 10^{15} / \mathrm{cm}^{3}, p=1.0 \times 10^{15} / \mathrm{cm}^{3}$
(D) $n=1.5 \times 10^{10} / \mathrm{cm}^{3}, p=1.5 \times 10^{10} / \mathrm{cm}^{3}$
3.97 The p-type substrate in a conventional $p n$-junction isolated integrated circuit should be connected to
(A) nowhere, i.e. left floating
(B) a DC ground potential
(C) the most positive potential available in the circuit
(D) the most negative potential available in the circuit
3.98 If a transistor is operating with both of its junctions forward biased, but with the collector base forward bias greater than the emitter base forward bias, then it is operating in the
(A) forward active mode
(B) reverse saturation mode
(C) reverse active mode
(D) forward saturation mode
3.99 The common-emitter short-circuit current gain β of a transistor
(A) is a monotonically increasing function of the collector current I_{C}
(B) is a monotonically decreasing function of I_{C}
(C) increase with I_{C}, for low I_{C}, reaches a maximum and then decreases with further increase in I_{C}
(D) is not a function of I_{C}
${ }^{3.100}$ A n-channel silicon $\left(E_{g}=1.1 \mathrm{eV}\right)$ MOSFET was fabricated using $n+$ poly-silicon gate and the threshold voltage was found to be 1 V . Now, if the gate is changed to p^{+}poly-silicon, other things remaining the same, the new threshold voltage should be
(A) -0.1 V
(B) 0 V
(C) 1.0 V
(D) 2.1 V
3.101 In a bipolar transistor at room temperature, if the emitter current is doubled the voltage across its base-emitter junction
(A) doubles
(B) halves
(C) increases by about 20 mV
(D) decreases by about 20 mV
3.102 An npn transistor has a beta cut-off frequency f_{3} of 1 MHz and common emitter short circuit low-frequency current gain β_{o} of 200 it unity gain frequency f_{T} and the alpha cut-off frequency f_{α} respectively are
(A) $200 \mathrm{MHz}, 201 \mathrm{MHz}$
(B) $200 \mathrm{MHz}, 199 \mathrm{MHz}$
(C) $199 \mathrm{MHz}, 200 \mathrm{MHz}$
(D) $201 \mathrm{MHz}, 200 \mathrm{MHz}$
${ }^{3.103}$ A silicon n MOSFET has a threshold voltage of 1 V and oxide thickness of $A o$.
$\left[\varepsilon_{r}\left(\mathrm{SiO}_{2}\right)=3.9, \varepsilon_{0}=8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}, q=1.6 \times 10^{-19} \mathrm{C}\right]$
The region under the gate is ion implanted for threshold voltage tailoring. The dose and type of the implant (assumed to be a sheet charge at the interface) required to shift the threshold voltage to -1 V are
(A) $1.08 \times 10^{12} / \mathrm{cm}^{2}$, p-type
(B) $1.08 \times 10^{12} / \mathrm{cm}^{2}$, n-type
(C) $5.4 \times 10^{11} / \mathrm{cm}^{2}$, p-type
(D) $5.4 \times 10^{11} / \mathrm{cm}^{2}$, n-type

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
www.nodia.co.in

SOLUTIONS

3.1 Option (A) is correct.

The potential barrier of the pn junction is lowered when a forward bias voltage is applied, allowing electrons and holes to flow across the space charge region (Injection) when holes flow from the p region across the space charge region into the n region, they become excess minority carrier holes and are subject to diffuse, drift and recombination processes.
Option (D) is correct.
In IC technology, dry oxidation as compared to wet oxidation produces superior quality oxide with a lower growth rate
Option (D) is correct.
In a MOSFET operating in the saturation region, the channel length modulation effect causes a decrease in output resistance.

GATE Electronics \& Communication

 by RK KanodiaNow in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

Option (A) is correct.
Given,

$$
\begin{aligned}
V_{B} & =2 V \\
V_{T N} & =1 V
\end{aligned}
$$

So, we have
Drain voltage

$$
\begin{aligned}
V_{D} & =2 \text { volt } \\
V_{G} & =2 \text { volt } \\
V_{S} & =0(\text { Ground }) \\
V_{G S} & =2>V_{T N} \\
V_{D S} & =2>V_{G S}-V_{T N}
\end{aligned}
$$

Therefore,
So, the MOSFET is in the saturation region. Therefore, drain current is

$$
I_{D}=k_{N}\left(V_{G S}-V_{T N}\right)^{2}
$$

$$
\text { or, } \quad I_{D}=k_{N}\left(V_{B}-1\right)^{2}
$$

Differentiating both side with respect to I_{D}

$$
1=k_{N} 2\left(V_{B}-1\right) \frac{d V_{B}}{d I_{D}}
$$

Since,

$$
\left.V_{B Q}=2 \text { volt (at D.C. Voltage }\right)
$$

Hence, we obtain

$$
\begin{aligned}
\frac{d V_{B}}{d I_{D}} & =\frac{1}{2 k_{N}\left(V_{B}-1\right)} \\
& =\frac{1}{2 \times 40 \times 10^{-6} \times(2-1)} \\
& =12.5 \times 10^{3} \Omega \\
& =12.5 \mathrm{k} \Omega
\end{aligned}
$$

Option (D) is correct.
For the semiconductor,

$$
n_{0} p_{0}=n_{i}^{2}
$$

$$
p_{0}=\frac{n_{i}^{2}}{n_{0}}=\frac{10^{20}}{10^{19}}=10 \text { per } \mathrm{cm}^{3}
$$

Volume of given device,

$$
V=\text { Area } \times \text { depth }
$$

$=1 \mu \mathrm{~m}^{2} \times 1 \mu \mathrm{~m}$

$$
=10^{-8} \mathrm{~cm}^{2} \times 10^{-4} \mathrm{~cm}
$$

$=10^{-12} \mathrm{~cm}^{3}$
So total no. of holes is,

$$
p=p_{0} \times V=10 \times 10^{-12}=10^{-11}
$$

Which is approximately equal to zero.
${ }_{3.6} \quad$ Option (A) is correct.
Given the circuit as below :

Since all the parameters of PMOS and NMOS are equal.
So,

$$
\begin{aligned}
\mu_{n} & =\mu_{p} \\
C_{O X}\left(\frac{W}{L}\right)_{M_{1}} & =C_{O X}\left(\frac{W}{L}\right)_{M_{2}}=C_{O X}\left(\frac{W}{L}\right)
\end{aligned}
$$

Given that M_{1} is in linear region. So, we assume that M_{2} is either in cutoff or saturation.
Case 1: M_{2} is in cut off
So,

$$
I_{2}=I_{1}=0
$$

Where I_{1} is drain current in M_{1} and I_{2} is drain current in M_{2}.
Since, $\quad I_{1}=\frac{\mu_{p} C_{O X}}{2}\left(\frac{W}{L}\right)\left[2 V_{S D}\left(V_{S G}-V_{T p}\right)-V_{S D}^{2}\right]$
$\Rightarrow \quad 0=\frac{\mu_{p} C_{O X}}{2}\left(\frac{W}{L}\right)\left[2 V_{S D}\left(V_{S G}-V_{T_{p}}\right)-V_{S D}^{2}\right]$
Solving it we get,

$$
\begin{array}{lr}
& 2\left(V_{S G}-V_{T p}\right)=V_{S D} \\
\Rightarrow & 2\left(5-V_{i n}-1\right)=5-V_{D} \\
\Rightarrow & V_{i n}=\frac{V_{D}+3}{2} \\
\text { For } & I_{1}=0, V_{D}=5 \mathrm{~V} \\
\text { So, } & V_{i n}=\frac{5+3}{2}=4 \mathrm{~V}
\end{array}
$$

So for the NMOS

$$
V_{G S}=V_{i n}-0=4-0=4 \mathrm{~V} \text { and } V_{G S}>V_{T n}
$$

So it can't be in cutoff region.
Case 2: M_{2} must be in saturation region.
So,

$$
I_{1}=I_{2}
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

$$
\begin{array}{lc}
& \frac{\mu_{p} C_{O X}}{2} \frac{W}{L}\left[2\left(V_{S G}-V_{T_{p}}\right) V_{S D}-V_{S D}^{2}\right]=\frac{\mu_{n} C_{O X}}{2} \frac{W}{L}\left(V_{G S}-V_{T n}\right)^{2} \\
\Rightarrow & 2\left(V_{S G}-V_{T_{p}}\right) V_{S D}-V_{S D}^{2}=\left(V_{G S}-V_{T n}\right)^{2} \\
\Rightarrow & 2\left(5-V_{i n}-1\right)\left(5-V_{D}\right)-\left(5-V_{D}\right)^{2}=\left(V_{i n}-0-1\right)^{2} \\
\Rightarrow & 2\left(4-V_{i n}\right)\left(5-V_{D}\right)-\left(5-V_{D}\right)^{2}=\left(V_{i n}-1\right)^{2}
\end{array}
$$

Substituting $V_{D}=V_{D S}=V_{G S}-V_{T_{n}}$ and for $N-\operatorname{MOS} \Rightarrow V_{D}=V_{i n}-1$

$$
\begin{array}{lc}
\Rightarrow & 2\left(4-V_{i n}\right)\left(6-V_{i n}\right)-\left(6-V_{i n}\right)^{2}=\left(V_{i n}-1\right)^{2} \\
\Rightarrow & 48-36-8 V_{i n}=-2 V_{i n}+1 \\
\Rightarrow & 6 V_{i n}=11 \\
\Rightarrow & V_{i n}=\frac{11}{6}=1.833 \mathrm{~V}
\end{array}
$$

So for M_{2} to be in saturation $V_{i n}<1.833 \mathrm{~V}$ or $V_{i n}<1.875 \mathrm{~V}$
Option (B) is correct.
Gate source overlap capacitance.

$$
\begin{aligned}
& C_{o}=\frac{\delta W \varepsilon_{o x} \varepsilon_{0}}{t_{o x}}\left(\text { medium } \mathrm{Sio}_{2}\right) \\
&=\frac{20 \times 10^{-9} \times 1 \times 10^{-6} \times 3.9 \times 8.9 \times 10^{-12}}{1 \times 10^{-9}} \\
&=0.69 \times 10^{-15} \mathrm{~F}
\end{aligned}
$$

3.8 Option (B) is correct.

Source body junction capacitance.
3.9 Option (C) is correct.
Drift current

$$
I_{d}=q n \mu_{n} E
$$

It depends upon Electric field E and carrier concentration n
$3.10 \quad$ Option (B) is correct.
Zener diode operates in reverse breakdown region.

3.11 Option (D) is correct.

For every $1^{\circ} \mathrm{C}$ increase in temperature, forward bias voltage across diode decreases by 2.5 mV . Thus for $10^{\circ} \mathrm{C}$ increase, there us 25 mV decreases.

Option (B) is correct.
Full channel resistance is

$$
\begin{equation*}
r \frac{\rho \times L}{W \times a}=600 \Omega \tag{1}
\end{equation*}
$$

If $V_{G S}$ is applied, Channel resistance is

$$
\begin{equation*}
r^{\prime}=\frac{\rho \times L}{W \times b} \tag{GS}
\end{equation*}
$$

Pinch off voltage,

$$
\begin{equation*}
\left|V_{p}\right|=\frac{q N_{D}}{2 \varepsilon} a^{2} \tag{2}
\end{equation*}
$$

If depletion on each side is $d=1 \mu \mathrm{~m}$ at $V_{G S}=0$.
or

$$
\begin{aligned}
V_{j} & =\frac{q N_{D}}{2 \varepsilon} d^{2} \\
1 & =\frac{q N_{D}}{2 \varepsilon}\left(1 \times 10^{-6}\right)^{2} \Rightarrow \frac{q N_{D}}{2 \varepsilon}=10^{12}
\end{aligned}
$$

Now from equation (2), we have

$$
\begin{array}{ll}
\quad\left|V_{p}\right| & =10^{12} \times\left(5 \times 10^{-6}\right)^{2} \\
\text { or } \quad V_{p} & =-25 \mathrm{~V}
\end{array}
$$

$$
\text { At } V_{G S}=-3 \mathrm{~V}
$$

$$
b=5\left(1-\sqrt{\frac{-3}{-25}}\right) \mu \mathrm{m}=3.26 \mu \mathrm{~m}
$$

$$
\begin{aligned}
& C_{s}=\frac{A \varepsilon_{r} \varepsilon_{0}}{d} \\
& \text { A } \\
& =(0.2 \mu \mathrm{~m}+0.2 \mu \mathrm{~m}+0.2 \mu \mathrm{~m}) \times 1 \mu \mathrm{~m}+2(0.2 \mu \mathrm{~m} \times 0.2 \mu \mathrm{~m}) \\
& =0.68 \mu \mathrm{~m}^{2} \\
& d=10 \mathrm{~nm} \text { (depletion width of all junction) } \\
& C_{s}=\frac{0.68 \times 10^{-12} \times 11.7 \times 8.9 \times 10^{-12}}{10 \times 10^{-9}} \\
& =7 \times 10^{-15} \mathrm{~F}
\end{aligned}
$$

$$
r^{\prime}=\frac{\rho L}{W \times b}=\frac{\rho L}{W a} \times \frac{a}{b}=600 \times \frac{5}{3.26}=917 \Omega
$$

3.13 Option (C) is correct.

At $V_{G S}=0 \mathrm{~V}$,

$$
\begin{array}{rlrl}
b & =4 \mu \mathrm{~m} & \quad \text { since } 2 b=8 \mu \mathrm{~m} \\
r^{\prime} & =\frac{\rho L}{W a} \times \frac{a}{b}=600 \times \frac{5}{4}=750 \Omega
\end{array}
$$

Thus
3.14 Option (A) is correct.

At room temperature mobility of electrons for Si sample is given $\mu_{n}=1350 \mathrm{~cm}^{2} /$ Vs. For an n-channel MOSFET to create an inversion layer of electrons, a large positive gate voltage is to be applied. Therefore, induced electric field increases and mobility decreases.
So, Mobility $\mu_{n}<1350 \mathrm{~cm}^{2} /$ Vs for n-channel MOSFET
3.15 Option (B) is correct.

Dry oxidation is used to achieve high quality oxide growth.
${ }^{3.16} \quad$ Option (B) is correct.
Emitter injection efficiency is given as

$$
\gamma=\frac{1}{N_{B}}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

To achieve $\quad \gamma=1, N_{E} \gg N_{B}$
3.17 Option (C) is correct.

Reverse bias breakdown or Zener effect occurs in highly doped PN junction through tunneling mechanism. In a highly doped PN junction, the conduction and valence bands on opposite sides of the junction are sufficiently close during reverse bias that electron may tunnel directly from the valence band on the p-side into the conduction band on n-side.
Breakdown voltage $V_{B} \propto \frac{1}{N_{A} N_{D}}$
So, breakdown voltage decreases as concentration increases
Depletion capacitance

Thus

$$
C=\left\{\frac{e \varepsilon_{s} N_{A} N_{D}}{2\left(V_{b i}+V_{R}\right)\left(N_{A}+N_{D}\right)}\right\}^{1 / 2}
$$

Depletion capacitance increases as concentration increases
${ }^{3.18} \quad$ Option (C) is correct.
Sample is in thermal equilibrium so, electric field

$$
E=\frac{1}{1 \mu \mathrm{~m}}=10 \mathrm{kV} / \mathrm{cm}
$$

3.19 Option (A) is correct.

Electron drift current density

$$
J_{d}=N_{D} \mu_{n} e E=10^{16} \times 1350 \times 1.6 \times 10^{-19} \times 10 \times 10^{13}
$$

$=2.16 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$
3.20 Option (C) is correct.

Only dopant atoms can have concentration of $4 \times 10^{19} \mathrm{~cm}^{-3}$ in $n-$ type silicon at room temperature.
3.21 Option (A) is correct.

Unit of mobility μ_{n} is $=\frac{\mathrm{cm}^{2}}{V \cdot \mathrm{sec}}$

Unit of diffusion current D_{n} is $=\frac{\mathrm{cm}^{2}}{\mathrm{sec}}$
Thus unit of $\frac{\mu_{n}}{D_{n}}$ is $\quad=\frac{\mathrm{cm}^{2}}{V \cdot \mathrm{sec}} / \frac{\mathrm{cm}^{2}}{\mathrm{sec}}=\frac{1}{V}=V^{-1}$
Option (D) is correct.
Both S1 and S2 are true and S2 is a reason for S1.
Option (B) is correct.
We know that

$$
\begin{aligned}
N_{A} W_{P} & =N_{D} W_{N} \\
N_{A} & =\frac{N_{D} W_{N}}{W_{P}}=\frac{1 \times 10^{17} \times 0.1 \times 10^{-6}}{1 \times 10^{-6}}=1 \times 10^{16}
\end{aligned}
$$

The built-in potential is

$$
\begin{aligned}
V_{b i} & =V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right) \\
& =26 \times 10^{-3} \ln \left(\frac{1 \times 10^{17} \times 1 \times 10^{16}}{\left(1.4 \times 10^{10}\right)^{2}}\right)=0.760
\end{aligned}
$$

Option (B) is correct.
The peak electric field in device is directed from p to n and is

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{array}{rlr}
E & =-\frac{e N_{D} x_{n}}{\varepsilon_{s}} & \text { from } p \text { to } n \\
& =\frac{e N_{D} x_{n}}{\varepsilon_{s}} & \text { from } n \text { to } p \\
& =\frac{1.6 \times 10^{-19} \times 1 \times 10^{17} \times 1 \times 10^{-5}}{8.85 \times 10^{-14} \times 12}=0.15
\end{array}
$$

MV/cm
${ }^{3.25}$ Option (D) is correct.
Channel length modulation is not associated with a $p-n$ junction. It is being associated with MOSFET in which effective channel length decreases, producing the phenomenon called channel length modulation.

Option (A) is correct
Trivalent impurities are used for making p - type semiconductors. So, Silicon wafer heavily doped with boron is a p^{+}substrate.
3.27 Option (D) is correct.

Oxidation rate is zero because the existing oxide prevent the further oxidation.
$3.28 \quad$ Option (B) is correct.

$$
g_{m}=\frac{\partial I_{D}}{\partial V_{G S}}=\frac{\partial}{\partial V_{G S}} K\left(V_{G S}-V_{T}\right)^{2}=2 K\left(V_{G S}-V_{T}\right)
$$

Option (C) is correct.

$$
\begin{array}{ll}
\text { As } & V_{D}=\text { constant } \\
\text { Thus } & g_{m} \propto\left(V_{G S}-V_{T}\right)
\end{array}
$$

Which is straight line.
Option (C) is correct.

$$
\begin{aligned}
E_{2}-E_{1} & =k T \ln \frac{N_{A}}{n_{i}} \\
N_{A} & =4 \times 10^{17} \\
n_{i} & =1.5 \times 10^{10}
\end{aligned}
$$

$$
E_{2}-E_{1}=25 \times 10^{-3} e \ln \frac{4 \times 10^{17}}{1.5 \times 10^{10}}=0.427 \mathrm{eV}
$$

Hence fermi level goes down by 0.427 eV as silicon is doped with boron.
3.31 Option (C) is correct.

Pinch off voltage

$$
\begin{aligned}
V_{P} & =\frac{e W^{2} N_{D}}{\varepsilon s} \\
V_{P} & =V_{P 1} \\
\frac{V_{P 1}}{V_{P 2}} & =\frac{W_{1}^{2}}{W_{2}^{2}}=\frac{W^{2}}{(2 W)^{2}} \\
4 V_{P 1} & =V_{P 2}
\end{aligned}
$$

Let
Now

Initial transconductance

$$
g_{m}=K_{n}\left[1-\sqrt{\frac{V_{b i}-V_{G S}}{V_{p}}}\right]
$$

For first condition $\quad g_{m 1}$
$=K_{n}\left[1-\sqrt{\frac{0-(-2)}{V_{P 1}}}\right]=K_{n}\left[1-\sqrt{\frac{2}{V_{P 1}}}\right]$
For second condition

Dividing

$$
g_{m 2}=K_{n}\left[1-\sqrt{\frac{0-(-2)}{V_{P 2}}}\right]=K_{2}\left[1-\sqrt{\frac{2}{4 V_{P 1}}}\right]
$$

Hence

$$
\frac{g_{m 1}}{g_{m 2}}=\left(\frac{1-\sqrt{2 / V_{P 1}}}{1-\sqrt{1 /\left(2 V_{P 1}\right)}}\right)
$$

Option (A) is correct.
Option (D) is correct.
As per mass action law

$$
n p=n_{i}^{2}
$$

If acceptor impurities are introduces

$$
\begin{array}{rlrl}
& p & =N_{A} \\
\text { Thus } & \text { or } & n N_{A} & =n_{i}^{2} \\
& n & =\frac{n_{i}^{2}}{N_{A}}
\end{array}
$$

3.34 Option (C) is correct.

The electric field has the maximum value at the junction of $p^{+} n$.
3.35 Option (B) is correct.

Zener diode and Avalanche diode works in the reverse bias and laser diode works in forward bias.
In solar cell diode works in forward bias but photo current is in reverse direction. Thus

Zener diode : Reverse Bias

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

> Solar Cell : Forward Bias
> Laser Diode : Forward Bias

Avalanche Photo diode : Reverse Bias
${ }^{3.36} \quad$ Option (C) is correct.
In BJT as the B-C reverse bias voltage increases, the $\mathrm{B}-\mathrm{C}$ space charge region width increases which x_{B} (i.e. neutral base width) $>A$ change in neutral base width will change the collector current. A reduction in base width will causes the gradient in minority carrier concentration to increase, which in turn causes an increased in the diffusion current. This effect si known as base modulation as early effect.

In JFET the gate to source voltage that must be applied to achieve pinch off voltage is described as pinch off voltage and is also called as turn voltage or threshold voltage.
In LASER population inversion occurs on the condition when concentration of electrons in one energy state is greater than that in lower energy state, i.e. a non equilibrium condition.
In MOS capacitor, flat band voltage is the gate voltage that must be applied to create flat ban condition in which there is no space charge region in semiconductor under oxide.
Therefore

> BJT : Early effect

MOS capacitor : Flat-band voltage
LASER diode : Population inversion
JFET : Pinch-off voltage
Option (A) is correct.

$$
\begin{aligned}
W & =K \sqrt{V+V_{R}} \\
2 \mu & =K \sqrt{0.8+1.2}
\end{aligned}
$$

From above two equation we get

$$
\begin{array}{ll}
& \frac{W}{2 \mu}=\frac{\sqrt{0.8+7.2}}{\sqrt{0.8+1.2}}=\frac{\sqrt{8}}{\sqrt{2}}=2 \\
\text { or } & W_{2}=4 \mu \mathrm{~m}
\end{array}
$$

Option (B) is correct.

$$
\alpha=\frac{\beta}{\beta+1}=\frac{50}{50+1}=\frac{50}{51}
$$

Current Gain $=$ Base Transport Factor \times Emitter injection Efficiency
or $\quad \beta_{1}=\frac{\alpha}{\beta_{2}}=\frac{50}{51 \times 0.995}=0.985$
Option (A) is correct.
At low voltage when there is no depletion region and capacitance is decide by SiO_{2} thickness only,
or

$$
\begin{aligned}
C & =\frac{\varepsilon_{0} \varepsilon_{r 1} A}{D} \\
D & =\frac{\varepsilon_{0} \varepsilon_{r 1} A}{C}=\frac{3.5 \times 10^{-13} \times 10^{-4}}{7 \times 10^{-12}}=50 \mathrm{~nm}
\end{aligned}
$$

Option (B) is correct.
The construction of given capacitor is shown in fig below

When applied voltage is 0 volts, there will be no depletion region and we get

$$
C_{1}=7 \mathrm{pF}
$$

When applied voltage is V, a depletion region will be formed as shown in fig an total capacitance is 1 pF . Thus

$$
\begin{array}{ll}
& C_{T}=1 \mathrm{pF} \\
\text { or } & C_{T}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=1 \mathrm{pF} \\
\text { or } & \frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
\end{array}
$$

Substituting values of C_{T} and C_{1} we get

$=0.857 \mu \mathrm{~m}$
3.41 Option (C) is correct.

Depletion region will not be formed if the MOS capacitor has n type substrate but from C-V characteristics, C reduces if V is increased. Thus depletion region must be formed. Hence S_{1} is false If positive charges is introduced in the oxide layer, then to equalize the effect the applied voltage V must be reduced. Thus the $C-V$ plot moves to the left. Hence S_{2} is true.
3.42 Option (C) is correct.

For the case of negative slope it is the negative resistance region
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW. nodia.co.in

3.43 Option (A) is correct.

For n-type p is minority carrier concentration

$$
\begin{array}{rlr}
n p & =n_{i}^{2} \\
n p & =\text { Constant } \quad \text { Since } n_{i} \text { is constant } \\
p & \propto \frac{1}{n} &
\end{array}
$$

Thus p is inversely proportional to n.
3.44 Option (A) is correct.

Diffusion current, since the drift current is negligible for minority carrier.
$3.45 \quad$ Option (B) is correct.
In BJT as the B-C reverse bias voltage increases, the B-C space charge region width increases which x_{B} (i.e. neutral base width) $>A$ change in neutral base width will change the collector current. A reduction in base width will causes the gradient in minority carrier concentration to increases, which in turn causes an increases in the diffusion current. This effect si known as base modulation as early effect.
3.46 Option (A) is correct.

For $t<0$ diode forward biased and $V_{R}=5$. At $t=0$ diode abruptly changes to reverse biased and current across resistor must be 0 . But in storage time $0<t<t_{s}$ diode retain its resistance of forward
biased. Thus for $0<t<t_{s}$ it will be ON and

$$
V_{R}=-5 \mathrm{~V}
$$

Option (B) is correct.
According to Hall effect the direction of electric field is same as that of direction of force exerted.

$$
\begin{array}{ll}
& E=-v \times B \\
\text { or } & E=B \times v
\end{array}
$$

Option (B) is correct.
The varacter diode is used in tuned circuit as it can provide frequently stability.
PIN diode is used as a current controlled attenuator.
Zener diode is used in regulated voltage supply or fixed voltage reference.
Schottkey diode has metal-semiconductor function so it has fast switching action so it is used as high frequency switch

Varactor diode : Tuned circuits
PIN Diode : Current controlled attenuator

Zener diode : Voltage reference

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Schottky diode : High frequency switch
Option (D) is correct.
We have $\quad \frac{\mu_{P}}{\mu_{n}}=0.4$
Conductance of n type semiconductor

$$
\sigma_{n}=n q \mu_{n}
$$

Conductance of intrinsic semiconductor

$$
\sigma_{i}=n_{i} q\left(\mu_{n}+\mu_{p}\right)
$$

Ratio is $\quad \frac{\sigma_{n}}{\sigma_{i}}=\frac{n \mu_{n}}{n_{i}\left(\mu_{n}+\mu_{p}\right)}=\frac{n}{n_{i}\left(1+\frac{\mu_{p}}{\mu_{n}}\right)}$
$=\frac{4.2 \times 10^{8}}{1.5 \times 10^{4}(1+0.4)}=2 \times 10^{4}$
3.50 Option (C) is correct.

For silicon at 0 K ,

$$
E_{g 0}=1.21 \mathrm{eV}
$$

At any temperature

$$
E_{g T}=E_{g 0}-3.6 \times 10^{-4} T
$$

At $T=300 \mathrm{~K}$,

$$
E_{g 300}=1.21-3.6 \times 10^{-4} \times 300=1.1 \mathrm{eV}
$$

This is standard value, that must be remembered.
Option (B) is correct.
The reverse saturation current doubles for every $10^{\circ} \mathrm{C}$ rise in temperature as follows :

$$
I_{0}(T)=I_{01} \times 2^{\left(T-T_{1}\right) / 10}
$$

Thus at $40^{\circ} \mathrm{C}, I_{0}=40 \mathrm{pA}$
Option (A) is correct.
Silicon is abundant on the surface of earth in the from of SiO_{2}. Option (B) is correct.

$$
\sigma_{n}=n q \mu_{n}
$$

$$
\begin{aligned}
\sigma_{p} & =p q \mu_{p} \\
\frac{\sigma_{p}}{\sigma_{n}} & =\frac{\mu_{p}}{\mu_{n}}=\frac{1}{3}
\end{aligned}
$$

$$
(n=p)
$$

3.54 Option (B) is correct.

$$
\begin{aligned}
C & =\frac{\varepsilon_{0} \varepsilon_{r} A}{d} \\
\frac{C}{A} & =\frac{\varepsilon_{0} \varepsilon_{r}}{d}=\frac{8.85 \times 10^{-12} \times 11.7}{10 \times 10^{-6}}=10.35 \mu \mathrm{~F}
\end{aligned}
$$

${ }^{3.55}$ Option (B) is correct.
In accumulation mode for NMOS having p-substrate, when positive voltage is applied at the gate, this will induce negative charge near p - type surface beneath the gate. When $V_{G S}$ is made sufficiently large, an inversion of electrons is formed and this in effect forms and n - channel.
${ }^{3.56}$ Option (C) is correct.
From the graph it can be easily seen that $V_{t h}=1 \mathrm{~V}$

Now	$V_{G S}=3-1=2 \mathrm{~V}$
and	$V_{D S}=5-1=4 \mathrm{~V}$
Since	$V_{D S}>V_{G S} \longrightarrow V_{D S}>V_{G S}-V_{t h}$

Thus MOSFET is in saturation region.
3.57 Option (C) is correct.

Trivalent impurities are used for making p type semiconductor. Boron is trivalent.
3.58 Option (A) is correct.

Here emitter base junction is forward biased and base collector junction is reversed biased. Thus transistor is operating in normal active region.
3.59 Option (D) is correct.

We have $\quad \beta=\frac{\alpha}{1-\alpha}$
Thus $\quad \begin{array}{ll}\alpha \uparrow \rightarrow \beta \uparrow \\ & \alpha \downarrow \rightarrow \beta \downarrow\end{array}$
If the base width increases, recombination of carrier in base region increases and α decreases \& hence β decreases. If doping in base region increases, recombination of carrier in base increases and α decreases thereby decreasing β. Thus S_{1} is true and S_{2} is false.
3.60 Option (C) is correct.
${ }^{3.61}$ Option (A) is correct.
Applying KVL we get

$$
V_{C C}-I_{C} R_{C}-V_{C E}=0
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

or

$$
\begin{aligned}
& I_{C}=\frac{V_{C C}-V_{C E}}{R_{C}}=\frac{3-0.2}{1 k}=2.8 \mathrm{~mA} \\
& I_{B}=\frac{I_{C}}{\beta}=\frac{2.8 \mathrm{~m}}{50}=56 \mu \mathrm{~A}
\end{aligned}
$$

Now
3.62 Option (B) is correct.

We know that
or

$$
\begin{aligned}
W_{p} N_{A} & =W_{n} N_{D} \\
W_{p} & =\frac{W_{n} \times N_{D}}{N_{A}}=\frac{3 \mu \times 10^{16}}{9 \times 10^{16}}=0.3 \mu \mathrm{~m}
\end{aligned}
$$

3.63 Option (B) is correct.

Conductivity

$$
\sigma=n q u_{n}
$$

or resistivity

$$
\rho=\frac{1}{\sigma}=\frac{1}{n q \mu_{n}}
$$

$$
\begin{array}{ll}
\text { Thus } & n=\frac{1}{q \rho \mu_{n}} \\
=\frac{1}{1.6 \times 10^{-19} \times 0.5 \times 1250}=10^{16} / \mathrm{cm}^{3}
\end{array}
$$

For n type semiconductor $n=N_{D}$
Option (D) is correct.
We know that

$$
C_{j}=\left[\frac{e \varepsilon_{S} N_{A} N_{D}}{2\left(V_{b i}+V_{R}\right)\left(N_{A}+N_{D}\right)}\right]^{\frac{1}{2}}
$$

Thus

$$
C_{j} \propto \sqrt{\frac{1}{\left(V_{b i}+V_{R}\right)}}
$$

Now

$$
\frac{C_{j 2}}{C_{j 1}}=\sqrt{\frac{\left(V_{b i}+V_{R}\right)_{1}}{\left(V_{b i}+V_{R}\right)_{2}}}=\sqrt{\frac{1}{4}}=\frac{1}{2}
$$

or

$$
C_{j 2}=\frac{C_{j 1}}{2}=\frac{1}{2}=0.5 \mathrm{pF}
$$

Option (C) is correct.
Increase in gate oxide thickness makes difficult to induce charges in channel. Thus V_{T} increases if we increases gate oxide thickness. Hence S_{1} is false
Increase in substrate doping concentration require more gate voltage because initially induce charges will get combine in substrate. Thus V_{T} increases if we increase substrate doping concentration. Hence S_{2} is false.

Option (D) is correct.
We know that

$$
I_{D}=K\left(V_{G S}-V_{T}\right)^{2}
$$

Thus $\quad \frac{I_{D S}}{I_{D I}}=\frac{\left(V_{G S 2}-V_{T}\right)^{2}}{\left(V_{G S 1}-V_{T}\right)^{2}}$
Substituting the values we have
or $\quad I_{D 2}=4 I_{D I}=4 \mathrm{~mA}$
Option (A) is correct

$$
E_{g} \propto \frac{1}{\lambda}
$$

Thus

$$
\frac{E_{g 2}}{E_{g 1}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{1.1}{0.87}
$$

or $\quad E_{g 2}=\frac{1.1}{0.87} \times 1.12=1.416 \mathrm{eV}$
Option (B) is correct.
Concentration gradient

$$
\begin{aligned}
\frac{d n}{d x} & =\frac{10^{14}}{0.5 \times 10^{-4}}=2 \times 10^{18} \\
q & =1.6 \times 10^{-19} \mathrm{C} \\
D_{n} & =25 \\
\frac{d n}{d x} & =\frac{10^{14}}{0.5 \times 10^{-4}} \\
J_{C} & =q D_{n} \frac{d n}{d x}=1.6 \times 10^{-19} \times 25 \times 2 \times 10^{18}=8 \mathrm{~A} / \mathrm{cm}^{2}
\end{aligned}
$$

Option (D) is correct.
Pentavalent make n-type semiconductor and phosphorous is pentavalent.

Option (C) is correct.
For silicon at $0 \mathrm{~K} E_{q 0}=1.21 \mathrm{eV}$
At any temperature

$$
E_{g T}=E_{g 0}-3.6 \times 10^{-4} T
$$

At $T=300 \mathrm{~K}$,

$$
E_{g 300}=1.21-3.6 \times 10^{-4} \times 300=1.1 \mathrm{eV}
$$

This is standard value, that must be remembered.
3.71 Option (A) is correct.

By Mass action law

$$
\begin{aligned}
n p & =n_{i}^{2} \\
p & =\frac{n_{i}^{2}}{n}=\frac{1.5 \times 10^{16} \times 1.5 \times 10^{16}}{5 \times 10^{20}}=4.5 \times 10^{11}
\end{aligned}
$$

3.72 Option (C) is correct.

Tunnel diode shows the negative characteristics in forward bias. It is used in forward bias.
Avalanche photo diode is used in reverse bias.
3.73 Option (D) is correct.
3.74 Option (A) is correct.

We that

$$
R=\frac{\rho l}{A}, \rho=\frac{1}{\sigma} \text { and } \alpha=n q u_{n}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
From above relation we have

$$
\begin{aligned}
& \quad R=\frac{1}{n q \mu_{n} A}=\frac{0.1 \times 10^{-2}}{5 \times 10^{6} \Omega} \times 1.6 \times 10^{-19} \times 0.13 \times 100 \times 10^{-12}
\end{aligned}
$$

3.75 Option (D) is correct.

$$
\begin{aligned}
\frac{d n}{d x} & =\frac{6 \times 10^{16}-10^{17}}{2 \times 10^{-4}-0}=-2 \times 10^{20} \\
J_{n} & =n q \mu_{e} E+D_{n} q \frac{d n}{d x}
\end{aligned}
$$

Now
Since no electric field is present, $E=0$ and we get

So,

$$
\begin{aligned}
J_{n} & =q D_{n} \frac{d n}{d x} \\
& =1.6 \times 10^{-19} \times 35 \times\left(-2 \times 10^{20}\right)=-1120 \mathrm{~A} / \mathrm{cm}^{2}
\end{aligned}
$$

3.76 Option (C) is correct.

LED works on the principal of spontaneous emission.
In the avalanche photo diode due to the avalanche effect there is large current gain.
Tunnel diode has very large doping.
LASER diode are used for coherent radiation.
3.77 Option (C) is correct.

We know that

$$
I=I_{o_{s i}}\left(e^{\eta \frac{V_{D 1}}{V_{T}}}-1\right)
$$

where $\eta=1$ for germanium and $\eta=2$ silicon. As per question

$$
I_{o_{n}}\left(e^{\frac{V_{D i s}}{e e^{T T}}}-1\right)=I_{o_{G e}}\left(e^{\frac{V_{D C e}}{\eta V_{T}}}-1\right)
$$

or

$$
\frac{I_{o_{s i}}}{I_{o_{s i}}}=\frac{e^{\frac{V_{D i s}}{\eta V_{T}}}-1}{e^{\frac{V_{D C}}{\eta V_{T}}}-1}=\frac{e^{\frac{0.718}{2 \times 26 \times 10^{-3}}}-1}{e^{\frac{0.1435}{26 \times 10^{-3}}}-1}=4 \times 10^{3}
$$

3.78 Option (A) is correct.

$$
E_{g}=\frac{h c}{\lambda}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{54900 \times 10^{-10}}=3.62 \mathrm{~J}
$$

In eV

$$
E_{g}(e V)=\frac{E_{g}(J)}{e}=\frac{3.62 \times 10^{-19}}{1.6 \times 10^{-19}}=2.26 \mathrm{eV}
$$

Alternatively

$$
E_{g}=\frac{1.24}{\lambda(\mu \mathrm{~m})} \mathrm{eV}=\frac{1.24}{5490 \times 10^{-4} \mu \mathrm{~m}}=2.26 \mathrm{eV}
$$

Option (D) is correct.
We know that

$$
I_{D}=K\left(V_{G S}-V_{T}\right)^{2}
$$

Thus $\quad \frac{I_{D 2}}{I_{D 1}}=\frac{\left(V_{G S 2}-V_{T}\right)^{2}}{\left(V_{G S 1}-V_{T}\right)^{2}}$
Substituting the values we have
or

$$
\frac{I_{D 2}}{I_{D 1}}=\frac{(1.4-0.4)^{2}}{(0.9-0.4)^{2}}=4
$$

Option (B) is correct.
In n-well CMOS fabrication following are the steps :
(A) n - well implant
(B) Source drain diffusion
(C) Metalization
(D) Passivation

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
${ }_{3.81}$ Option (D) is correct.
For a JFET in active region we have

$$
I_{D S}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}
$$

From above equation it is clear that the action of a JFET is voltage controlled current source.
Option (B) is correct.
At constant current the rate of change of voltage with respect to temperature is

$$
\frac{d V}{d T}=-2.5 \mathrm{mV} \text { per degree centigrade }
$$

Here $\quad \triangle T=T_{2}-T_{1}=40-20=20^{\circ} C$
Thus $\triangle V_{D}=-2.5 \times 20=50 \mathrm{mV}$
Therefore, $\quad V_{D}=700-50=650 \mathrm{mV}$
Option (D) is correct.
Condition for saturation is $I_{C}<\beta I_{B}$
Option (B) is correct.
The metal area of the gate in conjunction with the insulating dielectric oxide layer and semiconductor channel, form a parallel plate capacitor. It is voltage controlled capacitor because in active region the current voltage relationship is given by

$$
I_{D S}=K\left(V_{G S}-V_{T}\right)^{2}
$$

Option (D) is correct.
In MOSFET the body (substrate) is connected to power supply in such a way to maintain the body (substrate) to channel junction in cutoff condition. The resulting reverse bias voltage between source and body will have an effect on device function. The reverse bias will widen the depletion region resulting the reduction in channel length.
3.86 Option (C) is correct.

At a given value of $v_{B E}$, increasing the reverse-bias voltage on the collector-base junction and thus increases the width of the depletion region of this junction. This in turn results in a decrease in the effective base width W. Since I_{S} is inversely proportional to W, I_{S} increases and that i_{C} increases proportionally. This is early effect.
3.87 Option (B) is correct.

For an n-channel JEFT trans-conductance is

$$
\begin{aligned}
g_{m} & =\frac{-2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S}}{V_{P}}\right)=\frac{-2 \times 2 \times 10^{-3}}{-4}\left[1-\frac{(-2)}{(-4)}\right] \\
& =10^{-3} \times \frac{1}{2}=0.5 \mathrm{mho}
\end{aligned}
$$

3.88 Option (A) is correct.

We have

$$
g_{m}=\frac{I_{C}}{V_{T}}=\frac{1}{26}
$$

Now

$$
\begin{array}{lc}
\text { Now } & f_{T}=\frac{g_{m}}{2 \pi\left(C_{\pi}+C_{\mu}\right)} \\
\text { or } & 400=\frac{1 / 26}{2 \pi\left(0.3 \times 10^{-12}+C_{\mu}\right)} \\
\text { or } & \left(0.3 \times 10^{-12}+C_{\mu}\right)=\frac{1}{2 \pi \times 26 \times 400}=15.3 \times 10^{-12} \\
\text { or } & C_{\mu} 15.3 \times 10^{-12}-0.3 \times 10^{-12}=15 \times 10^{-12} 15 \mathrm{pF}
\end{array}
$$

or
3.89 Option (D) is correct.

For any semiconductor (Intrinsic or extrinsic) the product $n p$ remains constant at a given temperature so here

$$
n p=n_{i} p_{i}
$$

3.90 Option (D) is correct.

$$
f_{T}=\frac{g_{m}}{2 \pi\left(C_{\pi}+C_{\mu}\right)}
$$

3.91 Option (B) is correct.

For a Forward Bias $p-n$ junction, current equation

$$
\begin{aligned}
& & I & =I_{0}\left(e^{V / k T}-1\right) \\
& \text { or } & \frac{I}{I_{0}}+1 & =e^{V / k T} \\
& \text { or } & k T \log \left(\frac{I}{I_{0}}+1\right) & =V
\end{aligned}
$$

So if we plot $\log I$ vs V we get a straight line.
3.92 Option (B) is correct.

A specimen of $p-$ type or $n-$ type is always electrical neutral.
${ }_{3.93}$ Option (C) is correct.
3.94 Option (B) is correct.

The unit of q is e and unit of $k T$ is eV . Thus unit of $e / k T$ is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$
e / e V=\mathrm{V}^{-1}
$$

3.95 Option (D) is correct.
3.96 Option (C) is correct.

We have

$$
\begin{aligned}
n_{i} & =1.5 \times 10^{10} / \mathrm{cm}^{3} \\
N_{d} & =2.25 \times 10^{15} \text { atoms } / \mathrm{cm}^{3}
\end{aligned}
$$

For n type doping we have electron concentration

$$
n \simeq N_{d}=2.25 \times 10^{15} \text { atom } / \mathrm{cm}^{3}
$$

For a given temperature

$$
n p=n_{i}^{2}
$$

Hole concentration $\quad p=\frac{n_{i}^{2}}{n}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{2.25 \times 10^{15}}=1.0 \times 10^{5} / \mathrm{cm}^{3}$

Option (D) is correct.
In $p n$-junction isolated circuit we should have high impedance, so that $p n$ junction should be kept in reverse bias. (So connect p to negative potential in the circuit)
3.98 Option (B) is correct.

If both junction are forward biased and collector base junction is more forward biased then I_{C} will be flowing out wards (opposite direction to normal mode) the collector and it will be in reverse saturation mode.

Option (C) is correct.
For normal active mode we have

$$
\beta=\frac{I_{C}}{I_{B}}
$$

For small values of I_{C}, if we increases I_{C}, β also increases until we reach $\left(I_{C}\right)$ saturation. Further increases in I_{C} (since transistor is in saturation mode know) will increases I_{B} and β decreases.

Option (C) is correct.
For a n-channel mosfet thresholds voltage is given by

$$
V_{T N}=V_{G S}-V_{D S}(\mathrm{sat})
$$

for p-channel [p^{+}polysilicon used in gate]

$$
\begin{aligned}
& V_{T P}=V_{S D}(\mathrm{sat})-V_{G S} \\
& V_{T P}=-V_{D S}(\text { sat })+V_{G S}
\end{aligned}
$$

so threshold voltage will be same.
3.101 Option (C) is correct.

Emitter current is given by

$$
\begin{aligned}
& \begin{aligned}
I_{E} & =I_{0}\left(e^{V_{B E} / k T}-1\right) \\
& \text { or } \quad I_{E}
\end{aligned}=I_{0} e^{V_{B E} / k T} \\
& \text { or } \quad \begin{aligned}
V_{B E} & =k T \ln \left(\frac{I_{E}}{I_{0}}\right) \\
& \\
\text { Now } \quad\left(V_{B E}\right)_{1} & =k T \ln \left(\frac{I_{E 1}}{I_{0}}\right) \\
& \\
& \\
& \text { or } \left.\quad V_{B E}\right)_{2}
\end{aligned}=k T \ln \left(\frac{I_{E 2}}{I_{0}}\right) \\
& \left(V_{B E}\right)_{2}-\left(V_{B E}\right)_{1}
\end{aligned}=k T\left[\ln \left(\frac{I_{E 2}}{I_{E 1}}\right)\right]=k T \ln \left(\frac{2 I_{E 1}}{I_{E 1}}\right)
$$

Now
or
Now if emitter current is double i.e. $I_{E 2}=2 I_{E 1}$

$$
\left(V_{B E}\right)_{2}=\left(V_{B E}\right)_{1}+(25 \times 0.60) \mathrm{m} \text { volt }
$$

$=\left(V_{B E}\right)_{1}+15 \mathrm{~m}$ volt
Thus if emitter current is doubled the base emitter junction voltage is increased by 15 mV .
3.102 Option (A) is correct.

Unity gain frequency is given by

$$
f_{T}=f_{B} \times \beta=10^{6} \times 200=200 \mathrm{MHz}
$$

α-cutoff frequency is given by

$$
\begin{aligned}
f_{\alpha} & =\frac{f_{\beta}}{1-\alpha}=\frac{f_{\beta}}{1-\frac{\beta}{\beta+1}}=f_{\beta}(\beta+1) \\
& =10^{6} \times(200+1)=201 \mathrm{MHz}
\end{aligned}
$$

3.103 Option (A) is correct.

UNIT 4

ANALOG CIRCUITS

2013

ONE MARK
4.1 In the circuit shown below what is the output voltage ($V_{\text {out }}$) if a silicon transistor Q and an ideal op-amp are used?

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(A) -15 V
(B) -0.7 V
(C) +0.7 V
(D) +15 V

In a voltage-voltage feedback as shown below, which one of the following statements is TRUE if the gain k is increased?

(A) The input impedance increases and output impedance decreases
(B) The input impedance increases and output impedance also increases
(C) The input impedance decreases and output impedance also decreases
(D) The input impedance decreases and output impedance increases

2013

TWO MARKS
4.3 In the circuit shown below, the knee current of the ideal Zener dioide is 10 mA . To maintain 5 V across R_{L}, the minimum value of R_{L} in Ω and the minimum power rating of the Zener diode in mW , respectively, are

(A) 125 and 125
(B) 125 and 250
(C) 250 and 125
(D) 250 and 250
4.4 The ac schematic of an NMOS common-source state is shown in the figure below, where part of the biasing circuits has been omitted for simplicity. For the n-channel MOSFET M, the transconductance $g_{m}=1 \mathrm{~mA} / \mathrm{V}$, and body effect and channel length modulation effect are to be neglected. The lower cutoff frequency in HZ of the circuit is approximately at

(A) 8
(B) 32
(C) 50
(D) 200
4.5 In the circuit shown below the op-amps are ideal. Then, $V_{\text {out }}$ in Volts is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) 4
(B) 6
(C) 8
(D) 10
4.6 In the circuit shown below, Q_{1} has negligible collector-to-emitter saturation voltage and the diode drops negligible voltage across it under forward bias. If $V_{c c}$ is $+5 \mathrm{~V}, X$ and Y are digital signals with 0 V as logic 0 and $V_{c c}$ as logic 1, then the Boolean expression for Z is

(A) $X Y$
(B) $\bar{X} Y$
(C) $X \bar{Y}$
(D) $\overline{X Y}$
4.7 A voltage $1000 \sin \omega t$ Volts is applied across $Y Z$. Assuming ideal diodes, the voltage measured across $W X$ in Volts, is

(A) $\sin \omega t$
(B) $(\sin \omega t+|\sin \omega t|) / 2$
(C) $(\sin \omega t-\sin \omega t) / 2$
(D) 0 for all t

In the circuit shown below, the silicon npn transistor Q has a very high value of β. The required value of R_{2} in $\mathrm{k} \Omega$ to produce $I_{C}=1 \mathrm{~mA}$ is

(A) 20
(B) 30
(C) 40
(D) 50

2012

ONE MARK
The current i_{b} through the base of a silicon npn transistor is $1+0.1 \cos (10000 \pi t) \mathrm{mA}$ At 300 K , the r_{π} in the small signal model of the transistor is

(A) 250Ω
(B) 27.5Ω
(C) 25Ω
(D) 22.5Ω
4.10 The $i-v$ characteristics of the diode in the circuit given below are

$$
i= \begin{cases}\frac{v-0.7}{500} \mathrm{~A}, & v \geq 0.7 \mathrm{~V} \\ 0 \mathrm{~A} & v<0.7 \mathrm{~V}\end{cases}
$$

The current in the circuit is
(A) 10 mA
(B) 9.3 mA
(C) 6.67 mA
(D) 6.2 mA
4.11 The diodes and capacitors in the circuit shown are ideal. The voltage $v(t)$ across the diode D_{1} is

(A) $\cos (\omega t)-1$
(B) $\sin (\omega t)$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(C) $1-\cos (\omega t)$
(D) $1-\sin (\omega t)$
4.12 The impedance looking into nodes 1 and 2 in the given circuit is

(A) 50Ω
(B) 100Ω
(C) $5 \mathrm{k} \Omega$
(D) $10.1 \mathrm{k} \Omega$

2012
TWO MARKS
4. 13 The circuit shown is a

(A) low pass filter with $f_{3 d B}=\frac{1}{\left(R_{1}+R_{2}\right) C} \mathrm{rad} / \mathrm{s}$
(B) high pass filter with $f_{3 d B}=\frac{1}{R_{1} C} \mathrm{rad} / \mathrm{s}$
(C) low pass filter with $f_{3 d B}=\frac{1}{R_{1} C} \mathrm{rad} / \mathrm{s}$
(D) high pass filter with $f_{3 d B}=\frac{1}{\left(R_{1}+R_{2}\right) C} \mathrm{rad} / \mathrm{s}$
${ }^{4.14}$ The voltage gain A_{v} of the circuit shown below is

(A) $\left|A_{v}\right| \approx 200$
(B) $\left|A_{v}\right| \approx 100$
(C) $\left|A_{v}\right| \approx 20$
(D) $\left|A_{v}\right| \approx 10$

2011

ONE MARK
In the circuit shown below, capacitors C_{1} and C_{2} are very large and are shorts at the input frequency. v_{i} is a small signal input. The gain magnitude $\left|\frac{v_{o}}{v_{i}}\right|$ at $10 \mathrm{M} \mathrm{rad} / \mathrm{s}$ is

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

(A) maximum
(B) minimum
(C) unity
(D) zero

The circuit below implements a filter between the input current i_{i} and the output voltage v_{o}. Assume that the op-amp is ideal. The filter implemented is a

(A) low pass filter
(B) band pass filter
(C) band stop filter
(D) high pass filter

Inthecircuitshownbelow, for theMOStransistors, $\mu_{n} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$
and the threshold voltage $V_{T}=1 \mathrm{~V}$. The voltage V_{x} at the source of the upper transistor is

(A) 1 V
(B) 2 V
(C) 3 V
(D) 3.67 V
${ }^{4.18}$ For the BJT, Q_{1} in the circuit shown below, $\beta=\infty, V_{\text {BEon }}=0.7 \mathrm{~V}, V_{\text {CEsat }}=0.7 \mathrm{~V}$. The switch is initially closed. At time $t=0$, the switch is opened. The time t at which Q_{1} leaves the active region is

(A) 10 ms
(B) 25 ms
(C) 50 ms
(D) 100 ms
4.19 For a BJT, the common base current gain $\alpha=0.98$ and the collector base junction reverse bias saturation current $I_{\mathrm{CO}}=0.6 \mu \mathrm{~A}$. This BJT is connected in the common emitter mode and operated in the active region with a base drive current $I_{B}=20 \mu \mathrm{~A}$. The collector current I_{C} for this mode of operation is
(A) 0.98 mA
(B) 0.99 mA
(C) 1.0 mA
(D) 1.01 mA

Statement for Linked Answer Questions: 4.6 \& 4.7
In the circuit shown below, assume that the voltage drop across a forward biased diode is 0.7 V . The thermal voltage $V_{t}=k T / q=25 \mathrm{mV}$. The small signal input $v_{i}=V_{p} \cos (\omega t)$ where $V_{p}=100 \mathrm{mV}$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

The bias current $I_{D C}$ through the diodes is
(A) 1 mA
(B) 1.28 mA
(C) 1.5 mA
(D) 2 mA

The ac output voltage $v_{a c}$ is
(A) $0.25 \cos (\omega t) \mathrm{mV}$
(B) $1 \cos (\omega t) \mathrm{mV}$
(C) $2 \cos (\omega t) \mathrm{mV}$
(D) $22 \cos (\omega t) \mathrm{mV}$

2010

ONE MARK

The amplifier circuit shown below uses a silicon transistor. The capacitors C_{C} and C_{E} can be assumed to be short at signal frequency and effect of output resistance r_{0} can be ignored. If C_{E} is disconnected from the circuit, which one of the following statements is true

(A) The input resistance R_{i} increases and magnitude of voltage gain A_{V} decreases
(B) The input resistance R_{i} decreases and magnitude of voltage gain A_{V} increases
(C) Both input resistance R_{i} and magnitude of voltage gain A_{V} decreases
(D) Both input resistance R_{i} and the magnitude of voltage gain A_{V} increases

In the silicon BJT circuit shown below, assume that the emitter area of transistor Q_{1} is half that of transistor Q_{2}

The value of current I_{o} is approximately
(A) 0.5 mA
(B) 2 mA
(C) 9.3 mA
(D) 15 mA
4.24 Assuming the OP-AMP to be ideal, the voltage gain of the amplifier shown below is

(A) $-\frac{R_{2}}{R_{1}}$
(B) $-\frac{R_{3}}{R_{1}}$
(C) $-\frac{R_{2} \| R_{3}}{R_{1}}$
(D) $-\left(\frac{R_{2}+R_{3}}{R_{1}}\right)$

Common Data For Q. 4.11 \& 4.12 :

Consider the common emitter amplifier shown below with the following circuit parameters:
$\beta=100, g_{m}=0.3861 \mathrm{~A} / \mathrm{V}, r_{0}=259 \Omega, R_{S}=1 \mathrm{k} \Omega, R_{B}=93 \mathrm{k} \Omega$,
$R_{C}=250 \mathrm{k} \Omega, R_{L}=1 \mathrm{k} \Omega, C_{1}=\infty$ and $C_{2}=4.7 \mu \mathrm{~F}$

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
4.25 The resistance seen by the source v_{S} is
(A) 258Ω
(B) 1258Ω
(C) $93 \mathrm{k} \Omega$
(D) ∞
4.26 The lower cut-off frequency due to C_{2} is
(A) 33.9 Hz
(B) 27.1 Hz
(C) 13.6 Hz
(D) 16.9 Hz
4.27 The transfer characteristic for the precision rectifier circuit shown below is (assume ideal OP-AMP and practical diodes)

(A)

(B)

(C)

(D)

2009

TWO MARKS
In the circuit below, the diode is ideal. The voltage V is given by

(A) $\min \left(V_{i}, 1\right)$
(B) $\max \left(V_{i}, 1\right)$
(C) $\min \left(-V_{i}, 1\right)$
(D) $\max \left(-V_{i}, 1\right)$

In the following a stable multivibrator circuit, which properties of $v_{0}(t)$ depend on R_{2} ?

GATE Electronics \& Communication
by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(A) Only the frequency
(B) Only the amplitude
(C) Both the amplitude and the frequency
(D) Neither the amplitude nor the frequency

Statement for Linked Answer Question 4.16 and 4.17

Consider for CMOS circuit shown, where the gate voltage v_{0} of the n -MOSFET is increased from zero, while the gate voltage of the p-MOSFET is kept constant at 3 V . Assume, that, for both transistors, the magnitude of the threshold voltage is 1 V and the product of the trans-conductance parameter is $1 \mathrm{~mA} . V^{2}$

For small increase in V_{G} beyond 1 V , which of the following gives the correct description of the region of operation of each MOSFET
(A) Both the MOSFETs are in saturation region
(B) Both the MOSFETs are in triode region
(C) n-MOSFETs is in triode and p-MOSFET is in saturation region
(D) n- MOSFET is in saturation and p-MOSFET is in triode region
${ }^{4.31}$ Estimate the output voltage V_{0} for $V_{G}=1.5 \mathrm{~V}$. [Hints : Use the appropriate current-voltage equation for each MOSFET, based on the answer to Q.4.16]
(A) $4-\frac{1}{\sqrt{2}}$
(B) $4+\frac{1}{\sqrt{2}}$
(C) $4-\frac{\sqrt{3}}{2}$
(D) $4+\frac{\sqrt{3}}{2}$
4.32 In the circuit shown below, the op-amp is ideal, the transistor has $V_{B E}=0.6 \mathrm{~V}$ and $\beta=150$. Decide whether the feedback in the circuit is positive or negative and determine the voltage V at the output of the op-amp.

(A) Positive feedback, $V=10 \mathrm{~V}$
(B) Positive feedback, $V=0 \mathrm{~V}$
(C) Negative feedback, $V=5 \mathrm{~V}$
(D) Negative feedback, $V=2 \mathrm{~V}$
4.33 A small signal source $V_{i}(t)=A \cos 20 t+B \sin 10^{6} t$ is applied to a transistor amplifier as shown below. The transistor has $\beta=150$ and $h_{i e}=3 \Omega$. Which expression best approximate $V_{0}(t)$

> For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

(A) $V_{0}(t)=-1500\left(A \cos 20 t+B \sin 10^{6} t\right)$
(B) $V_{0}(t)=-1500\left(A \cos 20 t+B \sin 10^{6} t\right)$
(C) $V_{0}(t)=-1500 B \sin 10^{6} t$
(D) $V_{0}(t)=-150 B \sin 10^{6} t$

2008

ONE MARK
In the following limiter circuit, an input voltage $V_{i}=10 \sin 100 \pi t$ is applied. Assume that the diode drop is 0.7 V when it is forward biased. When it is forward biased. The zener breakdown voltage is 6.8 V

The maximum and minimum values of the output voltage respectively are

(A) $6.1 \mathrm{~V},-0.7 \mathrm{~V}$
(B) $0.7 \mathrm{~V},-7.5 \mathrm{~V}$
(C) $7.5 \mathrm{~V},-0.7 \mathrm{~V}$
(D) $7.5 \mathrm{~V},-7.5 \mathrm{~V}$

2008

TWO MARSK
For the circuit shown in the following figure, transistor $M 1$ and $M 2$ are identical NMOS transistors. Assume the M2 is in saturation and the output is unloaded.

The current I_{x} is related to $I_{\text {bias }}$ as
(A) $I_{x}=I_{\text {bias }}+I_{s}$
(B) $I_{x}=I_{\text {bias }}$
(C) $I_{x}=I_{\text {bias }}-\left(V_{D D}-\frac{V_{\text {out }}}{R_{E}}\right)$
(D) $I_{x}=I_{\text {bias }}-I_{s}$

Consider the following circuit using an ideal OPAMP. The I-V characteristic of the diode is described by the relation $I=I_{0}\left(e^{\frac{V}{V_{-}^{-1}}}\right)$ where $V_{T}=25 \mathrm{mV}, I_{0}=1 \mu \mathrm{~A}$ and V is the voltage across the diode (taken as positive for forward bias). For an input voltage $V_{i}=-1 \mathrm{~V}$, the output voltage V_{0} is

(A) 0 V
(B) 0.1 V
(C) 0.7 V
(D) 1.1 V
4.37 The OPAMP circuit shown above represents a

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(A) high pass filter
(B) low pass filter
(C) band pass filter
(D) band reject filter
${ }^{4.38} \quad$ Two identical NMOS transistors $M 1$ and $M 2$ are connected as shown below. $V_{\text {bias }}$ is chosen so that both transistors are in saturation. The equivalent g_{m} of the pair is defied to be $\frac{\partial I_{\text {out }}}{\partial V_{i}}$ at constant $V_{\text {out }}$ The equivalent g_{m} of the pair is

(A) the sum of individual g_{m} 's of the transistors
(B) the product of individual g_{m} 's of the transistors
(C) nearly equal to the g_{m} of $M 1$
(D) nearly equal to $\frac{g_{m}}{g_{0}}$ of $M 2$
4.39 Consider the Schmidt trigger circuit shown below A triangular wave which goes from -12 to 12 V is applied to the inverting input of OPMAP. Assume that the output of the OPAMP swings from +15 V to -15 V . The voltage at the non-inverting input switches between

(A) -12 V to +12 V
(B) -7.5 V to 7.5 V
(C) -5 V to +5 V
(D) 0 V and 5 V

Statement for Linked Answer Question 3.26 and 3.27:

In the following transistor circuit, $V_{B E}=0.7 \mathrm{~V}, r_{3}=25 \mathrm{mV} / I_{E}$, and β and all the capacitances are very large

The value of DC current I_{E} is
(A) 1 mA
(B) 2 mA
(C) 5 mA
(D) 10 mA

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
4.41 The mid-band voltage gain of the amplifier is approximately
(A) -180
(B) -120
(C) -90
(D) -60

2007

ONE MARK
4.42 The correct full wave rectifier circuit is
(A)

(B)

(C)

(D)

In a transconductance amplifier, it is desirable to have
(A) a large input resistance and a large output resistance
(B) a large input resistance and a small output resistance
(C) a small input resistance and a large output resistance
(D) a small input resistance and a small output resistance

2007

 TWO MARKS4.44 For the Op -Amp circuit shown in the figure, V_{0} is

(A) -2 V
(B) -1 V
(C) -0.5 V
(D) 0.5 V
4.45 For the BJT circuit shown, assume that the β of the transistor is very large and $V_{B E}=0.7 \mathrm{~V}$. The mode of operation of the BJT is

(A) cut-off
(B) saturation
(C) normal active
(D) reverse active

In the Op-Amp circuit shown, assume that the diode current follows the equation $I=I_{s} \exp \left(V / V_{T}\right)$. For $V_{i}=2 V, V_{0}=V_{01}$, and for $V_{i}=4 V, V_{0}=V_{02}$.
The relationship between V_{01} and V_{02} is

(A) $V_{02}=\sqrt{2} V_{01}$
(B) $V_{o 2}=e^{2} V_{o 1}$
(C) $V_{o 2}=V_{o 1} 1 \mathrm{n} 2$
(D) $V_{o 1}-V_{o 2}=V_{T} 1 \mathrm{n} 2$

In the CMOS inverter circuit shown, if the trans conductance parameters of the NMOS and PMOS transistors are
$k_{n}=k_{p}=\mu_{n} C_{o x} \frac{W_{n}}{L_{n}}=\mu C_{o x} \frac{W_{p}}{L_{p}}=40 \mu \mathrm{~A} / V^{2}$
and their threshold voltages ae $V_{T H n}=\left|V_{T H_{p}}\right|=1 \mathrm{~V}$ the current I is

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(A) 0 A
(B) $25 \mu \mathrm{~A}$
(C) $45 \mu \mathrm{~A}$
(D) $90 \mu \mathrm{~A}$
4.48 For the Zener diode shown in the figure, the Zener voltage at knee is 7 V , the knee current is negligible and the Zener dynamic resistance
is 10Ω. If the input voltage (V_{i}) range is from 10 to 16 V , the output voltage (V_{0}) ranges from

(A) 7.00 to 7.29 V
(B) 7.14 to 7.29 V
(C) 7.14 to 7.43 V
(D) 7.29 to 7.43 V

Statement for Linked Answer Questions 4.35 \& 4.36:

(A) 0 Volt
(B) 6.3 Volt
(C) 9.45 Volts
(D) 10 Volts
4.54 For the circuit shown below, assume that the zener diode is ideal with a breakdown voltage of 6 volts. The waveform observed across R is

Consider the Op-Amp circuit shown in the figure.

The transfer function $V_{0}(s) / V_{i}(s)$ is
(A) $\frac{1-s R C}{1+s R C}$
(B) $\frac{1+s R C}{1-s R C}$
(C) $\frac{1}{1-s R C}$
(D) $\frac{1}{1+s R C}$

If $V_{i}=V_{1} \sin (\omega t)$ and $V_{0}=V_{2} \sin (\omega t+\phi)$, then the minimum and maximum values of ϕ (in radians) are respectively
(A) $-\frac{\pi}{2}$ and $\frac{\pi}{2}$
(B) 0 and $\frac{\pi}{2}$
(C) $-\pi$ and 0
(D) $-\frac{\pi}{2}$ and 0

2006

ONE MARK

The input impedance $\left(Z_{i}\right)$ and the output impedance $\left(Z_{0}\right)$ of an ideal trans-conductance (voltage controlled current source) amplifier are
(A) $Z_{i}=0, Z_{0}=0$
(B) $Z_{i}=0, Z_{0}=\infty$
(C) $Z_{i}=\infty, Z_{0}=0$
(D) $Z_{i}=\infty, Z_{0}=\infty$
4.52 An n-channel depletion MOSFET has following two points on its $I_{D}-V_{G s}$ curve:
(i) $V_{G S}=0$ at $I_{D}=12 \mathrm{~mA}$ and
(ii) $V_{G S}=-6$ Volts at $I_{D}=0 \mathrm{~mA}$

Which of the following Q point will given the highest trans conductance gain for small signals?
(A) $V_{G S}=-6$ Volts
(B) $V_{G S}=-3$ Volts
(C) $V_{G S}=0$ Volts
(D) $V_{G S}=3$ Volts

2006

TWO MARKS

For the circuit shown in the following figure, the capacitor C is initially uncharged. At $t=0$ the switch S is closed. The V_{c} across the capacitor at $t=1$ millisecond is
In the figure shown above, the OP-AMP is supplied with $\pm 15 \mathrm{~V}$.

*
 At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store
 Click to Buy
 WWW.nodia.co.in n

4.55 Under the DC conditions, the collector-or-emitter voltage drop is
(A) 4.8 Volts
(B) 5.3 Volts
(C) 6.0 Volts
(D) 6.6 Volts
4.56 If $\beta_{D C}$ is increased by 10%, the collector-to-emitter voltage drop
(A) increases by less than or equal to 10%
(B) decreases by less than or equal to 10%
(C) increase by more than 10%
(D) decreases by more than 10%
4.57 The small-signal gain of the amplifier $\frac{v_{c}}{v_{s}}$ is

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(A) -10
(B) -5.3
(C) 5.3
(D) 10

Common Data For Q. 4.44 \& 4.45:

A regulated power supply, shown in figure below, has an unregulated input (UR) of 15 Volts and generates a regulated output $V_{\text {out }}$. Use the component values shown in the figure.

4.58 The power dissipation across the transistor Q1 shown in the figure is
(A) 4.8 Watts
(B) 5.0 Watts
(C) 5.4 Watts
(D) 6.0 Watts
4.59 If the unregulated voltage increases by 20%, the power dissipation across the transistor Q1
(A) increases by 20%
(B) increases by 50%
(C) remains unchanged
(D) decreases by 20%

2005

ONE MARK
The input resistance R_{i} of the amplifier shown in the figure is

(A) $\frac{30}{4} \mathrm{k} \Omega$
(B) $10 \mathrm{k} \Omega$
(C) $40 \mathrm{k} \Omega$
(D) infinite
4.61 The effect of current shunt feedback in an amplifier is to
(A) increase the input resistance and decrease the output resistance
(B) increases both input and output resistance
(C) decrease both input and output resistance
(D) decrease the input resistance and increase the output resistance
4.62 The cascade amplifier is a multistage configuration of
(A) CC - CB
(B) $\mathrm{CE}-\mathrm{CB}$
(C) CB - CC
(D) $\mathrm{CE}-\mathrm{CC}$
4.63 In an ideal differential amplifier shown in the figure, a large value of (R_{E}).
(A) increase both the differential and common - mode gains.
(B) increases the common mode gain only.
(C) decreases the differential mode gain only.
(D) decreases the common mode gain only.
4.64 For an npn transistor connected as shown in figure $V_{B E}=0.7$ volts. Given that reverse saturation current of the junction at room temperature 300 K is $10^{-13} \mathrm{~A}$, the emitter current is

(A) 30 mA
(B) 39 mA
(C) 49 mA
(D) 20 mA
4.65 The voltage e_{0} is indicated in the figure has been measured by an

For more GATE Resources, Mock Test and

 Study material join the community http:/lwww.facebook.com/gateec2014ideal voltmeter. Which of the following can be calculated?

(A) Bias current of the inverting input only
(B) Bias current of the inverting and non-inverting inputs only
(C) Input offset current only
(D) Both the bias currents and the input offset current

The Op-amp circuit shown in the figure is filter. The type of filter and its cut. Off frequency are respectively

(A) high pass, $1000 \mathrm{rad} / \mathrm{sec}$.
(B) Low pass, $1000 \mathrm{rad} / \mathrm{sec}$
(C) high pass, $1000 \mathrm{rad} / \mathrm{sec}$
(D) low pass, $10000 \mathrm{rad} / \mathrm{sec}$

The circuit using a BJT with $\beta=50$ and $V_{B E}=0.7 V$ is shown in the figure. The base current I_{B} and collector voltage by V_{C} and respectively

(A) $43 \mu \mathrm{~A}$ and 11.4 Volts
(B) $40 \mu \mathrm{~A}$ and 16 Volts
(C) $45 \mu \mathrm{~A}$ and 11 Volts
(D) $50 \mu \mathrm{~A}$ and 10 Volts
4.68 The Zener diode in the regulator circuit shown in the figure has a Zener voltage of 5.8 volts and a zener knee current of 0.5 mA . The maximum load current drawn from this current ensuring proper functioning over the input voltage range between 20 and 30 volts, is

(A) 23.7 mA
(B) 14.2 mA
(C) 13.7 mA
(D) 24.2 mA

Both transistors T_{1} and T_{2} show in the figure, have a $\beta=100$, threshold voltage of 1 Volts. The device parameters K_{1} and K_{2} of T_{1} and T_{2} are, respectively, $36 \mu \mathrm{~A} / V^{2}$ and $9 \mu \mathrm{~A} / \mathrm{V}^{2}$. The output voltage V_{o} i s

(A) 1 V
(B) 2 V
(C) 3 V
(D) 4 V

Common Data For Q. 4.58, 4.59 and 4.60 :
Given, $r_{d}=20 \mathrm{k} \Omega, I_{D S S}=10 \mathrm{~mA}, V_{p}=-8 \mathrm{~V}$

$4.70 \quad Z_{i}$ and Z_{0} of the circuit are respectively
(A) $2 \mathrm{M} \Omega$ and $2 \mathrm{k} \Omega$
(B) $2 \mathrm{M} \Omega$ and $\frac{20}{11} \mathrm{k} \Omega$
(C) infinity and $2 \mathrm{M} \Omega$
(D) infinity and $\frac{20}{11} \mathrm{k} \Omega$
4.71 $\quad I_{D}$ and $V_{D S}$ under $D C$ conditions are respectively
(A) 5.625 mA and 8.75 V
(B) 1.875 mA and 5.00 V
(C) 4.500 mA and 11.00 V
(D) 6.250 mA and 7.50 V
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
4.72 Transconductance in milli-Siemens (mS) and voltage gain of the amplifier are respectively
(A) 1.875 mS and 3.41
(B) 1.875 ms and -3.41
(C) 3.3 mS and -6
(D) 3.3 mS and 6
4.73 Given the ideal operational amplifier circuit shown in the figure indicate the correct transfer characteristics assuming ideal diodes with zero cut-in voltage.

(A)

B)

(C)

(D)

4.74 An ideal op-amp is an ideal
(A) voltage controlled current source
(B) voltage controlled voltage source
(C) current controlled current source
(D) current controlled voltage source
4.75 Voltage series feedback (also called series-shunt feedback) results in
(A) increase in both input and output impedances
(B) decrease in both input and output impedances
(C) increase in input impedance and decrease in output impedance
(D) decrease in input impedance and increase in output impedance
4.76 The circuit in the figure is a

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

(A) low-pass filter
(B) high-pass filter
(C) band-pass filter
(D) band-reject filter

2004

TWO MARKS
A bipolar transistor is operating in the active region with a collector current of 1 mA . Assuming that the β of the transistor is 100 and the thermal voltage $\left(V_{T}\right)$ is 25 mV , the transconductance $\left(g_{m}\right)$ and the input resistance $\left(r_{\pi}\right)$ of the transistor in the common emitter configuration, are
(A) $g_{m}=25 \mathrm{~mA} / \mathrm{V}$ and $r_{\pi}=15.625 \mathrm{k} \Omega$
(B) $g_{m}=40 \mathrm{~mA} / \mathrm{V}$ and $r_{\pi}=4.0 \mathrm{k} \Omega$
(C) $g_{m}=25 \mathrm{~mA} / \mathrm{V}$ and $r_{\pi}=2.5 \mathrm{k} \Omega$
(D) $g_{m}=40 \mathrm{~mA} / \mathrm{V}$ and $r_{\pi}=2.5 \mathrm{k} \Omega$

The value of C required for sinusoidal oscillations of frequency 1 kHz in the circuit of the figure is

(A) $\frac{1}{2 \pi} \mu \mathrm{~F}$
(B) $2 \pi \mu \mathrm{~F}$
(C) $\frac{1}{2 \pi \sqrt{6}} \mu \mathrm{~F}$
(D) $2 \pi \sqrt{6} \mu \mathrm{~F}$
4.79 In the op-amp circuit given in the figure, the load current i_{L} is

(A) $-\frac{V_{s}}{R_{2}}$
(B) $\frac{V_{s}}{R_{2}}$
(C) $-\frac{V_{s}}{R_{L}}$
(D) $\frac{V_{s}}{R_{1}}$
4.80 In the voltage regulator shown in the figure, the load current can vary from 100 mA to 500 mA . Assuming that the Zener diode is ideal (i.e., the Zener knee current is negligibly small and Zener resistance is zero in the breakdown region), the value of R is

(A) 7Ω
(B) 70Ω
(C) $\frac{70}{3} \Omega$
(D) 14Ω
4.81 In a full-wave rectifier using two ideal diodes, $V_{d c}$ and V_{m} are the dc and peak values of the voltage respectively across a resistive load. If $P I V$ is the peak inverse voltage of the diode, then the appropriate

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

relationships for this rectifier are
(A) $V_{d c}=\frac{V_{m}}{\pi}, P I V=2 V_{m}$
(B) $I_{d c}=2 \frac{V_{m}}{\pi}, P I V=2 V_{m}$
(C) $V_{d c}=2 \frac{V_{m}}{\pi}, P I V=V_{m}$
(D) $V_{d c} \frac{V_{m}}{\pi}, P I V=V_{m}$
4.82 Assume that the β of transistor is extremely large and $V_{B E}=0.7 \mathrm{~V}, I_{C}$ and $V_{C E}$ in the circuit shown in the figure

(A) $I_{C}=1 \mathrm{~mA}, V_{C E}=4.7 \mathrm{~V}$
(B) $I_{C}=0.5 \mathrm{~mA}, V_{C E}=3.75 \mathrm{~V}$
(C) $I_{C}=1 \mathrm{~mA}, V_{C E}=2.5 \mathrm{~V}$
(D) $I_{C}=0.5 \mathrm{~mA}, V_{C E}=3.9 \mathrm{~V}$

2003

ONE MARK
Choose the correct match for input resistance of various amplifier configurations shown below :

Configuration
CB : Common Base
CC : Common Collector
CE: Common Emitter

Input resistance
LO : Low
MO : Moderate
HI : High
(A) $\mathrm{CB}-\mathrm{LO}, \mathrm{CC}-\mathrm{MO}, \mathrm{CE}-\mathrm{HI}$
(B) $\mathrm{CB}-\mathrm{LO}, \mathrm{CC}-\mathrm{HI}, \mathrm{CE}-\mathrm{MO}$
(C) $\mathrm{CB}-\mathrm{MO}, \mathrm{CC}-\mathrm{HI}, \mathrm{CE}-\mathrm{LO}$
(D) $\mathrm{CB}-\mathrm{HI}, \mathrm{CC}-\mathrm{LO}, \mathrm{CE}-\mathrm{MO}$
4.84 The circuit shown in the figure is best described as a

(A) bridge rectifier
(B) ring modulator
(C) frequency discriminator
(D) voltage double

If the input to the ideal comparators shown in the figure is a sinusoidal signal of 8 V (peak to peak) without any DC component, then the output of the comparators has a duty cycle of

(A) $1 / 2$
(B) $1 / 3$
(C) $1 / 6$
(D) $1 / 2$
4.86 If the differential voltage gain and the common mode voltage gain of a differential amplifier are 48 dB and 2 dB respectively, then common mode rejection ratio is
(A) 23 dB
(B) 25 dB
(C) 46 dB
(D) 50 dB
4.87 Generally, the gain of a transistor amplifier falls at high frequencies due to the
(A) internal capacitances of the device
(B) coupling capacitor at the input
(C) skin effect
(D) coupling capacitor at the output

An amplifier without feedback has a voltage gain of 50 , input resistance of $1 \mathrm{k} \Omega$ and output resistance of $2.5 \mathrm{k} \Omega$. The input
resistance of the current-shunt negative feedback amplifier using the above amplifier with a feedback factor of 0.2 , is
(A) $\frac{1}{11} \mathrm{k} \Omega$
(B) $\frac{1}{5} \mathrm{k} \Omega$
(C) $5 \mathrm{k} \Omega$
(D) $11 \mathrm{k} \Omega$
4.89 In the amplifier circuit shown in the figure, the values of R_{1} and R_{2} are such that the transistor is operating at $V_{C E}=3 \mathrm{~V}$ and $I_{C}=1.5$ mA when its β is 150 . For a transistor with β of 200 , the operating point $\left(V_{C E}, I_{C}\right)$ is

(A) $(2 \mathrm{~V}, 2 \mathrm{~mA})$
(B) $(3 \mathrm{~V}, 2 \mathrm{~mA})$
(C) $(4 \mathrm{~V}, 2 \mathrm{~mA})$
(D) $(4 \mathrm{~V}, 1 \mathrm{~mA})$

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
4.90 The oscillator circuit shown in the figure has an ideal inverting amplifier. Its frequency of oscillation (in Hz) is

(A) $\frac{1}{(2 \pi \sqrt{6} R C)}$
(B) $\frac{1}{(2 \pi R C)}$
(C) $\frac{1}{(\sqrt{6} R C)}$
(D) $\frac{\sqrt{6}}{(2 \pi R C)}$
4.91 The output voltage of the regulated power supply shown in the figure is

(A) 3 V
(B) 6 V
(C) 9 V
(D) 12 V
4.92 If the op-amp in the figure is ideal, the output voltage $V_{\text {out }}$ will be equal to

(A) 1 V
(B) 6 V
(C) 14 V
(D) 17 V

Three identical amplifiers with each one having a voltage gain of 50, input resistance of $1 \mathrm{k} \Omega$ and output resistance of 250Ω are cascaded. The opened circuit voltages gain of the combined amplifier is
(A) 49 dB
(B) 51 dB
(C) 98 dB
(D) 102 dB
4.94 An ideal sawtooth voltages waveform of frequency of 500 Hz and amplitude 3 V is generated by charging a capacitor of $2 \mu \mathrm{~F}$ in every cycle. The charging requires
(A) Constant voltage source of 3 V for 1 ms

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(B) Constant voltage source of 3 V for 2 ms
(C) Constant voltage source of 1 mA for 1 ms
(D) Constant voltage source of 3 mA for 2 ms

2002

 ONE MARKIn a negative feedback amplifier using voltage-series (i.e. voltagesampling, series mixing) feedback.
(A) R_{i} decreases and R_{0} decreases
(B) R_{i} decreases and R_{0} increases
(C) R_{i} increases and R_{0} decreases
(D) R_{i} increases and R_{0} increases
(R_{i} and R_{0} denote the input and output resistance respectively)
4.96 A 741-type opamp has a gain-bandwidth product of 1 MHz . A noninverting amplifier suing this opamp and having a voltage gain of 20 dB will exhibit a -3 dB bandwidth of
(A) 50 kHz
(B) 100 kHz
(C) $\frac{1000}{17} \mathrm{kHz}$
(D) $\frac{1000}{7.07} \mathrm{kHz}$

Three identical RC-coupled transistor amplifiers are cascaded. If each of the amplifiers has a frequency response as shown in the figure, the overall frequency response is as given in

(A)

(B)

(C)

(D)

4.98 The circuit in the figure employs positive feedback and is intended to generate sinusoidal oscillation. If at a frequency $f_{0}, B(f)=\triangle \frac{V_{f}(f)}{V_{0}(f)}=\frac{1}{6} \angle 0^{\circ}$, then to sustain oscillation at this frequency

(A) $R_{2}=5 R_{1}$
(B) $R_{2}=6 R_{1}$
(C) $R_{2}=\frac{R_{1}}{6}$
(D) $R_{2}=\frac{R_{1}}{5}$

An amplifier using an opamp with a slew-rate $S R=1 V / \mu$ sec has a gain of 40 dB . If this amplifier has to faithfully amplify sinusoidal signals from dc to 20 kHz without introducing any slew-rate induced distortion, then the input signal level must not exceed.
(A) 795 mV
(B) 395 mV
(C) 79.5 mV
(D) 39.5 mV
4.100 A zener diode regulator in the figure is to be designed to meet the specifications: $I_{L}=10 \mathrm{~mA} V_{0}=10 \mathrm{~V}$ and $V_{\text {in }}$ varies from 30 V to 50 V . The zener diode has $V_{z}=10 \mathrm{~V}$ and $I_{z k}$ (knee current) $=1 \mathrm{~mA}$. For

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

satisfactory operation

(A) $R \leq 1800 \Omega$
(B) $2000 \Omega \leq R \leq 2200 \Omega$
(C) $3700 \Omega \leq R \leq 4000 \Omega$
(D) $R \geq 4000 \Omega$
4.101 The voltage gain $A_{v}=\frac{v_{0}}{v}$ of the JFET amplifier shown in the figure is $I_{D S S}=10 \mathrm{~mA} V_{p}=-\frac{4}{5} \mathrm{~V}$ (Assume C_{1}, C_{2} and C_{s} to be very large

(A) +16
(B) -16
(C) +8
(D) -6

2001

ONE MARK
4.102 The current gain of a BJT is
(A) $g_{m} r_{0}$
(B) $\frac{g_{m}}{r}$
(C) $g_{m} r_{\pi}$
(D) $\frac{g_{m}}{r_{\pi}}$
4.103 Thee ideal OP-AMP has the following characteristics.
(A) $R_{i}=\infty, A=\infty, R_{0}=0$
(B) $R_{i}=0, A=\infty, R_{0}=0$
(C) $R_{i}=\infty, A=\infty, R_{0}=\infty$
(D) $R_{i}=0, A=\infty, R_{0}=\infty$
4.104 Consider the following two statements :

Statement 1 :
A stable multi vibrator can be used for generating square wave.
Statement 2:
Bistable multi vibrator can be used for storing binary information.
(A) Only statement 1 is correct
(B) Only statement 2 is correct
(C) Both the statements 1 and 2 are correct
(D) Both the statements 1 and 2 are incorrect

2001

TWO MARKS
4.105 An npn BJT has $g_{m}=38 \mathrm{~mA} / \mathrm{V}, C_{\mu}=10^{-14} \mathrm{~F}, C_{\pi}=4 \times 10^{-13} \mathrm{~F}$, and DC current gain $\beta_{0}=90$. For this transistor f_{T} and f_{β} are
(A) $f_{T}=1.64 \times 10^{8} \mathrm{~Hz}$ and $f_{\beta}=1.47 \times 10^{10} \mathrm{~Hz}$
(B) $f_{T}=1.47 \times 10^{10} \mathrm{~Hz}$ and $f_{\beta}=1.64 \times 10^{8} \mathrm{~Hz}$
(C) $f_{T}=1.33 \times 10^{12} \mathrm{~Hz}$ and $f_{\beta}=1.47 \times 10^{10} \mathrm{~Hz}$
(D) $f_{T}=1.47 \times 10^{10} \mathrm{~Hz}$ and $f_{\beta}=1.33 \times 10^{12} \mathrm{~Hz}$
4.106 The transistor shunt regulator shown in the figure has a regulated output voltage of 10 V , when the input varies from 20 V to 30 V . The relevant parameters for the zener diode and the transistor are $: V_{z}=9.5, V_{B E}=0.3 \mathrm{~V}, \beta=99$, Neglect the current through R_{B}. Then the maximum power dissipated in the zener diode $\left(P_{z}\right)$ and the transistor $\left(P_{T}\right)$ are

(A) $P_{z}=75 \mathrm{~mW}, P_{T}=7.9 \mathrm{~W}$
(B) $P_{z}=85 \mathrm{~mW}, P_{T}=8.9 \mathrm{~W}$
(C) $P_{z}=95 \mathrm{~mW}, P_{T}=9.9 \mathrm{~W}$
(D) $P_{z}=115 \mathrm{~mW}, P_{T}=11.9 \mathrm{~W}$
4.107 The oscillator circuit shown in the figure is

(A) Hartely oscillator with $f_{\text {oscillation }}=79.6 \mathrm{MHz}$
(B) Colpitts oscillator with $f_{\text {oscillation }}=50.3 \mathrm{MHz}$
(C) Hartley oscillator with $f_{\text {oscillation }}=159.2 \mathrm{MHz}$
(D) Colpitts oscillator with $f_{\text {oscillation }}=159.3 \mathrm{MHz}$
4.108 The inverting OP-AMP shown in the figure has an open-loop gain

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
of 100 .

The closed-loop gain $\frac{V_{0}}{V_{s}}$ is
(A) -8
(B) -9
(C) -10
(D) -11
4.109 In the figure assume the OP-AMPs to be ideal. The output v_{0} of the circuit is

(A) $10 \cos (100 t)$
(B) $10 \int_{0}^{t} \cos (100 \tau) d \tau$
(C) $10^{-4} \int_{0}^{t} \cos (100 \tau) d \tau$
(D) $10^{-4} \frac{d}{d t} \cos (100 t)$

2000

ONE MARK
4.110 In the differential amplifier of the figure, if the source resistance of the current source $I_{E E}$ is infinite, then the common-mode gain is

(A) zero
(B) infinite
(C) indeterminate
(D) $\frac{V_{i n 1}+V_{i n 2}}{2 V_{T}}$

In the circuit of the figure, V_{0} is

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(A) -1 V
(B) 2 V
(C) +1 V
(D) +15 V
4.112 Introducing a resistor in the emitter of a common amplifier stabilizes the dc operating point against variations in
(A) only the temperature
(B) only the β of the transistor
(C) both temperature and β
(D) none of the above
4.113 The current gain of a bipolar transistor drops at high frequencies because of
(A) transistor capacitances
(B) high current effects in the base
(C) parasitic inductive elements
(D) the Early effect

If the op-amp in the figure, is ideal, then v_{0} is

> For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec 2014

(A) precision integrator
(B) Hartely oscillator
(C) Butterworth high pass filter
(D) Wien-bridge oscillator
4.116 Assume that the op-amp of the figure is ideal. If v_{i} is a triangular wave, then v_{0} will be

(A) square wave
(B) triangular wave
(C) parabolic wave
(D) sine wave
4.117 The most commonly used amplifier is sample and hold circuits is
(A) a unity gain inverting amplifier
(B) a unity gain non-inverting amplifier
(C) an inverting amplifier with a gain of 10
(D) an inverting amplifier with a gain of 100

2000
TWO MARKS
In the circuit of figure, assume that the transistor is in the active region. It has a large β and its base-emitter voltage is 0.7 V . The value of I_{c} is
(A) zero
(B) $\left(V_{1}-V_{2}\right) \sin \omega t$
(C) $-\left(V_{1}+V_{2}\right) \sin \omega t$
(D) $\left(V_{1}+V_{2}\right) \sin \omega t$

is a

(A) Indeterminate since R_{c} is not given (B) 1 mA
(C) 5 mA
(D) 10 mA
4.119 If the op-amp in the figure has an input offset voltage of 5 mV and an open-loop voltage gain of 10000 , then v_{0} will be

(A) 0 V
(B) 5 mV
(C) +15 V or -15 V
(D) +50 V or -50 V

1999
ONE MARK
4.120 The first dominant pole encountered in the frequency response of a compensated op-amp is approximately at
(A) 5 Hz
(B) 10 kHz
(C) 1 MHz
(D) 100 MHz
4.121 Negative feedback in an amplifier
(A) reduces gain
(B) increases frequency and phase distortions
(C) reduces bandwidth
(D) increases noise
4.122 In the cascade amplifier shown in the given figure, if the commonemitter stage $\left(Q_{1}\right)$ has a transconductance $g m_{1}$, and the common base stage $\left(Q_{2}\right)$ has a transconductance $g m_{2}$, then the overall transconductance $g\left(=i_{0} / v_{i}\right)$ of the cascade amplifier is

(A) $g_{m 1}$
(B) $g_{m 2}$
(C) $\frac{g_{m 1}}{2}$
(D) $\frac{g_{m 2}}{2}$
4.123 Crossover distortion behavior is characteristic of
(A) Class A output stage
(B) Class B output stage
(C) Class AB output stage
(D) Common-base output stage

1999

TWO MARK
4.124 An amplifier has an open-loop gain of 100, an input impedance of $1 \mathrm{k} \Omega$, and an output impedance of 100Ω. A feedback network with a feedback factor of 0.99 is connected to the amplifier in a voltage series feedback mode. The new input and output impedances, respectively, are
(A) 10Ω and 1Ω
(B) 10Ω and $10 \mathrm{k} \Omega$
(C) $100 \mathrm{k} \Omega$ and 1Ω
(D) $100 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$
4.125 A dc power supply has a no-load voltage of 30 V , and a full-load voltage of 25 V at a full-load current of 1 A . Its output resistance and load regulation, respectively, are
(A) 5Ω and 20%
(B) 25Ω and 20%
(C) 5Ω and 16.7%
(D) 25Ω and 16.7%

1998

ONE MARK
${ }^{4.126}$ The circuit of the figure is an example of feedback of the following type

(A) current series
(B) current shunt
(C) voltage series
(D) voltage shunt

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
4.127 In a differential amplifier, CMRR can be improved by using an increased
(A) emitter resistance
(B) collector resistance
(C) power supply voltages
(D) source resistance
${ }^{4.128}$ From a measurement of the rise time of the output pulse of an amplifier whose is a small amplitude square wave, one can estimate the following parameter of the amplifier
(A) gain-bandwidth product
(B) slow rate
(C) upper 3-dB frequency
(D) lower 3-dB frequency
4.129 The emitter coupled pair of BJT's given a linear transfer relation between the differential output voltage and the differential output voltage and the differential input voltage $V_{i d}$ is less α times the thermal voltage, where α is
(A) 4
(B) 3
(C) 2
(D) 1
4.130 In a shunt-shunt negative feedback amplifier, as compared to the basic amplifier
(A) both, input and output impedances,decrease
(B) input impedance decreases but output impedance increases
(C) input impedance increase but output
(D) both input and output impedances increases.

1998

TWO MARKS
A multistage amplifier has a low-pass response with three real poles at $s=-\omega_{1}-\omega_{2}$ and ω_{3}. The approximate overall bandwidth B of the amplifier will be given by
(A) $B=\omega_{1}+\omega_{2}+\omega_{3}$
(B) $\frac{1}{B}=\frac{1}{\omega_{1}}+\frac{1}{\omega_{2}}+\frac{1}{\omega_{3}}$
(C) $B=\left(\omega_{1}+\omega_{2}+\omega_{3}\right)^{1 / 3}$
(D) $B=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}}$
4.132 One input terminal of high gain comparator circuit is connected to ground and a sinusoidal voltage is applied to the other input. The output of comparator will be
(A) a sinusoid
(B) a full rectified sinusoid
(C) a half rectified sinusoid
(D) a square wave
4.133 In a series regulated power supply circuit, the voltage gain A_{v} of the 'pass' transistor satisfies the condition
(A) $A_{v} \rightarrow \infty$
(B) $1 \ll A_{v}<\infty$
(C) $A_{v} \approx 1$
(D) $A_{v} \ll 1$
4.134 For full wave rectification, a four diode bridge rectifier is claimed to have the following advantages over a two diode circuit :
(A) less expensive transformer,
(B) smaller size transformer, and
(C) suitability for higher voltage application.

Of these,
(A) only (1) and (2) are true
(B) only (1) and (3) are true

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(C) only (2) and (3) are true
(D) (1), (2) as well as (3) are true
4.135 In the MOSFET amplifier of the figure is the signal output V_{1} and V_{2} obey the relationship

(A) $V_{1}=\frac{V_{2}}{2}$
(B) $V_{1}=-\frac{V_{2}}{2}$
(C) $V_{1}=2 V_{2}$
(D) $V_{1}=-2 V_{2}$
4.136 For small signal ac operation, a practical forward biased diode can be modelled as
(A) a resistance and a capacitance in series
(B) an ideal diode and resistance in parallel
(C) a resistance and an ideal diode in series
(D) a resistance

1997

ONE MARK
4.137 In the BJT amplifier shown in the figure is the transistor is based in the forward active region. Putting a capacitor across R_{E} will

(A) decrease the voltage gain and decrease the input impedance
(B) increase the voltage gain and decrease the input impedance
(C) decrease the voltage gain and increase the input impedance
(D) increase the voltage gain and increase the input impedance
4.138 A cascade amplifier stags is equivalent to
(A) a common emitter stage followed by a common base stage
(B) a common base stage followed by an emitter follower
(C) an emitter follower stage followed by a common base stage
(D) a common base stage followed by a common emitter stage
4.139 In a common emitter BJT amplifier, the maximum usable supply voltage is limited by
(A) Avalanche breakdown of Base-Emitter junction
(B) Collector-Base breakdown voltage with emitter open $\left(B V_{C B O}\right)$
(C) Collector-Emitter breakdown voltage with base open ($B V_{C B O}$)
(D) Zener breakdown voltage of the Emitter-Base junction

TWO MARKS
In the circuit of in the figure is the current i_{D} through the ideal diode (zero cut in voltage and forward resistance) equals

(A) 0 A
(B) 4 A
(C) 1 A
(D) None of the above
${ }^{4.141}$ The output voltage V_{0} of the circuit shown in the figure is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) -4 V
(B) 6 V
(C) 5 V
(D) -5.5 V
4.142 A half wave rectifier uses a diode with a forward resistance $R f$. The voltage is $V_{m} \sin \omega t$ and the load resistance is R_{L}. The DC current is given by
(A) $\frac{V_{m}}{\sqrt{2} R_{L}}$
(B) $\frac{V_{m}}{\pi\left(R_{f}+R_{L}\right)}$
(C) $\frac{2 V_{m}}{\sqrt{\pi}}$
(D) $\frac{V_{m}}{R_{L}}$

1996

ONE MARK
In the circuit of the given figure, assume that the diodes are ideal and the meter is an average indicating ammeter. The ammeter will read

(A) $0.4 \sqrt{2} \mathrm{~A}$
(B) 0.4 A
(C) $\frac{0.8}{\pi} \mathrm{~A}$
(D) $\frac{0.4}{\pi} \mathrm{mamp}$
4.144 The circuit shown in the figure is that of

(A) a non-inverting amplifier
(B) an inverting amplifier
(C) an oscillator
(D) a Schmitt trigger

1996

TWO MARKS
In the circuit shown in the given figure N is a finite gain amplifier with a gain of k, a very large input impedance, and a very low output impedance. The input impedance of the feedback amplifier with the feedback impedance Z connected as shown will be

(A) $Z\left(1-\frac{1}{k}\right)$
(B) $Z(1-k)$
(C) $\frac{Z}{(k-1)}$
(D) $\frac{Z}{(1-k)}$
4.146 A Darlington stage is shown in the figure. If the transconductance of Q_{1} is $g_{m 1}$ and Q_{2} is $g_{m 2}$, then the overall transconductance $g_{m c}\left[\underline{\Delta} \frac{i_{c}^{c}}{v_{b e}^{c}}\right]$
is given by

(A) $g_{m 1}$
(B) $0.5 g_{m 1}$
(C) $g_{m 2}$
(D) $0.5 g_{m 2}$
4.147 Value of R in the oscillator circuit shown in the given figure, so chosen that it just oscillates at an angular frequency of ω. The value of ω and the required value of R will respectively be
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

(A) $10^{5} \mathrm{rad} / \mathrm{sec}, 2 \times 10^{4} \Omega$
(B) $2 \times 10^{4} \mathrm{rad} / \mathrm{sec}, 2 \times 10^{4} \Omega$
(C) $2 \times 10^{4} \mathrm{rad} / \mathrm{sec}, 10^{5} \Omega$
(D) $10^{5} \mathrm{rad} / \mathrm{sec}, 10^{5} \Omega$
.148 A zener diode in the circuit shown in the figure is has a knee current of 5 mA , and a maximum allowed power dissipation of 300 mW . What are the minimum and maximum load currents that can be drawn safely from the circuit, keeping the output voltage V_{0} constant at 6 V ?

(A) $0 \mathrm{~mA}, 180 \mathrm{~mA}$
(B) $5 \mathrm{~mA}, 110 \mathrm{~mA}$
(C) $10 \mathrm{~mA}, 55 \mathrm{~mA}$
(D) $60 \mathrm{~mA}, 180 \mathrm{~mA}$

GATE Electronics \& Communication
by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

SOLUTIONS

4.1 Option (B) is correct.

For the given ideal op-amp, negative terminal will be also ground (at zero voltage) and so, the collector terminal of the $B J T$ will be at zero voltage.
i.e.,

$$
V_{C}=0 \text { volt }
$$

The current in $1 \mathrm{k} \Omega$ resistor is given by

$$
I=\frac{5-0}{1 \mathrm{k} \Omega}=5 \mathrm{~mA}
$$

This current will flow completely through the $B J T$ since, no current will flow into the ideal op-amp (I/P resistance of ideal opamp is infinity). So, for $B J T$ we have

$$
\begin{aligned}
V_{C} & =0 \\
V_{B} & =0 \\
I_{C} & =5 \mathrm{~mA}
\end{aligned}
$$

i.e.,the base collector junction is reverse biased (zero voltage) therefore, the collector current $\left(I_{C}\right)$ can have a value only if baseemitter is forward biased. Hence,
4.2 Option (A) is correct.

The i/p voltage of the system is given as

$$
\begin{aligned}
V_{\text {in }} & =V_{1}+V_{f} \\
& =V_{1}+k V_{\text {out }} \\
& =V_{1}+k A_{0} V_{1} \\
& =V_{1}\left(1+k A_{0}\right)
\end{aligned}
$$

$$
\left(V_{o u t}=A_{0} V_{1}\right)
$$

Therefore, if k is increased then input voltage is also increased so, the input impedance increases. Now, we have

$$
\begin{aligned}
V_{\text {out }} & =A_{0} V_{1} \\
& =A_{0} \frac{V_{\text {in }}}{\left(1+k A_{0}\right)} \\
& =\frac{A_{0} V_{\text {in }}}{\left(1+k A_{0}\right)}
\end{aligned}
$$

Since, $V_{i n}$ is independent of k when seen from output mode, the output voltage decreases with increase in k that leads to the decrease of output impedance. Thus, input impedance increases and output impedance decreases.
Option (B) is correct.

From the circuit, we have

$$
\begin{array}{ll}
& I_{s}=I_{Z}+I_{L} \\
\text { or, } & I_{Z}=I_{s}-I_{L}
\end{array}
$$

$$
\begin{aligned}
& V_{B E}=0.7 \text { volts } \\
& \Rightarrow \quad V_{B}-V_{E}=0.7 \\
& \Rightarrow \quad 0-V_{\text {out }}=0.7 \\
& \text { or, } \quad V_{\text {out }}=-0.7 \text { volt }
\end{aligned}
$$

(1)

Since, voltage across zener diode is 5 V so, current through 100Ω resistor is obtained as

$$
I_{s}=\frac{10-5}{100}=0.05 \mathrm{~A}
$$

Therefore, the load current is given by

$$
I_{L}=\frac{5}{R_{L}}
$$

Since, for proper operation, we must
have

$$
I_{Z} \geq I_{k n e s}
$$

So, from Eq. (1), we write

$$
\begin{aligned}
0.05 \mathrm{~A}-\frac{5}{R_{L}} & \geq 10 \mathrm{~mA} \\
50 \mathrm{~mA}-\frac{5}{R_{L}} & \geq 10 \mathrm{~mA} \\
40 \mathrm{~mA} & \geq \frac{5}{R_{L}} \\
40 \times 10^{-3} & \geq \frac{5}{R_{L}}
\end{aligned}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

$$
\begin{aligned}
& \frac{1}{40 \times 10^{-3}} \leq \frac{R_{L}}{5} \\
& \frac{5}{40 \times 10^{-3}} \leq R_{L}
\end{aligned}
$$

$$
\text { or, } \quad 125 \Omega \leq R_{L}
$$

Therefore, minimum value of $R_{L}=125 \Omega$
Now, we know that power rating of Zener diode is given by

$$
P_{R}=V_{Z} I_{Z(\max)}
$$

$I_{Z(\max)}$ is maximum current through zener diode in reverse bias.
Maximum currrent through zener diode flows when load current is zero. i.e.,

Therefore,

$$
I_{Z(\max)}=I_{s}=\frac{10-5}{100}=0.05
$$

Option (A) is correct.
For the given circuit, we obtain the small signal model as shown in figure below :

We obtain the node voltage at V_{1} as

$$
\begin{aligned}
\quad \frac{V_{1}}{R_{D}}+\frac{V_{1}}{R_{L}+\frac{1}{s C}}+g_{m} V_{i} & =0 \\
\Rightarrow \quad V_{1} & =\frac{-g_{m} V_{i}}{\frac{1}{R_{D}}+\frac{1}{R_{L}+\frac{1}{s C}}}
\end{aligned}
$$

Therefore, the output voltage V_{0} is obtained as

$$
\begin{aligned}
V_{0} & =\frac{V_{1} R_{L}}{R_{L}+\frac{1}{s C}} \\
& =\frac{R_{L}}{R_{L}+\frac{1}{s C}}\left(\frac{-g_{m} V_{i}}{\frac{1}{R_{D}}+\frac{1}{R_{L}+\frac{1}{s C}}}\right)
\end{aligned}
$$

so, the transfer function is

$$
\frac{V_{0}}{V_{i}}=\frac{-R_{D} R_{L} s C g_{m}}{1+s C\left(R_{D}+R_{L}\right)}
$$

Then, we have the pole at $\omega=\frac{1}{C\left(R_{D}+R_{L}\right)}$
It gives the lower cutoff frequency of transfer function.
i.e.,

$$
\begin{aligned}
\omega_{0} & =\frac{1}{C\left(R_{D}+R_{L}\right)} \\
f_{0} & =\frac{1}{2 \pi C\left(R_{D}+R_{L}\right)} \\
& =\frac{1}{2 \pi \times 10^{-6} \times 20 \times 10^{3}} \\
& =7.97 \\
& \approx 8 \mathrm{~Hz}
\end{aligned}
$$

Option (C) is correct.

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

For the given ideal op-Amps we can assume

$$
\begin{aligned}
& V_{2}^{-}=V_{2}^{+}=V_{2}(\text { ideal }) \\
& V_{1}^{+}=V_{1}^{-}=V_{1}(\text { ideal })
\end{aligned}
$$

So, by voltage division

$$
\begin{aligned}
V_{1} & =\frac{V_{\text {out }} \times 1}{2} \\
V_{\text {out }} & =2 V_{1}
\end{aligned}
$$

and, as the I / P current in $\mathrm{Op}-\mathrm{amp}$ is always zero therefore, there will be no voltage drop across $1 \mathrm{~K} \Omega$ in II op-amp

$$
\text { i.e., } \quad V_{2}=1 \mathrm{~V}
$$

Therefore,

$$
\begin{aligned}
& \frac{V_{1}-V_{2}}{1}=\frac{V_{2}-(-2)}{1} \\
& \Rightarrow \quad V_{1}-1=1+2 \\
& \text { or, }
\end{aligned}
$$

Hence,

$$
V_{\text {out }}=2 V_{1}=8 \text { volt }
$$

Option (B) is correct.
For the given circuit, we can make the truth table as below

X	Y	Z
0	0	0
0	1	1
1	0	0
1	1	0

Logic 0 means voltage is $v=0$ volt and logic 1 means voltage is 5 volt

For $x=0, y=0$, Transistor is at cut off mode and diode is forward biased. Since, there is no drop across forward biased diode.
So, $\quad Z=Y=0$
For $x=0, y=1$, Again Transistor is in cutoff mode, and diode is forward biased. with no current flowing through resistor.
So, $\quad Z=Y=1$
For $x=1, y=0$, Transistor is in saturation mode and so, z directly connected to ground irrespective of any value of Y
i.e., $\quad Z=0$ (ground)

Similarly for $X=Y=1$

$$
Z=0 \text { (ground) }
$$

Hence, from the obtained truth table, we get

$$
Z=\bar{X} Y
$$

4.7 Option (D) is correct.

Given, the input voltage

$$
V_{Y Z}=100 \sin \omega t
$$

For + ve half cycle

$$
V_{Y Z}>0
$$

i.e., V_{Y} is a higher voltage than V_{Z}

So, the diode will be in cutoff region. Therefore, there will no voltage difference between X and W node.
i.e., $\quad V_{W X}=0$

Now, for - ve half cycle all the four diodes will active and so, X and W terminal is short circuited

For more GATE Resources, Mock Test and
 Study material join the community http:/lwww.facebook.com/gateec2014

i.e.,	$V_{W X}=0$
Hence,	$V_{W X}=0$ for all t

4.8 Option (C) is correct.

The equivalent circuit can be shown as

$$
V_{T h}=V_{C C} \frac{R_{2}}{R_{1}+R_{2}}
$$

$$
=\frac{3 R_{2}}{R_{1}+R_{2}}
$$

and

$$
R_{T h}=\frac{R_{2} R_{1}}{R_{2}+R_{1}}
$$

Since, $I_{C}=\beta I_{B}$ has $\beta \approx \infty$ (very high) so, I_{B} is negative in comparison to I_{C}. Therefore, we can write the base voltage

$$
\begin{array}{rlrl}
& V_{B} & =V_{T h} \\
\text { So, } & V_{T h}-0.7-I_{C} R_{E} & =0 \\
\text { or, } & \frac{3 R_{2}}{R_{1}+R_{2}}-0.7-\left(10^{-3}\right)(500) & =0 \\
& \text { or, } & \frac{3 R_{2}}{60 \mathrm{k} \Omega+R_{2}} & =0.7+0.5 \\
\text { or, } & 3 R_{2} & =(60 \mathrm{k} \Omega)(1.2)+1.2 R_{2} \\
\text { or, } & 1.8 R_{2} & =(60 \mathrm{k} \Omega) \times(1.2) \\
& R_{2} & =\frac{60 \times 1.2}{1.8}=40 \mathrm{k} \Omega
\end{array}
$$

Option (C) is correct.

$$
\begin{array}{lrl}
\text { Given } & i_{b} & =1+0.1 \cos (1000 \pi t) \mathrm{mA} \\
\text { So, } & I_{B} & =\mathrm{DC} \text { component of } i_{b} \\
& & =1 \mathrm{~mA}
\end{array}
$$

In small signal model of the transistor

$$
\begin{array}{rlr}
r_{\pi} & =\frac{\beta V_{T}}{I_{C}} & V_{T} \rightarrow \text { Thermal voltage } \\
& =\frac{V_{T}}{I_{C} / \beta}=\frac{V_{T}}{I_{B}} & \frac{I_{C}}{\beta}=I_{B} \\
& =\frac{V_{T}}{I_{B}} &
\end{array}
$$

So, $\quad r_{\pi}=\frac{25 \mathrm{mV}}{1 \mathrm{~mA}}=25 \Omega \quad V_{T}=25 \mathrm{mV}, I_{B}=1 \mathrm{~mA}$
Option (D) is correct.
Let $v>0.7 \mathrm{~V}$ and diode is forward biased. By applying Kirchoff's voltage law

$$
\begin{array}{r}
10-i \times 1 \mathrm{k}-v=0 \\
10-\left[\frac{v-0.7}{500}\right](1000)-v=0 \\
10-(v-0.7) \times 2-v=0 \\
10-3 v+1.4=0 \\
v=\frac{11.4}{3}=3.8 \mathrm{~V}>0.7 \quad \text { (Assumption is true) } \\
\text { So, } \quad i=\frac{v-0.7}{500}=\frac{3.8-0.7}{500}=6.2 \mathrm{~mA}
\end{array}
$$

Option (A) is correct.
The circuit composed of a clamper and a peak rectifier as shown.

Clamper clamps the voltage to zero voltage, as shown

The peak rectifier adds +1 V to peak voltage, so overall peak voltage lowers down by -1 volt.
So,

$$
v_{o}=\cos \omega t-1
$$

4.12 Option (A) is correct.

We put a test source between terminal 1, 2 to obtain equivalent impedance

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
Z_{T h}=\frac{V_{t e s t}}{I_{t e s t}}
$$

Applying KCL at top right node

$$
\begin{gather*}
\frac{V_{\text {test }}}{9 \mathrm{k}+1 \mathrm{k}}+\frac{V_{\text {test }}}{100}-99 I_{b}=I_{\text {test }} \\
\frac{V_{\text {test }}}{10 \mathrm{k}}+\frac{V_{\text {test }}}{100}-99 I_{b}=I_{\text {test }} \tag{i}\\
I_{b}=-\frac{V_{\text {test }}}{9 k+1 k}=-\frac{V_{\text {test }}}{10 \mathrm{k}}
\end{gather*}
$$

But
Substituting I_{b} into equation (i), we have

$$
\begin{aligned}
\frac{V_{\text {test }}}{10 \mathrm{k}}+\frac{V_{\text {test }}}{100}+\frac{99 V_{\text {test }}}{10 \mathrm{k}} & =I_{\text {test }} \\
\frac{100 V_{\text {test }}}{10 \times 10^{3}}+\frac{V_{\text {test }}}{100} & =I_{\text {test }} \\
\frac{2 V_{\text {test }}}{100} & =I_{\text {test }} \\
Z_{\text {Th }} & =\frac{V_{\text {test }}}{I_{\text {test }}}=50 \Omega
\end{aligned}
$$

4.13 Option (B) is correct.

First we obtain the transfer function.

$$
\begin{aligned}
\frac{0-V_{i}(j \omega)}{\frac{1}{j \omega C}+R_{1}}+\frac{0-V_{o}(j \omega)}{R_{2}} & =0 \\
\frac{V_{o}(j \omega)}{R_{2}} & =\frac{-V_{i}(j \omega)}{\frac{1}{j \omega C}+R_{1}} \\
V_{o}(j \omega) & =-\frac{V_{i}(j \omega) R_{2}}{R_{1}-j \frac{1}{\omega C}}
\end{aligned}
$$

At $\omega \rightarrow 0$ (Low frequencies)

$$
\frac{1}{\omega C} \rightarrow \infty, \text { so } V_{o}=0
$$

At $\omega \rightarrow \infty$ (higher frequencies)

$$
\frac{1}{\omega C} \rightarrow 0, \text { so } V_{o}(j \omega)=-\frac{R_{2}}{R_{1}} V_{i}(j \omega)
$$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

The filter passes high frequencies so it is a high pass filter.

$$
\begin{aligned}
H(j \omega) & =\frac{V_{o}}{V_{i}}=\frac{-R_{2}}{R_{1}-j \frac{1}{\omega C}} \\
|H(\infty)| & =\left|\frac{-R_{2}}{R_{1}}\right|=\frac{R_{2}}{R_{1}}
\end{aligned}
$$

At 3 dB frequency, gain will be $\sqrt{2}$ times of maximum gain [$H(\infty)$]

So,

$$
\begin{aligned}
\left|H\left(j \omega_{0}\right)\right| & =\frac{1}{\sqrt{2}}|H(\infty)| \\
\frac{R_{2}}{\sqrt{R_{1}^{2}+\frac{1}{\omega_{0}^{2} C^{2}}}} & =\frac{1}{\sqrt{2}}\left(\frac{R_{2}}{R_{1}}\right) \\
2 R_{1}^{2} & =R_{1}^{2}+\frac{1}{\omega_{0}^{2} C^{2}} \\
R_{1}^{2} & =\frac{1}{\omega^{2} C^{2}} \\
\omega_{0} & =\frac{1}{R_{1} C}
\end{aligned}
$$

Option (D) is correct.
DC Analysis :

Using KVL in input loop,

$$
\begin{align*}
V_{C}-100 I_{B}-0.7 & =0 \\
V_{C} & =100 I_{B}+0.7 \tag{i}
\end{align*}
$$

$$
\begin{align*}
I_{C} & \simeq I_{E}=\frac{13.7-V_{C}}{12 k}=(\beta+1) I_{B} \\
\frac{13.7-V_{C}}{12 \times 10^{3}} & =100 I_{B} \tag{ii}
\end{align*}
$$

Solving equation (i) and (ii),

$$
I_{B}=0.01 \mathrm{~mA}
$$

Small Signal Analysis :

Transforming given input voltage source into equivalent current source.

This is a shunt-shunt feedback amplifier.
Given parameters,

$$
\begin{aligned}
& r_{\pi}=\frac{V_{T}}{I_{B}}=\frac{25 \mathrm{mV}}{0.01 \mathrm{~mA}}=2.5 \mathrm{k} \Omega \\
& g_{m}=\frac{\beta}{r_{\pi}}=\frac{100}{2.5 \times 1000}=0.04 \mathrm{~s}
\end{aligned}
$$

Writing KCL at output node

$$
\begin{aligned}
\frac{v_{0}}{R_{C}}+g_{m} v_{\pi}+\frac{v_{0}-v_{\pi}}{R_{F}} & =0 \\
v_{0}\left[\frac{1}{R_{C}}+\frac{1}{R_{F}}\right]+v_{\pi}\left[g_{m}-\frac{1}{R_{F}}\right] & =0
\end{aligned}
$$

Substituting $R_{C}=12 \mathrm{k} \Omega, R_{F}=100 \mathrm{k} \Omega, g_{m}=0.04 \mathrm{~s}$

$$
\begin{align*}
v_{0}\left(9.33 \times 10^{-5}\right)+v_{\pi}(0.04) & =0 \\
v_{0} & =-428.72 V_{\pi} \tag{i}
\end{align*}
$$

Writing KCL at input node

$$
\begin{aligned}
\frac{v_{i}}{R_{s}} & =\frac{v_{\pi}}{R_{s}}+\frac{v_{\pi}}{r_{\pi}}+\frac{v_{\pi}-v_{o}}{R_{F}} \\
\frac{v_{i}}{R_{s}} & =v_{\pi}\left[\frac{1}{R_{s}}+\frac{1}{r_{\pi}}+\frac{1}{R_{F}}\right]-\frac{v_{0}}{R_{F}} \\
\frac{v_{i}}{R_{s}} & =v_{\pi}\left(5.1 \times 10^{-4}\right)-\frac{v_{0}}{R_{F}}
\end{aligned}
$$

Substituting V_{π} from equation (i)

$$
\begin{aligned}
\frac{v_{i}}{R_{s}} & =\frac{-5.1 \times 10^{-4}}{428.72} v_{0}-\frac{v_{0}}{R_{F}} \\
\frac{v_{i}}{10 \times 10^{3}} & =-1.16 \times 10^{-6} v_{0}-1 \times 10^{-5} v_{0} \quad R_{s}=10 \mathrm{k} \Omega
\end{aligned}
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(source resistance)

$$
\begin{aligned}
\frac{v_{i}}{10 \times 10^{3}} & =-1.116 \times 10^{-5} \\
\left|A_{v}\right| & =\left|\frac{v_{0}}{v_{i}}\right|=\frac{1}{10 \times 10^{3} \times 1.116 \times 10^{-5}} \simeq 8.96
\end{aligned}
$$

4.15 Option (A) is correct.

For the parallel RLC circuit resonance frequency is,

$$
\omega_{r}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10 \times 10^{-6} \times 1 \times 10^{-9}}}=10 \mathrm{Mrad} / \mathrm{s}
$$

Thus given frequency is resonance frequency and parallel RLC circuit has maximum impedance at resonance frequency

Gain of the amplifier is $g_{m} \times\left(Z_{C} \| R_{L}\right)$ where Z_{C} is impedance of parallel RLC circuit.
At $\omega=\omega_{r}, Z_{C}=R=2 \mathrm{k} \Omega=Z_{C \max }$.
Hence at this frequency (ω_{r}), gain is

$$
\text { Gain }\left.\right|_{\omega=\omega_{r}}=g_{m}\left(Z_{C} \| R_{L}\right)=g_{m}(2 \mathrm{k} \| 2 \mathrm{k})=g_{m} \times 10^{3} \text { which is }
$$

maximum. Therefore gain is maximum at $\omega_{r}=10 \mathrm{M} \mathrm{rad} / \mathrm{sec}$.
Option (D) is correct.
The given circuit is shown below :

From diagram we can write

$$
I_{i}=\frac{V_{o}}{R_{1}}+\frac{V_{o}}{s L_{1}}
$$

Transfer function

$$
\begin{array}{lc}
& H(s)=\frac{V_{o}}{I_{1}}=\frac{s R_{1} L_{1}}{R_{1}+s L_{1}} \\
\text { or } & H(j \omega)=\frac{j \omega R_{1} L_{1}}{R_{1}+j \omega L_{1}} \\
\text { At } \omega=0 & H(j \omega)=0 \\
\text { At } \omega=\infty & H(j \omega)=R_{1}=\text { constant. }
\end{array}
$$

Hence HPF.
Option (C) is correct.
Given circuit is shown below.

For transistor M_{2},

$$
\begin{aligned}
& V_{G S}=V_{G}-V_{S}=V_{x}-0=V_{x} \\
& V_{D S}=V_{D}-V_{S}=V_{x}-0=V_{x}
\end{aligned}
$$

Since $V_{G S}-V_{T}=V_{x}-1<V_{D S}$, thus M_{2} is in saturation.
By assuming M_{1} to be in saturation we have

$$
\begin{aligned}
I_{D S\left(M_{1}\right)} & =I_{D S\left(M_{2}\right)} \\
\frac{\mu_{n} C_{0 x}}{2}(4)\left(5-V_{x}-1\right)^{2} & =\frac{\mu_{n} C_{0 x}}{2} 1\left(V_{x}-1\right)^{2} \\
4\left(4-V_{x}\right)^{2} & =\left(V_{x}-1\right)^{2} \\
2\left(4-V_{x}\right) & = \pm\left(V_{x}-1\right)
\end{aligned}
$$

or
Taking positive root,

$$
\begin{aligned}
8-2 V_{x} & =V_{x}-1 \\
V_{x} & =3 \mathrm{~V}
\end{aligned}
$$

At $V_{x}=3 \mathrm{~V}$ for $M_{1}, V_{G S}=5-3=2 \mathrm{~V}<V_{D S}$. Thus our assumption is true and $V_{x}=3 \mathrm{~V}$.

Option (D) is correct.
We have

$$
\alpha=0.98
$$

Now

$$
\beta=\frac{\alpha}{1-\alpha}=4.9
$$

In active region, for common emitter amplifier,

$$
\begin{equation*}
I_{C}=\beta I_{B}+(1+\beta) I_{C O} \tag{1}
\end{equation*}
$$

Substituting $I_{C O}=0.6 \mu \mathrm{~A}$ and $I_{B}=20 \mu \mathrm{~A}$ in above eq we have,

$$
I_{C}=1.01 \mathrm{~mA}
$$

4.19 Option (C) is correct.

In active region

$$
V_{\text {BEon }}=0.7 \mathrm{~V}
$$

Emitter voltage $\quad V_{E}=V_{B}-V_{B E o n}=-5.7 \mathrm{~V}$
Emitter Current $\quad I_{E}=\frac{V_{E}-(-10)}{4.3 \mathrm{k}}=\frac{-5.7-(-10)}{4.3 \mathrm{k}}=1 \mathrm{~mA}$
Now $\quad I_{C} \approx I_{E}=1 \mathrm{~mA}$
Applying KCL at collector

Since

$$
i_{1}=0.5 \mathrm{~mA}
$$

$$
i_{1}=C \frac{d V_{C}}{d t}
$$

or

$$
\begin{equation*}
V_{C}=\frac{1}{C} \int i_{1} d t=\frac{i_{1}}{C} t \tag{1}
\end{equation*}
$$

* $⿻$ 人

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
with time, the capacitor charges and voltage across collector changes from 0 towards negative.
When saturation starts,

$$
V_{C E}=0.7 \Rightarrow V_{C}=+5 \mathrm{~V} \text { (across }
$$

capacitor)
Thus from (1) we get,

$$
+5=\frac{0.5 \mathrm{~mA}}{5 \mu \mathrm{~A}} T
$$

or

$$
T=\frac{5 \times 5 \times 10^{-6}}{0.5 \times 10^{-3}}=50 \mathrm{msec}
$$

4.20 Option (A) is correct.

The current flows in the circuit if all the diodes are forward biased. In forward biased there will be 0.7 V drop across each diode.

Thus

$$
I_{D C}=\frac{12.7-4(0.7)}{9900}=1 \mathrm{~mA}
$$

4.21 Option (B) is correct.

The forward resistance of each diode is

$$
\begin{aligned}
r & =\frac{V_{T}}{I_{C}}=\frac{25 \mathrm{mV}}{1 \mathrm{~mA}}=25 \Omega \\
V_{a c} & =V_{i} \times\left(\frac{4(r)}{4(r)+9900}\right) \\
& =100 \mathrm{mV} \cos (\omega t) 0.01
\end{aligned}
$$

Thus
$=1 \cos (\omega t) \mathrm{mV}$
4.22 Option (A) is correct.

The equivalent circuit of given amplifier circuit (when C_{E} is ${ }^{4} .24$ connected, R_{E} is short-circuited)

Input impedance
$R_{i}=R_{B} \| r_{\pi}$
Voltage gain

$$
A_{V}=g_{m} R_{C}
$$

Now, if C_{E} is disconnected, resistance R_{E} appears in the circuit

Input impedance $\quad R_{\text {in }}=R_{B} \|\left[r_{\pi}+(\beta+1)\right] R_{E}$
GATE Electronics \& Communication
by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Input impedance increases
Voltage gain $\quad A_{V}=\frac{g_{m} R_{C}}{1+g_{m} R_{E}} \quad$ Voltage gain decreases.
Option (B) is correct.
Since, emitter area of transistor Q_{1} is half of transistor Q_{2}, so current

$$
I_{E_{1}}=\frac{1}{2} I_{E_{2}} \text { and } I_{B_{1}}=\frac{1}{2} I_{B_{2}}
$$

The circuit is as shown below :

$$
V_{B}=-10-(-0.7)=-9.3 \mathrm{~V}
$$

Collector current

$$
\begin{aligned}
& I_{1}=\frac{0-(-9.3)}{(9.3 \mathrm{k} \Omega)}=1 \mathrm{~mA} \\
& \beta_{1}=700(\mathrm{high}), \text { So } I_{C} \approx I_{E_{1}}
\end{aligned}
$$

Applying KCL at base we have

$$
\begin{aligned}
1-I_{E} & =I_{B_{1}}+I_{B_{2}} \\
1-\left(\beta_{1}+1\right) I_{B_{1}} & =I_{B_{1}}+I_{B_{2}} \\
1 & =(700+1+1) \frac{I_{B_{2}}}{2}+I_{B_{2}} \\
I_{B_{2}} & \approx \frac{2}{702} \\
I_{0}=I_{C_{2}} & =\beta_{2} \cdot I_{B_{2}}=715 \times \frac{2}{702} \approx 2 \mathrm{~mA}
\end{aligned}
$$

Option (A) is correct.
The circuit is as shown below :

$$
\begin{array}{rlrl}
\text { So, } & \frac{0-V_{i}}{R_{1}}+\frac{0-V_{o}}{R_{2}} & =0 \\
\text { or } & & \frac{V_{o}}{V_{i}} & =-\frac{R_{2}}{R_{1}}
\end{array}
$$

4.25 Option (B) is correct.

By small signal equivalent circuit analysis

Input resistance seen by source v_{s}

$$
\begin{aligned}
R_{\mathrm{in}} & =\frac{v_{s}}{i_{s}}=R_{s}+R_{s}| | r_{s} \\
& =(1000 \Omega)+(93 \mathrm{k} \Omega \| 259 \Omega)=1258 \Omega
\end{aligned}
$$

4.26 Option (B) is correct.

Cut-off frequency due to C_{2}

$$
f_{o}=\frac{1}{2 \pi\left(R_{C}+R_{L}\right) C_{2}}
$$

$$
f_{o}
$$

$=\frac{1}{2 \times 3.14 \times 1250 \times 4.7 \times 10^{-6}}=271 \mathrm{~Hz}$
Lower cut-off frequency

$$
f_{L} \approx \frac{f_{o}}{10}=\frac{271}{10}=27.1 \mathrm{~Hz}
$$

4.27 Option (B) is correct.

The circuit is as shown below

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

Current

$$
I=\frac{20-0}{4 R}+\frac{V_{i}-0}{R}=\frac{5+V_{i}}{R}
$$

If $I>0$, diode D_{2} conducts
So, for $\frac{5+V_{I}}{2}>0 \Rightarrow V_{I}>-5, D_{2}$ conducts

Equivalent circuit is shown below

Output is $V_{o}=0$. If $I<0$, diode D_{2} will be off

$$
\frac{5+V_{I}}{R}<0 \Rightarrow V_{I}<-5, D_{2} \text { is off }
$$

The circuit is shown below
or

$$
V_{o}=-V_{i}-5
$$

$$
\begin{array}{ll}
\text { At } V_{i}=-5 \mathrm{~V}, & V_{o}=0 \\
\text { At } V_{i}=-10 \mathrm{~V}, & V_{o}=5 \mathrm{~V}
\end{array}
$$

Option (A) is correct.
Let diode be OFF. In this case 1 A current will flow in resistor and voltage across resistor will be $V=1 . \mathrm{V}$
Diode is off, it must be in reverse biased, therefore

$$
V_{i}-1>0 \rightarrow V_{i}>1
$$

Thus for $V_{i}>1$ diode is off and $V=1 V$
Option (B) and (C) doesn't satisfy this condition.
Let $V_{i}<1$. In this case diode will be on and voltage across diode will be zero and $V=V_{i}$

Thus

$$
V=\min \left(V_{i}, 1\right)
$$

Option (A) is correct.
The R_{2} decide only the frequency.
Option (D) is correct.
For small increase in V_{G} beyond 1 V the n - channel MOSFET goes into saturation as $V_{G S} \rightarrow+i v e$ and $p-$ MOSFET is always in active region or triode region.

Option (C) is correct.
Option (D) is correct.
The circuit is shown in fig below

The voltage at non inverting terminal is 5 V because OP AMP is ideal and inverting terminal is at 5 V .

Thus

$$
\begin{aligned}
I_{C} & =\frac{10-5}{5 k}=1 \mathrm{~mA} \\
V_{E} & =I_{E} R_{E}=1 \mathrm{~m} \times 1.4 \mathrm{k}=1.4 \mathrm{~V} \quad I_{E}=I_{C} \\
& =0.6+1.4=2 \mathrm{~V}
\end{aligned}
$$

Thus the feedback is negative and output voltage is $V=2 V$.
4.33 Option (D) is correct.

The output voltage is

$$
V_{0}=A_{r} V_{i} \approx-\frac{h_{f e} R_{C}}{h_{i e}} V_{i}
$$

Here $R_{C}=3 \Omega$ and $h_{i e}=3 \mathrm{k} \Omega$
Thus

$$
\begin{aligned}
V_{0} & \approx-\frac{150 \times 3 \mathrm{k}}{3 \mathrm{k}} V_{i} \\
& \approx-150\left(A \cos 20 t+B \sin 10^{6} t\right)
\end{aligned}
$$

Since coupling capacitor is large so low frequency signal will be filtered out, and best approximation is

$$
V_{0} \approx-150 B \sin 10^{6} t
$$

4.34 Option (C) is correct.

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
For the positive half of V_{i}, the diode D_{1} is forward bias, D_{2} is reverse bias and the zener diode is in breakdown state because $V_{i}>6.8$. Thus output voltage is

$$
V_{0}=0.7+6.8=7.5 \mathrm{~V}
$$

For the negative half of V_{i}, D_{2} is forward bias thus
Then $\quad V_{0}=-0.7 \mathrm{~V}$
4.35 Option (B) is correct.

By Current mirror,

$$
I_{x}=\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}} I_{\text {bias }}
$$

Since MOSFETs are identical,
Thus

$$
\left(\frac{W}{L}\right)_{2}=\left(\frac{W}{L}\right)_{2}
$$

Hence

$$
I_{x}=I_{b i a s}
$$

4.36 Option (B) is correct.

The circuit is using ideal OPAMP. The non inverting terminal of OPAMP is at ground, thus inverting terminal is also at virtual ground.

Thus current will flow from -ive terminal (0 Volt) to -1 Volt source. Thus the current I is

$$
I=\frac{0-(-1)}{100 k}=\frac{1}{100 k}
$$

The current through diode is

$$
I=I_{0}\left(e^{\frac{V}{V_{1}}}-1\right)
$$

Now $V_{T}=25 \mathrm{mV}$ and $I_{0}=1 \mu \mathrm{~A}$
Thus

$$
I=10^{-6}\left[e_{25 \times 10^{-3}}-1\right]=\frac{1}{10^{5}}
$$

or

$$
V=0.06 \mathrm{~V}
$$

Now

$$
V_{0}=I \times 4 \mathrm{k}+V=\frac{1}{100 k} \times 4 k+0.06=0.1
$$

V

Option (B) is correct.
The circuit is using ideal OPAMP. The non inverting terminal of OPAMP is at ground, thus inverting terminal is also at virtual ground.

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Thus we can write
or

$$
\frac{v_{i}}{R_{1}+s L}=\frac{-v}{\frac{R_{2}}{s R_{2} C_{2}+1}}
$$

$$
\frac{v_{0}}{v_{i}}=-\frac{R_{2}}{\left(R_{1}+s L\right)\left(s R_{2} C_{2}+1\right)}
$$

and from this equation it may be easily seen that this is the standard form of T.F. of low pass filter

$$
H(s)=\frac{K}{\left(R_{1}+s L\right)\left(s R_{2} C_{2}+1\right)}
$$

and form this equation it may be easily seen that this is the standard form of T.F. of low pass filter

$$
H(s)=\frac{K}{a s^{2}+b s+b}
$$

Option () is correct.
The current in both transistor are equal. Thus g_{m} is decide by M_{1}. Hence (C) is correct option.
Option (C) is correct.
Let the voltage at non inverting terminal be V_{1}, then after applying KCL at non inverting terminal side we have

$$
\begin{aligned}
\frac{15-V_{1}}{10}+\frac{V_{0}-V_{1}}{10} & =\frac{V_{1}-(-15)}{10} \\
\text { or } \quad V_{1} & =\frac{V_{0}}{3}
\end{aligned}
$$

If V_{0} swings from -15 to +15 V then V_{1} swings between -5 V to +5 V.

Option (A) is correct.
For the given DC values the Thevenin equivalent circuit is as follows

The Thevenin resistance and voltage are

$$
\text { and total } \quad R_{T H}=\frac{10 \mathrm{k} \times 20 \mathrm{k}}{10 \mathrm{k}+20 \mathrm{k}}=6.67 \mathrm{k} \Omega
$$

$$
\begin{aligned}
V_{T H} & =\frac{10}{10+20} \times 9=3 \mathrm{~V} \\
R_{T H} & =\frac{10 \mathrm{k} \times 20 \mathrm{k}}{10 \mathrm{k}+20 \mathrm{k}}=6.67 \mathrm{k} \Omega
\end{aligned}
$$

Since β is very large, therefore I_{B} is small and can be ignored
Thus

$$
I_{E}=\frac{V_{T H}-V_{B E}}{R_{E}}=\frac{3-0.7}{2.3 k}=1 \mathrm{~mA}
$$

4.41 Option (D) is correct.

The small signal model is shown in fig below

4.42 Option (C) is correct.

The circuit shown in (C) is correct full wave rectifier circuit.

During Negative Cycle

During Positive Cycle
4.43 Option (A) is correct.

In the transconductance amplifier it is desirable to have large input resistance and large output resistance.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

4.44 Option (C) is correct.

We redraw the circuit as shown in fig.

Applying voltage division rule

$$
v_{+}=0.5 \mathrm{~V}
$$

	We know that	v_{+}	$=v_{-}$
	Thus	v_{-}	$=0.5 \mathrm{~V}$
	Now	i	$=\frac{1-0.5}{1 k}=0.5 \mathrm{~mA}$
and	i	$=\frac{0.5-v_{0}}{2 k}=0.5 \mathrm{~mA}$	
or	v_{0}	$=0.5-1=-0.5 \mathrm{~V}$	

Option (B) is correct.
If we assume β very large, then $I_{B}=0$ and $I_{E}=I_{C} ; V_{B E}=0.7 \mathrm{~V}$. We assume that BJT is in active, so applying KVL in Base-emitter loop

$$
I_{E}=\frac{2-V_{B E}}{R_{E}}=\frac{2-0.7}{1 k}=1.3 \mathrm{~mA}
$$

Since β is very large, we have $I_{E}=I_{C}$, thus

$$
I_{C}=1.3 \mathrm{~mA}
$$

Now applying KVL in collector-emitter loop

$$
10-10 I_{C}-V_{C E}-I_{C}=0
$$

or

$$
\begin{aligned}
V_{C E} & =-4.3 \mathrm{~V} \\
V_{B C} & =V_{B E}-V_{C E} \\
& =0.7-(-4.3)=5 \mathrm{~V}
\end{aligned}
$$

Since $V_{B C}>0.7 \mathrm{~V}$, thus transistor in saturation.
Option (D) is correct.
Here the inverting terminal is at virtual ground and the current in resistor and diode current is equal i.e.

$$
\begin{array}{ll}
& I_{R}=I_{D} \\
\text { or } & \frac{V_{i}}{R}=I_{S} e^{V_{D} / V_{T}} \\
\text { or } & V_{D}=V_{T} \ln \frac{V_{i}}{I_{s} R}
\end{array}
$$

For the first condition

$$
V_{D}=0-V_{o 1}=V_{T} \ln \frac{2}{I_{s} R}
$$

For the first condition

$$
V_{D}=0-V_{o 1}=V_{T} \ln \frac{4}{I_{s} R}
$$

Subtracting above equation

$$
\begin{array}{ll}
V_{o 1}-V_{o 2} & =V_{T} \ln \frac{4}{I_{s} R}-V_{T} \ln \frac{2}{I_{s} R} \\
\text { or } & V_{o 1}-V_{o 2}
\end{array}=V_{T} \ln \frac{4}{2}=V_{T} \ln 28
$$

Option (D) is correct.
We have $\quad V_{t h p}=V_{t h p}=1 \mathrm{~V}$
and

$$
\frac{W_{P}}{L_{P}}=\frac{W_{N}}{L_{N}}=40 \mu \mathrm{~A} / \mathrm{V}^{2}
$$

From figure it may be easily seen that $V_{a s}$ for each NMOS and PMOS is 2.5 V
Thus $\quad I_{D}=K\left(V_{a s}-V_{T}\right)^{2}=40 \frac{\mu \mathrm{~A}}{\mathrm{~V}^{2}}(2.5-1)^{2}=90 \mu \mathrm{~A}$
Option (C) is correct.
We have $V_{Z}=7$ volt, $V_{K}=0, R_{Z}=10 \Omega$
Circuit can be modeled as shown in fig below

Since V_{i} is lies between 10 to 16 V , the range of voltage across 200 k Ω

$$
V_{200}=V_{i}-V_{Z}=3 \text { to } 9 \text { volt }
$$

The range of current through $200 \mathrm{k} \Omega$ is

$$
\frac{3}{200 k}=15 \mathrm{~mA} \text { to } \frac{9}{200 k}=45 \mathrm{~mA}
$$

The range of variation in output voltage

$$
15 \mathrm{~m} \times R_{Z}=0.15 \mathrm{~V} \text { to } 45 \mathrm{~m} \times R_{Z}=0.45
$$

Thus the range of output voltage is 7.15 Volt to 7.45 Volt
4.49 Option (A) is correct.

The voltage at non-inverting terminal is

$$
V_{+}=\frac{\frac{1}{s C}}{R+\frac{1}{s C}} V_{i}=\frac{1}{1+s C R} V_{i}
$$

$$
\text { Now } \quad V=V_{+}=\frac{1}{1+s C R} V_{i}
$$

Applying voltage division rule
or

$$
\begin{aligned}
& V_{+}=\frac{R_{1}}{R_{1}+R_{1}}\left(V_{0}+V_{i}\right)=\frac{\left(V_{o}+V_{i}\right)}{2} \\
& \frac{1}{1+s C R} V_{i}=\frac{\left(V_{o}+V_{i}\right)}{2}
\end{aligned}
$$

or $\quad \frac{V_{o}}{V}=-1+\frac{2}{1+s R C}$
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
\frac{V_{0}}{V_{i}}=\frac{1-s R C}{1+s R C}
$$

4.50 Option (C) is correct.

$$
\begin{aligned}
\frac{V_{0}}{V_{i}} & =H(s)=\frac{1-s R C}{1+s R C} \\
H(j \omega) & =\frac{1-j \omega R C}{1+j \omega R C} \\
\angle H(j \omega) & =\phi=-\tan ^{-1} \omega R C-\tan ^{-1} \omega R C \\
& =-2 \tan ^{-2} \omega R C
\end{aligned}
$$

$$
\text { Minimum value, } \quad \phi_{\min }=-\pi(\text { at } \omega \rightarrow \infty)
$$

$$
\text { Maximum value, } \quad \phi_{\max }=0(\text { at } \omega=0)
$$

4.51 Option (D) is correct.

In the transconductance amplifier it is desirable to have large input impedance and large output impedance.
4.52 Option (C) is correct.
4.53 Option (D) is correct.

The voltage at inverting terminal is

$$
V_{-}=V_{+}=10 \mathrm{~V}
$$

Here note that current through the capacitor is constant and that is

$$
I=\frac{V_{-}}{1 \mathrm{k}}=\frac{10}{1 \mathrm{k}}=10 \mathrm{~mA}
$$

Thus the voltage across capacitor at $t=1 \mathrm{msec}$ is

$$
V_{C}=\frac{1}{C} \int_{0}^{1 m} I d t=\frac{1}{1 \mu} \int_{0}^{1 m} 10 m d t
$$

$=10^{4} \int_{0}^{\mathrm{Im}} d t=10 \mathrm{~V}$
4.54 Option (A) is correct.

In forward bias Zener diode works as normal diode.
Thus for negative cycle of input Zener diode is forward biased and it conducts giving $V_{R}=V_{i n}$.

For positive cycle of input Zener diode is reversed biased when $0<V_{i n}<6$, Diode is OFF and $V_{R}=0$
when $V_{i n}>6$ Diode conducts and voltage across diode is 6 V . Thus voltage across is resistor is

$$
V_{R}=V_{i n}-6
$$

Only option (B) satisfy this condition.
Option (C) is correct.
The circuit under DC condition is shown in fig below

Applying KVL we have

$$
\begin{equation*}
V_{C C}-R_{C}\left(I_{C}+I_{B}\right)-V_{C E}=0 \tag{1}
\end{equation*}
$$

GATE Electronics \& Communication

 by RK KanodiaNow in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit WWW.nodia.co.in

and $\quad V_{C C}-R_{B} I_{B}-V_{B E}=0$
Substituting $I_{C}=\beta I_{B}$ in (1) we have

$$
V_{C C}-R_{C}\left(\beta I_{B}+I_{B}\right)-V_{C E}=0
$$

Solving (2) and (3) we get

$$
\begin{equation*}
V_{C E}=V_{C C}-\frac{V_{C C}-V_{B E}}{1+\frac{R_{B}}{R_{C}(1+\beta)}} \tag{3}
\end{equation*}
$$

Now substituting values we get

$$
V_{C E}=12-\frac{12-0.7}{1+\frac{53}{1+(1+60)}}=5.95 \mathrm{~V}
$$

Option (B) is correct.
We have

$$
\beta^{\prime}=\frac{110}{100} \times 60=66
$$

Substituting $\beta^{\prime}=66$ with other values in (iv) in previous solutions

$$
V_{C E}=12-\frac{12-0.7}{1+\frac{53}{1+(1+66)}}=5.29 \mathrm{~V}
$$

Thus change is

$$
=\frac{5.29-59.5}{5.95} \times 100=-4.3 \%
$$

Option (A) is correct.
Option (C) is correct.
The Zener diode is in breakdown region, thus

$$
\begin{array}{ll}
\text { We know that } & V_{+}=V_{Z}=6 \mathrm{~V}=V_{\text {in }} \\
\text { or } & V_{o}=V_{i n}\left(1+\frac{K_{f}}{R_{1}}\right) \\
V_{\text {out }} & =V_{o}=6\left(1+\frac{12 k}{24 k}\right)=9 \mathrm{~V}
\end{array}
$$

The current in $12 \mathrm{k} \Omega$ branch is negligible as comparison to 10Ω. Thus Current

$$
I_{C} \approx I_{E} \approx=\frac{V_{\text {out }}}{R_{L}}=\frac{9}{10}=0.9 \mathrm{~A}
$$

Now $\quad V_{C E}=15-9=6 \mathrm{~V}$
The power dissipated in transistor is

$$
P=V_{C E} I_{C}=6 \times 0.9=5.4 \mathrm{~W}
$$

4.59 Option (B) is correct.

If the unregulated voltage increase by 20%, them the unregulated voltage is 18 V , but the $V_{Z}=V_{i n}=6$ remain same and hence $V_{\text {out }}$ and I_{C} remain same. There will be change in $V_{C E}$
Thus,

$$
\begin{aligned}
& V_{C E}-18-9=9 \mathrm{~V} \\
& I_{C}=0.9 \mathrm{~A}
\end{aligned}
$$

$$
\text { Power dissipation } \quad P=V_{C E} I_{C}=9 \times 0.9=8.1 \mathrm{~W}
$$

Thus \% increase in power is

$$
\frac{8.1-5.4}{5.4} \times 100=50 \%
$$

$4.60 \quad$ Option (B) is correct.
Since the inverting terminal is at virtual ground, the current flowing through the voltage source is

$$
\begin{aligned}
I_{s} & =\frac{V_{s}}{10 \mathrm{k}} \\
\frac{V_{s}}{I_{s}} & =10 \mathrm{k} \Omega=R_{i n}
\end{aligned}
$$

4.61 Option (D) is correct.

The effect of current shunt feedback in an amplifier is to decrease the input resistance and increase the output resistance as :

$$
\begin{aligned}
R_{i f} & =\frac{R_{i}}{1+A \beta} \\
R_{o f} & =R_{0}(1+A \beta)
\end{aligned}
$$

$$
\text { where } \quad \begin{aligned}
R_{i} & \rightarrow \text { Input resistance without feedback } \\
R_{i f} & \rightarrow \text { Input resistance with feedback. }
\end{aligned}
$$

4.62 Option (B) is correct.

The CE configuration has high voltage gain as well as high current gain. It performs basic function of amplifications. The CB configuration has lowest R_{i} and highest R_{o}. It is used as last step to match a very low impedance source and to drain a high impedance load
Thus cascade amplifier is a multistage configuration of CE-CB
4.63 Option (D) is correct.

Common mode gain

$$
A_{C M}=-\frac{R_{C}}{2 R_{E}}
$$

And differential mode gain

$$
A_{D M}=-g_{m} R_{C}
$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Thus only common mode gain depends on R_{E} and for large value of R_{E} it decreases.
4.64 Option (C) is correct.

$$
\begin{aligned}
& I_{E}=I_{s}\left(\frac{V_{E E}}{e^{n V_{T}}}-1\right) \\
& =10^{-13}\left(\frac{0.7}{e^{1 \times 26 \times 10^{-3}}}-1\right)=49 \mathrm{~mA}
\end{aligned}
$$

Option (C) is correct.
The circuit is as shown below

Writing equation for I_{-}have

$$
\begin{align*}
\frac{e_{0}-V_{-}}{1 \mathrm{M}} & =I_{-} \\
\text {or } \quad e_{0} & =I_{-}(1 \mathrm{M})+\mathrm{V}_{-} \tag{1}
\end{align*}
$$

Writing equation for I_{+}we have

$$
\begin{align*}
\frac{0-V_{+}}{1 \mathrm{M}} & =I_{+} \\
V_{+} & =-I_{+}(1 \mathrm{M}) \tag{2}
\end{align*}
$$

or
Since for ideal OPAMP $V_{+}=V_{-}$, from (1) and (2) we have

$$
\begin{aligned}
e_{0} & =I_{-}(1 \mathrm{M})-\mathrm{I}_{+}(1 \mathrm{M}) \\
& =\left(I_{-}-I_{+}\right)(1 \mathrm{M})=I_{O S}(1 \mathrm{M})
\end{aligned}
$$

Thus if e_{0} has been measured, we can calculate input offset current $I_{O S}$ only

Option (C) is correct.
At low frequency capacitor is open circuit and voltage acr s noninverting terminal is zero. At high frequency capacitor act as short circuit and all input voltage appear at non-inverting terminal. Thus, this is high pass circuit.
The frequency is given by

$$
\omega=\frac{1}{R C}=\frac{1}{1 \times 10^{3} \times 1 \times 10^{-6}}=1000
$$

$\mathrm{rad} / \mathrm{sec}$
Option (B) is correct.
The circuit under DC condition is shown in fig below

Applying KVL we have

$$
\begin{aligned}
V_{C C}-R_{B} I_{B}-V_{B E}-R_{E} I_{E} & =0 \\
\text { or } & V_{C C}-R_{B} I_{B}-V_{B E}-R_{E}(\beta+1) I_{B}
\end{aligned}=0
$$

Since $I_{E}=I_{B}+\beta I_{B}$
or

$$
\begin{aligned}
I_{B} & =\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}} \\
& =\frac{20-0.7}{430 \mathrm{k}+(50+1) 1 \mathrm{k}}=40 \mu \mathrm{~A}
\end{aligned}
$$

Now

$$
\begin{aligned}
I_{C} & =\beta I_{B}=50 \times 40 \mu=2 \mathrm{~mA} \\
V_{C} & =V_{C C}-R_{C} I_{C}=20-2 \mathrm{~m} \times 2 \mathrm{k}=16 \mathrm{~V}
\end{aligned}
$$

Option (A) is correct.
The maximum load current will be at maximum input voltage i.e.
or

$$
\begin{aligned}
V_{\max } & =30 \mathrm{~V} \text { i.e. } \\
\frac{V_{\max }-V_{Z}}{1 \mathrm{k}} & =I_{L}+I_{Z} \\
\frac{30-5.8}{1 \mathrm{k}} & =I_{L}=0.5 \mathrm{~m}
\end{aligned}
$$

or

$$
I_{L}=24.2-0.5=23.7 \mathrm{~mA}
$$

4.69 Option (D) is correct.
4.70 Option (B) is correct.

The small signal model is as shown below

From the figure we have
and

$$
\begin{aligned}
Z_{i n} & =2 \mathrm{M} \Omega \\
Z_{0} & =r_{d}\left\|R_{D}=20 \mathrm{k}\right\| 2 \mathrm{k}=\frac{20}{11} \mathrm{k} \Omega
\end{aligned}
$$

4.71 Option (A) is correct.

The circuit in DC condition is shown below

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

Since the FET has high input resistance, gate current can be neglect and we get $V_{G S}=-2 \mathrm{~V}$

Since $V_{P}<V_{G S}<0$, FET is operating in active region
Now $\quad I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=10\left(1-\frac{(-2)}{(-8)}\right)^{2}$
$=5.625 \mathrm{~mA}$

$$
V_{D S}=V_{D D}-I_{D} R_{D}=20-5.625 \mathrm{~m} \times 2 \mathrm{k}
$$

$=8.75 \mathrm{~V}$
4.72 Option (B) is correct.

The transconductance is

$$
g_{m}=\frac{2}{\left|V_{P}\right| \sqrt{I_{D} I_{D S S}}}
$$

or,

$$
=\frac{2}{8} \sqrt{5.625 \mathrm{~mA} \times 10 \mathrm{~mA}}=1.875 \mathrm{mS}
$$

The gain is

$$
\begin{aligned}
A & =-g_{m}\left(r_{d} \| R_{D}\right) \\
& =1.875 \mathrm{~ms} \times \frac{20}{11} K=-3.41
\end{aligned}
$$

4.73 Option (B) is correct.

Only one diode will be in ON conditions
When lower diode is in ON condition, then

$$
V_{u}=\frac{2 \mathrm{k}}{2.5 \mathrm{k}} V_{s a t}=\frac{2}{2.5} 10=8 \mathrm{~V}
$$

when upper diode is in ON condition

$$
V_{u}=\frac{2 \mathrm{k}}{2.5 \mathrm{k}} V_{s a t}=\frac{2}{4}(-10)=-5 \mathrm{~V}
$$

Option (B) is correct.
An ideal OPAMP is an ideal voltage controlled voltage source.
Option (C) is correct.
In voltage series feed back amplifier, input impedance increases by factor $(1+A \beta)$ and output impedance decreases by the factor $(1+A \beta)$.

$$
\begin{aligned}
R_{i f} & =R_{i}(1+A \beta) \\
R_{o f} & =\frac{R_{o}}{(1+A \beta)}
\end{aligned}
$$

Option (A) is correct.
This is a Low pass filter, because

$$
\begin{array}{ll}
\text { At } \omega=\infty & \frac{V_{0}}{V_{i n}}=0 \\
\text { and at } \omega=0 & \frac{V_{0}}{V_{i n}}=1
\end{array}
$$

Option (D) is correct.
When $\left|I_{C}\right| \gg\left|I_{C O}\right|$

GATE Electronics \& Communication

by RK Kanodia

Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{aligned}
g_{m} & =\frac{\left|I_{C}\right|}{V_{T}}=\frac{1 \mathrm{~mA}}{25 \mathrm{mV}}=0.04=40 \mathrm{~mA} / \mathrm{V} \\
r_{\pi} & =\frac{\beta}{g_{m}}=\frac{100}{40 \times 10^{-3}}=2.5 \mathrm{k} \Omega
\end{aligned}
$$

Option (A) is correct.
The given circuit is wein bridge oscillator. The frequency of oscillation is

$$
2 \pi f=\frac{1}{R C}
$$

or

$$
C=\frac{1}{2 \pi R f}=\frac{1}{2 \pi \times 10^{3} \times 10^{3}}=\frac{1}{2 \pi} \mu
$$

Option (A) is correct.
The circuit is as shown below

We know that for ideal OPAMP

$$
V_{-}=V_{+}
$$

Applying KCL at inverting terminal

$$
\begin{equation*}
\frac{V_{-}-V_{s}}{R_{1}}+\frac{V_{-}-V_{0}}{R_{1}}=0 \tag{1}
\end{equation*}
$$

or $\quad 2 V-V_{o}=V_{s}$
Applying KCL at non-inverting terminal

$$
\frac{V_{+}}{R_{2}}+I_{L}+\frac{V_{+}-V_{o}}{R_{2}}=0
$$

or $\quad 2 V_{+}-V_{o}+I_{L} R_{2}=0$
Since $V_{-}=V_{+}$, from (1) and (2) we have
or

$$
\begin{aligned}
V_{s}+I_{L} R_{2} & =0 \\
I_{L} & =-\frac{V_{s}}{R_{2}}
\end{aligned}
$$

4.80 Option (D) is correct.

If I_{Z} is negligible the load current is

$$
\frac{12-V_{z}}{R}=I_{L}
$$

as per given condition

$$
100 \mathrm{~mA} \leq \frac{12-V_{Z}}{R} \leq 500 \mathrm{~mA}
$$

At $I_{L}=100 \mathrm{~mA} \frac{12-5}{R}=100 \mathrm{~mA}$
or

$$
R=70 \Omega
$$

At $I_{L}=500 \mathrm{~mA} \frac{12-5}{R}=500 \mathrm{~mA}$ $V_{Z}=5 \mathrm{~V}$
or

$$
R=14 \Omega
$$

Thus taking minimum we get

$$
R=14 \Omega
$$

4.81 Option (B) is correct.
4.82 Option (C) is correct.

The Thevenin equivalent is shown below

$$
V_{T}=\frac{R_{1}}{R_{1}+R_{2}} V_{C}=\frac{1}{4+1} \times 5=1 \mathrm{~V}
$$

Since β is large is large, $I_{C} \approx I_{E}, I_{B} \approx 0$ and

Now $\quad V_{C E}=5-2.2 \mathrm{k} I_{C}-300 I_{E}$

$$
=5-2.2 \mathrm{k} \times 1 \mathrm{~m}-300 \times 1 \mathrm{~m}
$$

$$
=2.5 \mathrm{~V}
$$

4.83 Option (B) is correct.

For the different combinations the table is as follows

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$C E$	$C E$	$C C$	$C B$
A_{i}	High	High	Unity
A_{v}	High	Unity	High
R_{i}	Medium	High	Low
R_{o}	Medium	Low	High

Option (D) is correct.
This circuit having two diode and capacitor pair in parallel, works as voltage doubler.
4.85 Option (B) is correct.

If the input is sinusoidal signal of 8 V (peak to peak) then

$$
V_{i}=4 \sin \omega t
$$

The output of comparator will be high when input is higher than $V_{\text {ref }}=2 \mathrm{~V}$ and will be low when input is lower than $V_{\text {ref }}=2 \mathrm{~V}$.
Thus the waveform for input is shown below

From fig, first crossover is at ωt_{1} and second crossover is at ωt_{2} where

$$
4 \sin \omega t_{1}=2 V
$$

Thus

$$
\begin{aligned}
& \omega t_{1}=\sin ^{-1} \frac{1}{2}=\frac{\pi}{6} \\
& \omega t_{2}=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}
\end{aligned}
$$

$$
\text { Duty Cycle }=\frac{\frac{5 \pi}{6}-\frac{\pi}{6}}{2 \pi}=\frac{1}{3}
$$

Thus the output of comparators has a duty cycle of $\frac{1}{3}$.
Option (C) is correct.

$$
\begin{aligned}
C M M R & =\frac{A_{d}}{A_{c}} \\
20 \log C M M R & =20 \log A_{d}-20 \log A_{c} \\
& =48-2=46 \mathrm{~dB}
\end{aligned}
$$

or

Where $A_{d} \rightarrow$ Differential Voltage Gain
and $A_{C} \rightarrow$ Common Mode Voltage Gain
Option (B) is correct.
The gain of amplifier is

$$
A_{i}=\frac{-g_{m}}{g_{b}+j \omega C}
$$

Thus the gain of a transistor amplifier falls at high frequencies due to the internal capacitance that are diffusion capacitance and transition capacitance.
4.88 Option (A) is correct.

We have $R_{i}=1 \mathrm{k} \Omega, \beta=0.2, A=50$
Thus,

$$
R_{i f}=\frac{R_{i}}{(1+A \beta)}=\frac{1}{11} \mathrm{k} \Omega
$$

Option (A) is correct.
The DC equivalent circuit is shown as below. This is fixed bias circuit operating in active region.

In first case
or

$$
\begin{aligned}
V_{C C}-I_{C 1} R_{2}-V_{C E 1} & =0 \\
6-1.5 \mathrm{~m} R_{2}-3 & =0
\end{aligned}
$$

or

$$
\begin{aligned}
& R_{2}=2 \mathrm{k} \Omega \\
& I_{B 1}=\frac{I_{C 1}}{\beta_{1}}=\frac{1.5 \mathrm{~m}}{150}=0.01 \mathrm{~mA}
\end{aligned}
$$

In second case $I_{B 2}$ will we equal to $I_{B 1}$ as there is no in R_{1}.
Thus

$$
\begin{aligned}
I_{C 2} & =\beta_{2} I_{B 2}=200 \times 0.01=2 \mathrm{~mA} \\
V_{C E 2} & =V_{C C}-I_{C 2} R_{2}=6-2 \mathrm{~m} \times 2 \mathrm{k} \Omega=2 \mathrm{~V}
\end{aligned}
$$

4.90 Option (A) is correct.

The given circuit is a $R-C$ phase shift oscillator and frequency of its oscillation is

$$
f=\frac{1}{2 \pi \sqrt{6} R C}
$$

4.91 Option (C) is correct.

If we see th figure we find that the voltage at non-inverting terminal is 3 V by the zener diode and voltage at inverting terminal will be 3 V . Thus V_{o} can be get by applying voltage division rule, i.e.

$$
\begin{array}{rlrl}
& \frac{20}{20+40} V_{o} & =3 \\
\text { or } \quad V_{0} & =9 \mathrm{~V}
\end{array}
$$

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
4.92 Option (B) is correct.

The circuit is as shown below

$$
\begin{aligned}
& V_{+}=\frac{8}{1+8}(3)=\frac{8}{3} \mathrm{k} \Omega \\
& V_{+}=V_{-}=\frac{8}{3} V
\end{aligned}
$$

Now applying KCL at inverting terminal we get
or

$$
\begin{aligned}
V_{o} & =6 V-10 \\
& =6 \times \frac{8}{3}-10=6 \mathrm{~V}
\end{aligned}
$$

4.93 Option (C) is correct.

The equivalent circuit of 3 cascade stage is as shown in fig.

Similarly

$$
V_{2}=\frac{1 k}{1 k+0.25 k} 50 V_{1}=40 V_{1}
$$

or

$$
V_{3}=40 \times 40 V_{1}
$$

$$
V_{o}=50 V_{3}=50 \times 40 \times 40 V_{1}
$$

or

$$
A_{V}=\frac{V_{o}}{V_{1}}=50 \times 40 \times 40=8000
$$

or $\quad 20 \log A_{V}=20 \log 8000=98 \mathrm{~dB}$
Option (D) is correct.
If a constant current is made to flow in a capacitor, the output voltage is integration of input current and that is sawtooth waveform as below :

$$
V_{C}=\frac{1}{C} \int_{0}^{t} i d t
$$

The time period of wave form is

Thus

$$
\begin{aligned}
3 & =\frac{1}{2 \times 10^{6}} \int_{0}^{20 \times 10^{-3}} i d \\
i\left(2 \times 10^{-3}-0\right) & =6 \times 10^{-6}
\end{aligned}
$$

or
or $\quad i=3 \mathrm{~mA}$
Thus the charging require 3 mA current source for 2 msec .

GATE Electronics \& Communication

by RK Kanodia

Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
4.95 Option (C) is correct.

In voltage-amplifier or voltage-series amplifier, the R_{i} increase and R_{o} decrease because

$$
\begin{aligned}
R_{i f} & =R_{i}(1+A \beta) \\
R_{o f} & =\frac{R_{o}}{(1+A \beta)}
\end{aligned}
$$

Option (B) is correct.
Let x be the gain and it is 20 db , therefore

$$
\begin{aligned}
20 \log x & =20 \\
x & =10
\end{aligned}
$$

or
Since Gain band width product is $10^{6} \mathrm{~Hz}$, thus
So, bandwidth is

$$
B W=\frac{10^{6}}{\text { Gain }}=\frac{10^{6}}{10}=10^{5} \mathrm{~Hz}=100 \mathrm{kHz}
$$

Option (A) is correct.
In multistage amplifier bandwidth decrease and overall gain increase. From bandwidth point of view only options (A) may be correct because lower cutoff frequency must be increases and higher must be decreases. From following calculation we have
We have $f_{L}=20 \mathrm{~Hz}$ and $f_{H}=1 \mathrm{kHz}$
For n stage amplifier the lower cutoff frequency is

$$
f_{L n}=\frac{f_{L}}{\sqrt{2^{\frac{1}{n}}-1}}=\frac{20}{\sqrt{2^{\frac{1}{3}}-1}}=39.2 \approx 40
$$

The higher cutoff frequency is

$$
f_{H n}=f_{H} \sqrt{2^{\frac{1}{2}}-1}=0.5 \mathrm{kHz}
$$

Option (A) is correct.
As per Barkhousen criterion for sustained oscillations $|A \beta| \geq 1$ and phase shift must be or $2 \pi n$.

Now from circuit

$$
\begin{aligned}
A & =\frac{V_{O}(f)}{V_{f}(f)}=1+\frac{R_{2}}{R_{1}} \\
\beta(f) & =\frac{1}{6} \angle 0=\frac{V_{f}(f)}{V_{O}(f)}
\end{aligned}
$$

Thus from above equation for sustained oscillation

$$
\begin{aligned}
6 & =1+\frac{R_{2}}{R_{1}} \\
\text { or } \quad R_{2} & =5 R_{1}
\end{aligned}
$$

4.99 Option (C) is correct.

Let the gain of OPAMP be A_{V} then we have

$$
20 \log A_{V}=40 \mathrm{~dB}
$$

or $\quad A_{V}=100$
Let input be $V_{i}=V_{m} \sin \omega t$ then we have
Now $\begin{aligned} V_{O} & =V_{V} V_{i}=V_{m} \sin \omega t \\ \frac{d V_{O}}{d t} & =A_{V} V_{m} \omega \cos \omega t\end{aligned}$
Slew Rate

$$
\left(\frac{d V_{O}}{d t}\right)_{\max }=A_{V} V_{m} \omega=A_{V} V_{m} 2 \pi f
$$

or $\quad V_{m}=\frac{S R}{A_{V} V 2 \pi f}$
$=\frac{1}{10^{-6} \times 100 \times 2 \pi \times 20 \times 10^{3}}$
or $\quad V_{M}=79.5 \mathrm{mV}$
4.100 Option (A) is correct.

The circuit is shown as below

$$
I=I_{Z}+I_{L}
$$

For satisfactory operations

$$
\frac{V_{i n}-V_{0}}{R}>I_{Z}+I_{L} \quad\left[I_{Z}+I_{L}=I\right]
$$

When $V_{i n}=30 \mathrm{~V}$,

$$
\frac{30-10}{R} \geq(10+1) \mathrm{mA}
$$

$$
\text { or } \quad \frac{20}{R} \geq 11 \mathrm{~mA}
$$

$$
\text { or } \quad R \leq 1818 \Omega
$$

when $V_{\text {in }}=50 \mathrm{~V}$

$$
\frac{50-10}{R} \geq(10+1) \mathrm{mA}
$$

For more GATE Resources, Mock Test and

 Study material join the community http:/lwww.facebook.com/gateec2014or

$$
\frac{40}{R} \geq 11 \times 10^{-3}
$$

Thus $R \leq 1818 \Omega$
4.101 Option (D) is correct.

We have

$$
I_{D S S}=10 \mathrm{~mA} \text { and } V_{P}=-5 \mathrm{~V}
$$

Now

$$
V_{G}=0
$$

$$
\text { and } \quad V_{S}=I_{D} R_{S}=1 \times 2.5 \Omega=2.5 \mathrm{~V}
$$

Thus

$$
V_{G S}=V_{G}-V_{S}=0-2.5=-2.5 \mathrm{~V}
$$

$$
\text { Now } \quad \begin{aligned}
g_{m} & =\frac{2 I_{D S S}}{\left|V_{P}\right|}\left[1-\left(\frac{-2.5}{-5}\right)\right]=2 \mathrm{mS} \\
A_{V} & =\frac{V_{0}}{V_{i}}=-g_{m} R_{D} \\
& \\
\text { So, } & =-2 m s \times 3 k=-6
\end{aligned}
$$

4.102 Option (C) is correct.

The current gain of a BJT is

$$
h_{f e}=g_{m} r_{\pi}
$$

4.103 Option (A) is correct.

The ideal op-amp has following characteristic :

$$
\begin{aligned}
& \\
& \\
& \text { and } \quad \begin{array}{l}
R_{i} \rightarrow \infty \\
R_{0} \rightarrow 0 \\
\\
\end{array} \quad \rightarrow \infty
\end{aligned}
$$

Option (C) is correct.
Both statements are correct because
(1) A stable multivibrator can be used for generating square wave, because of its characteristic
(2) Bi-stable multivibrator can store binary information, and this multivibrator also give help in all digital kind of storing.

Option (B) is correct.
If f_{T} is the frequency at which the short circuit common emitter gain attains unity magnitude then
or

$$
\begin{aligned}
f_{T} & =\frac{g_{m}}{2 \pi\left(C_{\mu}+C_{\pi}\right)}=\frac{38 \times 10^{-3}}{2 \pi \times\left(10^{-14}+4 \times 10^{-13}\right)} \\
& =1.47 \times 10^{10} \mathrm{~Hz}
\end{aligned}
$$

If f_{B} is bandwidth then we have

$$
f_{B}=\frac{f_{T}}{\beta}=\frac{1.47 \times 10^{10}}{90}=1.64 \times 10^{8} \mathrm{~Hz}
$$

Option (C) is correct.
If we neglect current through R_{B} then it can be open circuit as shown in fig.

Maximum power will dissipate in Zener diode when current through it is maximum and it will occur at $V_{i n}=30 \mathrm{~V}$

$$
I=\frac{V_{i n}-V_{o}}{20}=\frac{30-10}{20}=1 \mathrm{~A}
$$

$$
I I_{C}+I_{Z}=\beta I_{B}+I_{Z}
$$

Since $I_{C}=\beta I_{B}$

$$
=\beta I_{Z}+I_{Z}=(\beta+1) I_{Z}
$$

$$
\text { since } I_{B}=I_{Z}
$$

or

$$
I_{Z}=\frac{I}{\beta+1}=\frac{1}{99+1}=0.01 \mathrm{~A}
$$

Power dissipated in zener diode is

$$
\begin{aligned}
P_{Z} & =V_{Z} I_{Z}=9.5 \times 0.01=95 \mathrm{~mW} \\
I_{C} & =\beta I_{Z}=99 \times 0.1=0.99 \mathrm{~A} \\
V_{C E} & =V_{o}=10 \mathrm{~V}
\end{aligned}
$$

Power dissipated in transistor is

$$
P_{T}=V_{C} I_{C}=10 \times 0.99=9.9 \mathrm{~W}
$$

Option (B) is correct.
From the it may be easily seen that the tank circuit is having 2-capacitors and one-inductor, so it is colpits oscillator and frequency is

$$
\begin{aligned}
f & =\frac{1}{2 \pi \sqrt{L C_{e q}}} \\
C_{e q} & =\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{2 \times 2}{4}=1 \mathrm{pF} \\
f & =\frac{1}{2 \pi \sqrt{10 \times 10^{-6} \times 10^{-12}}}
\end{aligned}
$$

$$
=\frac{1 \times 10^{9}}{2 \pi \sqrt{10}}=50.3 \mathrm{MHz}
$$

4.108 Option (D) is correct.

The circuit is as shown below

Let V - be the voltage of inverting terminal, since non inverting terminal a at ground, the output voltage is

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
\begin{equation*}
V_{o}=A_{O L} V \tag{1}
\end{equation*}
$$

Now applying KCL at inverting terminal we have

$$
\begin{equation*}
\frac{V_{-}-V_{s}}{R_{1}}+\frac{V_{-}-V_{0}}{R_{2}}=0 \tag{2}
\end{equation*}
$$

From (1) and (2) we have

$$
\frac{V_{O}}{V_{s}}=A_{C L}=\frac{-R_{2}}{R-\frac{R_{2}+R_{1}}{R_{O L}}}
$$

Substituting the values we have

$$
A_{C L}=\frac{-10 \mathrm{k}}{1 k-\frac{10 \mathrm{k}+1 \mathrm{k}}{100 \mathrm{k}}}=-\frac{1000}{89} \approx-11
$$

4.109 Option (A) is correct.

The first OPAMP stage is the differentiator and second OPAMP stage is integrator. Thus if input is cosine term, output will be also cosine term. Only option (A) is cosine term. Other are sine term. However we can calculate as follows. The circuit is shown in fig

Applying KCL at inverting terminal of first OP AMP we have

$$
\begin{aligned}
\frac{V_{1}}{V_{S}} & =\frac{-\omega j L}{R}=\frac{-100 \times 10 \times 10^{-3}}{10}=\frac{-1}{10} \\
V_{1} & =\frac{-j V_{S}}{10}=j \cos 100 t
\end{aligned}
$$

or

Applying KCL at inverting terminal of second OP AMP we have

$$
\begin{aligned}
\frac{V_{O}}{V_{1}} & =\frac{-1 / j \omega C}{100} \\
& =-\frac{1}{j 100 \times 10 \times 10^{-6} \times 100}=j 10
\end{aligned}
$$

or

$$
\begin{aligned}
& V_{0}=j 10 V_{2}=j 10(-j \cos 100 t) \\
& V_{0}=10 \cos 100 t
\end{aligned}
$$

Option (A) is correct.
Common mode gain is

$$
A_{C}=\frac{\alpha R_{C}}{R_{E E}}
$$

Since source resistance of the current source is infinite $R_{E E}=\infty$, common mode gain $A_{C}=0$
4.111 Option (D) is correct.

In positive feed back it is working as OP-AMP in saturation region, and the input applied voltage is + ve.
So,

$$
V_{0}=+V_{s a t}=15 \mathrm{~V}
$$

4.112 Option (C) is correct.

With the addition of R_{E} the DC abis currents and voltages remain closer to the point where they were set by the circuit when the outside condition such as temperature and transistor parameter β change.

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
4.113 Option (A) is correct.

At high frequency

$$
A_{i}=-\frac{g_{m}}{g_{b c}^{\prime}+j \omega(C)}
$$

or,
$A_{i} \propto \frac{1}{\text { Capacitance }}$
and
$A_{i} \alpha \frac{1}{\text { frequency }}$
Thus due to the transistor capacitance current gain of a bipolar transistor drops.
4.114 Option (C) is correct.

As OP-AMP is ideal, the inverting terminal at virtual ground due to ground at non-inverting terminal. Applying KCL at inverting terminal
$s C\left(v_{1} \sin \omega t-0\right)+s C\left(V_{2} \sin \omega t-0\right)+s C\left(V_{o}-0\right)=0$
or $\quad V_{o}=-\left(V_{1}+V_{2}\right) \sin \omega t$
4.115 Option (D) is correct.

There is $R-C$, series connection in parallel with parallel $R-C$ combination. So, it is a wein bridge oscillator because two resistors R_{1} and R_{2} is also in parallel with them.
4.116 Option (A) is correct.

The given circuit is a differentiator, so the output of triangular wave will be square wave.
4.117 Option (B) is correct.

In sampling and hold circuit the unity gain non-inverting amplifier is used.

4.118 Option (D) is correct

The Thevenin equivalent is shown below

$$
V_{T}=\frac{R_{1}}{R_{1}+R_{2}} V_{C}=\frac{5}{10+5} \times 15=5 \mathrm{~V}
$$

Since β is large is large, $I_{C} \approx I_{E}, I_{B} \approx 0$ and

$$
\begin{aligned}
I_{E} & =\frac{V_{T}-V_{B E}}{R_{E}} \\
& =\frac{5-0.7}{0.430 k \Omega}=\frac{4.3}{0.430 K \Omega}=10 \mathrm{~mA}
\end{aligned}
$$

4.119 Option (C) is correct.

The output voltage will be input offset voltage multiplied by open by open loop gain. Thus
So
$V_{0}=5 \mathrm{mV} \times 10,000=50 \mathrm{~V}$
But $\quad V_{0}= \pm 15 \mathrm{~V}$ in saturation condition
So, it can never be exceeds $\pm 15 \mathrm{~V}$
So,

$$
V_{0}= \pm V_{s e t}= \pm 15 \mathrm{~V}
$$

4.120 Option (A) is correct.
4.121 Option (A) is correct.

Negative feedback in amplifier reduces the gain of the system.
Option (A) is correct.
By drawing small signal equivalent circuit

by applying KCL at E_{2}

$$
g_{m 1} V_{\pi_{1}}-\frac{V_{\pi_{2}}}{r_{\pi_{2}}}=g_{m 2} V_{\pi_{2}}
$$

at C_{2}

$$
i_{0}=-g_{m 2} V_{\pi_{2}}
$$

from eq (1) and (2)

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

$$
\begin{array}{rlrl}
g_{m 1} V_{\pi_{1}}+\frac{i_{0}}{g_{m 2} r_{\pi_{2}}} & =-i_{0} \\
g_{m 1} V_{\pi_{1}} & =-i_{0}\left[1+\frac{1}{g_{m 2} r_{\pi_{2}}}\right] & & \\
g_{m 2} r_{\pi_{2}} & =\beta \gg 1 \\
g_{m 1} V_{\pi_{1}} & =-i_{0} & & \\
\frac{i_{0}}{V_{\pi_{1}}} & =-g_{m 1} & & \because \quad V_{\pi_{1}}=V_{i}
\end{array}
$$

Option (B) is correct.
Crossover behavior is characteristic of calss B output stage. Here 2
transistor are operated one for amplifying + ve going portion and other for -ve going portion.
Option (C) is correct.
In Voltage series feedback mode input impedance is given by

$$
R_{\text {in }}=R_{i}\left(1+\beta_{v} A_{v}\right)
$$

where
$\beta_{v}=$ feedback factor
$A_{v}=$ openloop gain
and

$$
R_{i}=\text { Input impedance }
$$

So,

$$
R_{\mathrm{in}}=1 \times 10^{3}(1+0.99 \times 100)=100 \mathrm{k} \Omega
$$

Similarly output impedance is given by

Thus

$$
R_{\text {OUT }}=\frac{R_{0}}{\left(1+\beta_{v} A_{v}\right)} \quad R_{0}=\text { output impedance }
$$

Option (B) is correct.

$$
\begin{aligned}
\text { Regulation } & =\frac{V_{\text {no }- \text { load }}-V_{\text {fuel-load }}}{V_{\text {full }- \text { load }}} \\
& =\frac{30-25}{25} \times 100=20 \%
\end{aligned}
$$

$$
\text { Output resistance }=\frac{25}{1}=25 \Omega
$$

4.126 Option (D) is correct.

This is a voltage shunt feedback as the feedback samples a portion of output voltage and convert it to current (shunt).
4.127 Option (A) is correct.

In a differential amplifier CMRR is given by

$$
\mathrm{CMRR}=\frac{1}{2}\left[1+\frac{(1+\beta) I_{Q} R_{0}}{V_{T} \beta}\right]
$$

So where R_{0} is the emitter resistance. So CMRR can be improved by increasing emitter resistance.
${ }^{4.128}$ Option (C) is correct.
We know that rise time $\left(t_{r}\right)$ is

$$
t_{r}=\frac{0.35}{f_{H}}
$$

where f_{H} is upper 3 dB frequency. Thus we can obtain upper 3 dB frequency it rise time is known.
4.129 Option (D) is correct.

In a BJT differential amplifier for a linear response $V_{i d}<V_{T}$.
4.130 Option (D) is correct.

In a shunt negative feedback amplifier.
Input impedance

$$
R_{\mathrm{in}}=\frac{R_{i}}{(1+\beta A)}
$$

where

$$
\begin{aligned}
R_{i} & =\text { input impedance of basic amplifier } \\
\beta & =\text { feedback factor } \\
A & =\text { open loop gain }
\end{aligned}
$$

So, $R_{\text {in }}<R_{i}$
Similarly

$$
R_{\mathrm{OUT}}=\frac{R_{0}}{(1+\beta A)}
$$

$R_{\text {OUT }}<R_{0}$
Thus input \& output impedances decreases.
4.131 Option (A) is correct.
4.132 Option (D) is correct.

Comparator will give an output either equal to $+V_{\text {supply }}$ or $-V_{\text {supply }}$.
So output is a square wave.
4.133 Option (C) is correct.

In series voltage regulator the pass transistor is in common collector configuration having voltage gain close to unity.
4.134 Option (D) is correct.

In bridge rectifier we do not need central tap transformer, so its less expensive and smaller in size and its PIV (Peak inverse voltage) is also greater than the two diode circuit, so it is also suitable for higher voltage application.
4.135 Option (C) is correct.

In the circuit we have
and

$$
\begin{aligned}
V_{2} & =I_{S} \times \frac{R_{D}}{2} \\
V_{1} & =I_{S} \times R_{D} \\
\frac{V_{2}}{V_{1}} & =\frac{1}{2} \\
V_{1} & =2 V_{2}
\end{aligned}
$$

4.136 Option (C) is correct.

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
4.137 Option (C) is correct.

The equivalent circuit of given amplifier circuit (when C_{E} is connected, R_{E} is short-circuited)

Input impedance $\quad R_{i}=R_{B} \| r_{\pi}$
Voltage gain

$$
A_{V}=g_{m} R_{C}
$$

Now, if C_{E} is disconnected, resistance R_{E} appears in the circuit

Input impedance

$$
R_{\mathrm{in}}=R_{B} \|\left[r_{\pi}+(\beta+1)\right] R_{E}
$$

Input impedance increases
Voltage gain $\quad A_{V}=\frac{g_{m} R_{C}}{1+g_{m} R_{E}} \quad$ Voltage gain decreases.
4.138 Option (A) is correct.

In common emitter stage input impedance is high, so in cascaded amplifier common emitter stage is followed by common base stage.
4.139 Option (C) is correct.

We know that collect-emitter break down voltage is less than compare to collector base breakdown voltage.

$$
B V_{\mathrm{CEO}}<B V_{\mathrm{CBO}}
$$

both avalanche and zener break down. Voltage are higher than
$B V_{\mathrm{CEO}}$. So $B V_{\mathrm{CEO}}$ limits the power supply.
Option (C) is correct.

If we assume consider the diode in reverse bias then V_{n} should be greater than V_{P}.

$$
V_{P}<V_{n}
$$

by calculating

$$
\begin{aligned}
& V_{P}=\frac{10}{4+4} \times 4=5 \mathrm{Volt} \\
& V_{n}=2 \times 1=2 \mathrm{Volt}
\end{aligned}
$$

here $V_{P}>V_{n}$ (so diode cannot be in reverse bias mode).

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

apply node equation at node a

$$
\begin{aligned}
\frac{V_{a}-10}{4}+\frac{V_{a}}{4}+\frac{V_{a}}{1} & =2 \\
6 V_{a}-10 & =8 \\
V_{a} & =3 \mathrm{Volt} \\
I_{b} & =\frac{0-3}{4}+\frac{10-3}{4} \\
I_{b} & =\frac{10-6}{4}=1 \mathrm{amp}
\end{aligned}
$$

so current

Option (D) is correct.
By applying node equation at terminal (2) and (3) of $O P$-amp

$$
\frac{V_{a}-Q}{5}+\frac{V_{a}-V_{0}}{10}=0
$$

$$
\begin{aligned}
2 V_{a}-4+V_{a}-V_{0} & =0 \\
V_{0} & =3 V_{a}-4 \\
\frac{V_{a}-V_{0}}{100}+\frac{V_{a}-0}{10} & =0 \\
V_{a}-V_{0}+10 V_{a} & =0 \\
11 V_{a} & =V_{0} \\
V_{a} & =\frac{V_{0}}{11} \\
V_{0} & =\frac{3 V_{0}}{11}-4 \\
\frac{8 V_{0}}{11} & =-4 \\
V_{0} & =-5.5 \text { Volts }
\end{aligned}
$$

Option (B) is correct.
Circuit with diode forward resistance looks

So the DC current will

$$
I_{D C}=\frac{V_{m}}{\pi\left(R_{f}+R_{L}\right)}
$$

4.143 Option (D) is correct.

For the positive half cycle of input diode D_{1} will conduct \& D_{2} will be off. In negative half cycle of input D_{1} will be off \& D_{2} conduct so output voltage wave from across resistor $(10 \mathrm{k} \Omega)$ is -

Ammeter will read rms value of current
so

$$
\begin{aligned}
I_{\mathrm{rms}} & =\frac{V_{m}}{\pi R}(\text { half wave rectifier }) \\
& =\frac{4}{(10 \mathrm{k} \Omega) \pi}=\frac{0.4}{\pi} \mathrm{~mA}
\end{aligned}
$$

4.144 Option (D) is correct.

In given circuit positive feedback is applied in the op-amp., so it works as a Schmitt trigger.
4.145 Option (D) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Gain with out feedback factor is given by

$$
V_{0}=k V_{i}
$$

after connecting feedback impedance Z

given input impedance is very large, so after connecting Z we have

$$
I_{i}=\frac{V_{i}-V_{0}}{Z}
$$

$$
V_{0}=k V_{i}
$$

$$
\begin{aligned}
& I_{i}
\end{aligned}=\frac{V_{i}-k V_{i}}{Z}, ~=\frac{Z}{I_{i}}=\frac{Z}{(1-k)}
$$

4.146 Option (A) is correct.
4.147 Option (A) is correct.

For the circuit, In balanced condition It will oscillated at a frequency

$$
\omega
$$

$=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10 \times 10^{-3} \times .01 \times 10^{-6}}}=10^{5} \mathrm{rad} / \mathrm{sec}$
In this condition

$$
\begin{aligned}
\frac{R_{1}}{R_{2}} & =\frac{R_{3}}{R_{4}} \\
\frac{5}{100} & =\frac{R}{1} \\
R & =20 \mathrm{k} \Omega=2 \times 10^{4} \Omega
\end{aligned}
$$

4.148 Option (C) is correct.
V_{0} kept constant at

$$
V_{0}=6 \mathrm{volt}
$$

so current in 50Ω resistor

$$
\begin{aligned}
& I=\frac{9-6}{50 \Omega} \\
& I=60 \mathrm{~m} \mathrm{amp}
\end{aligned}
$$

Maximum allowed power dissipation in zener

$$
P_{Z}=300 \mathrm{~mW}
$$

Maximum current allowed in zener

$$
\begin{aligned}
& P_{Z} & =V_{Z}\left(I_{Z}\right)_{\max }=300 \times 10^{-3} \\
\Rightarrow & & =6\left(I_{Z}\right)_{\max }=300 \times 10^{-3} \\
\Rightarrow & & =\left(I_{Z}\right)_{\max }=50 \mathrm{mamp}
\end{aligned}
$$

Given knee current or minimum current in zener

$$
\begin{aligned}
\left(I_{Z}\right)_{\min } & =5 \mathrm{~m} \mathrm{amp} \\
I & =I_{Z}+I_{L} \\
I_{L} & =I-I_{Z} \\
\left(I_{L}\right)_{\min } & =I-\left(I_{Z}\right)_{\max } \\
& =(60-50) \mathrm{mamp}=10 \mathrm{mamp} \\
\left(I_{L}\right)_{\max } & =I-\left(I_{Z}\right)_{\min } \\
& =(60-5)=55 \mathrm{~m} \mathrm{amp}
\end{aligned}
$$

In given circuit

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
www.nodia.co.in

DIGITAL CIRCUITS

2013

ONE MARK
5.1 A bulb in a staircase has two switches, one switch being at the ground floor and the other one at the first floor. The bulb can be turned ON and also can be turned OFF by any one of the switches irrespective of the state of the other switch. The logic of switching of the bulb resembles
(A) and AND gate
(B) an OR gate
(C) an XOR gate
(D) a NAND gate

For 8085 microprocessor, the following program is executed.
MVI A, 05 H ;
MVI B, 05 H ;
PTR: ADD B;
DCR B;
JNZ PTR;
ADI 03H;
HLT;
At the end of program, accumulator contains
(A) 17 H
(B) 20 H
(C) 23 H
(D) 05 H

2013

There are four chips each of 1024 bytes connected to a 16 bit address bus as shown in the figure below, RAMs $1,2,3$ and 4 respectively are mappped to addresses

(A) $0 \mathrm{C} 00 \mathrm{H}-0 \mathrm{FFFH}, 1 \mathrm{C} 00 \mathrm{H}-1 \mathrm{FFFH}, 2 \mathrm{C} 00 \mathrm{H}-2 \mathrm{FFFH}, 3 \mathrm{C} 00 \mathrm{H}-$ 3 FFFH
(B) $1800 \mathrm{H}-1 \mathrm{FFFH}, 2800 \mathrm{H}-2 \mathrm{FFFH}, 3800 \mathrm{H}-3 \mathrm{FFFH}, 4800 \mathrm{H}-4 \mathrm{FFFH}$
(C) $0500 \mathrm{H}-08 \mathrm{FFH}, 1500 \mathrm{H}-18 \mathrm{FFH}, 3500 \mathrm{H}-38 \mathrm{FFH}, 5500 \mathrm{H}-58 \mathrm{FFH}$
(D) $0800 \mathrm{H}-0 \mathrm{BFFH}, 1800 \mathrm{H}-1 \mathrm{BFFH}, 2800 \mathrm{H}-2 \mathrm{BFFH}, 3800 \mathrm{H}-3 \mathrm{BFFH}$
5.4 Consider the given circuit

In this circuit, the race around
(A) does not occur
(B) occur when $C L K=0$
(C) occur when $C L K=1$ and $A=B=1$
(D) occur when $C L K=1$ and $A=B=0$
5.5 The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A is greater than the 2 -bit input B. The number of combinations for which the output is logic 1 , is

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(A) 4
(B) 6
(C) 8
(D) 10

In the circuit shown

(A) $Y=\bar{A} \bar{B}+\bar{C}$
(B) $Y=(A+B) C$
(C) $Y=(\bar{A}+\bar{B}) \bar{C}$
(D) $Y=A B+C$

In the sum of products function $f(X, Y, Z)=\sum(2,3,4,5)$, the prime implicants are
(A) $\bar{X} Y, X \bar{Y}$
(B) $\bar{X} Y, X \bar{Y} \bar{Z}, X \bar{Y} Z$
(C) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \bar{Y}$
(D) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \bar{Y} \bar{Z}, X \bar{Y} Z$

2012

TWO MARKS
5.8 In the CMOS circuit shown, electron and hole mobilities are equal, and M_{1} and M_{2} are equally sized. The device M_{1} is in the linear region if

(A) $V_{i n}<1.875 \mathrm{~V}$
(B) $1.875 \mathrm{~V}<V_{i n}<3.125 \mathrm{~V}$
(C) $V_{i n}>3.125 \mathrm{~V}$
(D) $0<V_{i n}<5 \mathrm{~V}$

The state transition diagram for the logic circuit shown is

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(A)

(B)

(C)

(B)

2011

ONE MARK
The output Y in the circuit below is always ' 1 ' when

(A) two or more of the inputs P, Q, R are ' 0 '
(B) two or more of the inputs P, Q, R are ' 1 '
(C) any odd number of the inputs P, Q, R is ' 0 '
(D) any odd number of the inputs P, Q, R is ' 1 '

When the output Y in the circuit below is " 1 ", it implies that data has

(A) changed from " 0 " to " 1 "
(B) changed from " 1 " to " 0 "
(C) changed in either direction
(D) not changed
${ }_{5.12}$ The logic function implemented by the circuit below is (ground implies a logic "0")

(A) $F=\operatorname{AND}(P, Q)$
(B) $F=\mathrm{OR}(P, Q)$
(C) $F=\operatorname{XNOR}(P, Q)$
(D) $F=\operatorname{XOR}(P, Q)$
${ }^{5.13}$ The output of a 3-stage Johnson (twisted ring) counter is fed to a digital-to analog (D/A) converter as shown in the figure below. Assume all states of the counter to be unset initially. The waveform which represents the D / A converter output V_{o} is

(A)

(B)

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

(C)

(D)

Two D flip-flops are connected as a synchronous counter that goes through the following $Q_{B} Q_{A}$ sequence $00 \rightarrow 11 \rightarrow 01 \rightarrow 10 \rightarrow 00 \rightarrow \ldots$. The connections to the inputs D_{A} and D_{B} are
(A) $D_{A}=Q_{B}, D_{B}=Q_{A}$
(B) $D_{A}=\bar{Q}_{A}, D_{B}=\bar{Q}_{B}$
(C) $D_{A}=\left(Q_{A} \bar{Q}_{B}+\bar{Q}_{A} Q_{B}\right), D_{B}=Q_{A}$
(D) $D_{A}=\left(Q_{A} Q_{B}+\bar{Q}_{A} \bar{Q}_{B}\right), D_{B}=\bar{Q}_{B}$

An 8085 assembly language program is given below. Assume that the carry flag is initially unset. The content of the accumulator after the execution of the program is

MVI	A, 07H
RLC	
MOV	B, A
RLC	
RLC	
ADD	B
RRC	

(A) 8 CH
(B) 64 H
(C) 23 H
(D) 15 H

2010

ONE MARK
Match the logic gates in Column \mathbf{A} with their equivalents in Column B

Column A

Column B

P

1

Q

2

R

3

S

4

(A) P-2, Q-4, R-1, S-3
(B) P-4, Q-2, R-1, S-3
(C) P-2, Q-4, R-3, S-1
(D) P-4, Q-2, R-3, S-1

In the circuit shown, the device connected Y5 can have address in the range

(A) 2000-20FF
(B) $2 \mathrm{D} 00-2 \mathrm{DFF}$
(C) 2E00-2EFF
(D) FD00 - FDFF
5.18 For the output F to be 1 in the logic circuit shown, the input combination should be

(A) $A=1, B=1, C=0$
(B) $A=1, B=0, C=0$
(C) $A=0, B=1, C=0$
(D) $A=0, B=0, C=1$

TWO MARKS
5.19 Assuming that the flip-flop are in reset condition initially, the count sequence observed at Q_{A}, in the circuit shown is

(A) 0010111...
(B) $0001011 \ldots$
(C) 0101111...
(D) 0110100...

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
5.20 The Boolean function realized by the logic circuit shown is

(A) $F=\Sigma m(0,1,3,5,9,10,14)$
(B) $F=\Sigma m(2,3,5,7,8,12,13)$
(C) $F=\Sigma m(1,2,4,5,11,14,15)$
(D) $F=\Sigma m(2,3,5,7,8,9,12)$

For the 8085 assembly language program given below, the content of the accumulator after the execution of the program is

3000	MVI	A,	45 H
3002	MOV	B,	A
3003	STC		
3004	CMC		
3005	RAR		
3006	XRA	B	

(A) 00 H
(B) 45 H
(C) 67 H
(D) E7H
5.22 The full form of the abbreviations TTL and CMOS in reference to logic families are
(A) Triple Transistor Logic and Chip Metal Oxide Semiconductor
(B) Tristate Transistor Logic and Chip Metal Oxide Semiconductor
(C) Transistor Transistor Logic and Complementary Metal Oxide Semiconductor
(D) Tristate Transistor Logic and Complementary Metal Oxide

Silicon

In a microprocessor, the service routine for a certain interrupt starts from a fixed location of memory which cannot be externally set, but the interrupt can be delayed or rejected Such an interrupt is
(A) non-maskable and non-vectored
(B) maskable and non-vectored
(C) non-maskable and vectored
(D) maskable and vectored

2009

TWO MARKS

If $X=1$ inlogicequation $[X+Z\{\bar{Y}+(\bar{Z}+X \bar{Y})\}]\{\bar{X}+\bar{X}(X+Y)\}=1$, then
(A) $Y=Z$
(B) $Y=\bar{Z}$
(C) $Z=1$
(D) $Z=0$
5.25 What are the minimum number of 2 - to -1 multiplexers required to generate a 2 - input AND gate and a 2- input Ex-OR gate
(A) 1 and 2
(B) 1 and 3

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
(C) 1 and 1
(D) 2 and 2

What are the counting states $\left(Q_{1}, Q_{2}\right)$ for the counter shown in the figure below

(A) $11,10,00,11,10, \ldots$
(B) $01,10,11,00,01 \ldots$
(C) $00,11,01,10,00 \ldots$
(D) $01,10,00,01,10 \ldots$

Statement for Linked Answer Question 5.18 \& 5.19 :

Two products are sold from a vending machine, which has two push buttons P_{1} and P_{2}.
When a buttons is pressed, the price of the corresponding product is displayed in a 7 - segment display. If no buttons are pressed, '0' is displayed signifying 'Rs 0'.
If only P_{1} is pressed, ' 2 ' is displayed, signifying 'Rs. 2 '
If only P_{2} is pressed ' 5 ' is displayed, signifying 'Rs. 5 '
If both P_{1} and P_{2} are pressed, ' E ' is displayed, signifying 'Error' The names of the segments in the 7 - segment display, and the glow of the display for ' 0 ', ' 2 ', ' 5 ' and ' E ' are shown below.

[^0](1) push buttons pressed/not pressed in equivalent to logic $1 / 0$ respectively.
(2) a segment glowing/not glowing in the display is equivalent to logic $1 / 0$ respectively.
5.27 If segments a to g are considered as functions of P_{1} and P_{2}, then which of the following is correct
(A) $g=\bar{P}_{1}+P_{2}, d=c+e$
(B) $g=P_{1}+P_{2}, d=c+e$
(C) $g=\bar{P}_{1}+P_{2}, e=b+c$
(D) $g=P_{1}+P_{2}, e=b+c$
5.28 What are the minimum numbers of NOT gates and 2 - input OR gates required to design the logic of the driver for this 7 - Segment display
(A) 3 NOT and 4 OR
(B) 2 NOT and 4 OR
(C) 1 NOT and 3 OR
(D) 2 NOT and 3 OR
5.29 Refer to the NAND and NOR latches shown in the figure. The inputs $\left(P_{1}, P_{2}\right)$ for both latches are first made $(0,1)$ and then, after a few seconds, made $(1,1)$. The corresponding stable outputs (Q_{1}, Q_{2}) are

(A) NAND: first $(0,1)$ then $(0,1)$ NOR: first $(1,0)$ then $(0,0)$
(B) NAND : first $(1,0)$ then $(1,0)$ NOR : first $(1,0)$ then $(1,0)$
(C) NAND : first $(1,0)$ then $(1,0)$ NOR : first $(1,0)$ then $(0,0)$
(D) NAND : first $(1,0)$ then $(1,1)$ NOR : first $(0,1)$ then $(0,1)$
5.30 The logic function implemented by the following circuit at the terminal OUT is

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

(A) P NOR Q
(B) P NAND Q
(C) P OR Q
(D) P AND Q
5.31 The two numbers represented in signed 2's complement form are $P+11101101$ and $Q=11100110$. If Q is subtracted from P, the value obtained in signed 2's complement is
(A) 1000001111
(B) 00000111
(C) 11111001
(D) 111111001
5.32 Which of the following Boolean Expressions correctly represents the
relation between P, Q, R and M_{1}

(A) $M_{1}=(P$ OR $Q) \mathrm{XOR} R$
(B) $M_{1}=(P$ AND $Q) X$ OR R
(C) $M_{1}=(P \operatorname{NOR} Q) X$ OR R
(D) $M_{1}=(P \operatorname{XOR} Q) \operatorname{XOR} R$

For the circuit shown in the figure, D has a transition from 0 to 1 after CLK changes from 1 to 0 . Assume gate delays to be negligible Which of the following statements is true

(A) Q goes to 1 at the CLK transition and stays at 1
(B) Q goes to 0 at the CLK transition and stays 0
(C) Q goes to 1 at the CLK tradition and goes to 0 when D goes to 1
(D) Q goes to 0 at the CLK transition and goes to 1 when D goes to 1

For each of the positive edge-triggered $J-K$ flip flop used in the following figure, the propagation delay is Δt.

Which of the following wave forms correctly represents the output at Q_{1} ?
(A)

(B)

(C)

(D)

Statement For Linked Answer Question 5.26 \& 5.27 :

In the following circuit, the comparators output is logic " 1 " if $V_{1}>V_{2}$ and is logic " 0 " otherwise. The D / A conversion is done as
per the relation $V_{D A C}=\sum^{3} 2^{n-1} b_{n}$ Volts, where $b_{3}(\mathrm{MSB}), b_{1}, b_{2}$ and b_{0} (LSB) are the counter $\overline{\text { oftputs }}$. The counter starts from the clear state.

The stable reading of the LED displays is

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(A) 06
(B) 07
(C) 12
(D) 13

The magnitude of the error between $V_{D A C}$ and $V_{i n}$ at steady state in volts is
(A) 0.2
(B) 0.3
(C) 0.5
(D) 1.0
5.37 For the circuit shown in the following, $I_{0}-I_{3}$ are inputs to the 4:1 multiplexers, $R(\mathrm{MSB})$ and S are control bits.
The output Z can be represented by

(A) $P Q+P \bar{Q} S+\overline{Q R S}$
(B) $P \bar{Q}+P Q \bar{R}+\overline{P Q S}$
(C) $P \overline{Q R}+\bar{P} Q R+P A R S+\overline{Q R S}$
(D) $P Q \bar{R}+P Q R \bar{S}+P \overline{Q R} S+\overline{Q R S}$
5.38 An 8085 executes the following instructions

```
2 7 1 0 ~ L X I ~ H , ~ 3 0 A 0 ~ H ~
2713 DAD H
2 4 1 4 ~ P C H L ~
```

All address and constants are in Hex. Let PC be the contents of the program counter and HL be the contents of the HL register pair just after executing PCHL. Which of the following statements is correct?
(A) $\mathrm{PC}=2715 \mathrm{H}$
(B) $\begin{aligned} \mathrm{PC} & =30 \mathrm{~A} 0 \mathrm{H} \\ \mathrm{HL} & =2715 \mathrm{H}\end{aligned}$
(C)
$\mathrm{PC}=6140 \mathrm{H}$
(D) $\begin{aligned} & \mathrm{PC}=6140 \mathrm{H} \\ &\end{aligned}$

2007
ONE MARK
5.39 $\quad X=01110$ and $Y=11001$ are two 5-bit binary numbers represented in two's complement format. The sum of X and Y represented in two's complement format using 6 bits is
(A) 100111
(B) 0010000
(C) 000111
(D) 101001

The Boolean function $Y=A B+C D$ is to be realized using only 2 input NAND gates. The minimum number of gates required is
(A) 2
(B) 3
(C) 4
(D) 5

2007

TWO MARKS
The Boolean expression $Y=\overline{A B C D}+\bar{A} B C \bar{D}+A \overline{B C} D+A B \overline{C D}$ can be minimized to

> GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(A) $Y=\overline{A B C} D+\bar{A} B \bar{C}+A \bar{C} D$
(B) $Y=\overline{A B C} D+B C \bar{D}+A \overline{B C} D$
(C) $Y=\bar{A} B C \bar{D}+\overline{B C} D+A \overline{B C} D$
(D) $Y=\bar{A} B C \bar{D}+\overline{B C} D+A B \overline{C D}$

In the following circuit, X is given by

(A) $X=A \overline{B C}+\bar{A} B \bar{C}+\overline{A B} C+A B C$
(B) $X=\bar{A} B C+A \bar{B} C+A B \bar{C}+\overline{A B} \bar{C}$
(C) $X=A B+B C+A C$
(D) $X=\overline{A B}+\overline{B C}+\bar{A} \bar{C}$
5.43 The circuit diagram of a standard TTL NOT gate is shown in the figure. $V_{i}=25 \mathrm{~V}$, the modes of operation of the transistors will be $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

(A) Q_{1} : revere active; Q_{2} : normal active; Q_{3} : saturation; Q_{4} : cut-off
(B) $Q_{1}:$ revere active; $Q_{2}:$ saturation; $Q_{3}:$ saturation; $Q_{4}:$ cut-off
(C) Q_{1} : normal active; Q_{2} : cut-off; Q_{3} : cut-off; Q_{4} : saturation
(D) Q_{1} : saturation; Q_{2} : saturation; Q_{3} : saturation; Q_{4} : normal active
5.44 The following binary values were applied to the X and Y inputs of NAND latch shown in the figure in the sequence indicated below : $X=0, Y=1 ; X=0, Y=0 ; X=1 ; Y=1$
The corresponding stable P, Q output will be.

(A) $P=1, Q=0 ; P=1, Q=0 ; P=1, Q=0$ or $P=0, Q=1$
(B) $P=1, Q=0 ; P=0, Q=1$; or $P=0, Q=1 ; P=0, Q=1$
(C) $P=1, Q=0 ; P=1, Q=1 ; P=1, Q=0$ or $P=0, Q=1$
(D) $P=1, Q=0 ; P=1, Q=1 ; P=1, Q=1$

An 8255 chip is interfaced to an 8085 microprocessor system as an I/O mapped I/O as show in the figure. The address lines A_{0} and A_{1} of the 8085 are used by the 8255 chip to decode internally its thee ports and the Control register. The address lines A_{3} to A_{7} as well as the $I O / \bar{M}$ signal are used for address decoding. The range of addresses for which the 8255 chip would get selected is

(A) F8H - FBH
(B) F8GH - FCH
(C) F8H - FFH
(D) F0H - F7H

Statement for Linked Answer Question 5.37 and 5.38 :
In the Digital-to-Analog converter circuit shown in the figure below, $V_{R}=10 \mathrm{~V}$ and $R=10 k \Omega$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

5.46 The current is
(A) $31.25 \mu \mathrm{~A}$
(B) $62.5 \mu \mathrm{~A}$
(C) $125 \mu \mathrm{~A}$
(D) $250 \mu \mathrm{~A}$
5.47 The voltage V_{0} is
(A) -0.781 V
(B) -1.562 V
(C) -3.125 V
(D) -6.250 V

Statement for Linked Answer Questions 5.39 \& 5.40 :
An 8085 assembly language program is given below.
Line 1: MVI A, B5H

MVI B, OEH
XRI 69H
ADD B
ANI 9BH
CPI 9FH
STA 3010H
HLT
The contents of the accumulator just execution of the ADD instruction in line 4 will be
(A) C3H
(B) EAH
(C) DCH
(D) 69 H
5.49 After execution of line 7 of the program, the status of the $C Y$ and Z flags will be
(A) $C Y=0, Z=0$
(B) $C Y=0, Z=1$
(C) $C Y=1, Z=0$
(D) $C Y=1, Z=1$

For the circuit shown, the counter state ($Q_{1} Q_{0}$) follows the sequence

(A) $00,01,10,11,00$
(B) $00,01,10,00,01$
(C) $00,01,11,00,01$
(D) $00,10,11,00,10$

2006

ONE MARK
The number of product terms in the minimized sum-of-product expression obtained through the following K - map is (where, " d " denotes don't care states)

1	0	0	1
0	d	0	0
0	0	d	1
1	0	0	1

(A) 2
(B) 3
(C) 4
(D) 5

2006

TWO MARKS
An I/O peripheral device shown in Fig. (b) below is to be interfaced to an 8085 microprocessor. To select the I/O device in the I/O address range D4 H - D7 H, its chip-select $(\overline{C S})$ should be connected to the output of the decoder shown in as below :

(A) output 7
(B) output 5
(C) output 2
(D) output 0

For the circuit shown in figures below, two 4 - bit parallel - in serial

- out shift registers loaded with the data shown are used to feed the data to a full adder. Initially, all the flip - flops are in clear state. After applying two clock pulse, the output of the full-adder should be

(A) $S=0, C_{0}=0$
(B) $S=0, C_{0}=1$
(C) $S=1, C_{0}=0$
(D) $S=1, C_{0}=1$
5.54 A new Binary Coded Pentary (BCP) number system is proposed in which every digit of a base-5 number is represented by its corresponding 3 -bit binary code. For example, the base- 5 number

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
24 will be represented by its BCP code 010100. In this numbering system, the $B C P$ code 10001001101 corresponds of the following number is base- 5 system
(A) 423
(B) 1324
(C) 2201
(D) 4231

A 4 - bit D/A converter is connected to a free - running 3 - big UP counter, as shown in the following figure. Which of the following waveforms will be observed at V_{0} ?

In the figure shown above, the ground has been shown by the symbol ∇
(A)

(B)

(C)

(D)

5.56 Following is the segment of a 8085 assembly language program LXI SP, EFFF H
CALL 3000 H
:

3000 H LXI H, 3CF4

PUSH PSW
SPHL
POP PSW
RET
On completion of RET execution, the contents of SP is
(A) 3 CF 0 H
(B) 3 CF 8 H
(C) EFFD H
(D) EFFF H

Two D - flip - flops, as shown below, are to be connected as a synchronous counter that goes through the following sequence $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00 \rightarrow \ldots$
The inputs D_{0} and D_{1} respectively should be connected as,

(A) \bar{Q}_{1} and Q_{0}
(B) \bar{Q}_{0} and Q_{1}
(C) $\overline{Q_{1}} Q_{0}$ and $\bar{Q}_{1} Q_{0}$
(D) $\bar{Q}_{1} \bar{Q}_{0}$ and $Q_{1} Q_{0}$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

The point P in the following figure is stuck at 1 . The output f will be

(A) $A B \bar{C}$
(B) \bar{A}
(C) $A B \bar{C}$
(D) A

2005
ONE MARK
Decimal 43 in Hexadecimal and BCD number system is respectively
(A) B2, 0100011
(B) 2B, 01000011
(C) 2B, 00110100
(D) B2, 01000100

The Boolean function f implemented in the figure using two input multiplexes is

(A) $A \bar{B} C+A B \bar{C}$
(B) $A B C+A \overline{B C}$
(C) $\bar{A} B C+\bar{A} \overline{B C}$
(D) $\overline{A B} C+\bar{A} B \bar{C}$
5.61 The transistors used in a portion of the TTL gate show in the figure have $\beta=100$. The base emitter voltage of is 0.7 V for a transistor in active region and 0.75 V for a transistor in saturation. If the sink current $I=1 \mathrm{~A}$ and the output is at logic 0 , then the current I_{R} will be equal to

(A) 0.65 mA
(B) 0.70 mA
(C) 0.75 mA
(D) 1.00 mA
5.62 The Boolean expression for the truth table shown is

A	B	C	D
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

(A) $B(A+C)(\bar{A}+\bar{C})$
(B) $B(A+\bar{C})(\bar{A}+C)$
(C) $\bar{B}(A+\bar{C})(\bar{A}+C)$
(D) $\bar{B}(A+C)(\bar{A}+\bar{C})$
5.63 The present output Q_{n} of an edge triggered $J K$ flip-flop is logic 0 . If $J=1$, then Q_{n+1}
(A) Cannot be determined
(B) Will be logic 0
(C) will be logic 1
(D) will rave around
5.64 The given figure shows a ripple counter using positive edge triggered flip-flops. If the present state of the counter is $Q_{2} Q_{1} Q_{0}=001$ then is next state $Q_{2} Q_{1} Q$ will be

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(A) 010
(B) 111
(C) 100
(D) 101
5.65 What memory address range is NOT represents by chip \# 1 and chip $\# 2$ in the figure A_{0} to A_{15} in this figure are the address lines and $C S$ means chip select.

(A) $0100-02 \mathrm{FF}$
(B) 1500-16FF
(C) F900 - FAFF
(D) F800-F9FF

Statement For Linked Answer Questions 5.57 \& 5.58 :

Consider an 8085 microprocessor system.
5.66 The following program starts at location 0100H.

LXI SP, OOFF

LXI H, 0701
MVI A, 20H
SUB M
The content of accumulator when the program counter reaches 0109 H is
(A) 20 H
(B) 02 H
(C) 00 H
(D) FF H

If in addition following code exists from 019H onwards, ORI 40 H
ADD M
What will be the result in the accumulator after the last instruction is executed?
(A) 40 H
(B) 20 H
(C) 60 H
(D) 42 H

2004

ONE MARK
A master - slave flip flop has the characteristic that
(A) change in the output immediately reflected in the output
(B) change in the output occurs when the state of the master is affected
(C) change in the output occurs when the state of the slave is affected
(D) both the master and the slave states are affected at the same time

The range of signed decimal numbers that can be represented by 6 -bits 1's complement number is
(A) -31 to +31
(B) -63 to +63
(C) -64 to +63
(D) -32 to +31
5.70 A digital system is required to amplify a binary-encoded audio signal. The user should be able to control the gain of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is
(A) 8
(B) 6
(C) 5
(D) 7
5.71 Choose the correct one from among the alternatives A, B, C, D after matching an item from Group 1 most appropriate item in Group 2.

Group 1
P. Shift register

Group 2

Q. Counter

1. Frequency division
2. Addressing in memory chips
R. Decoder
(A) $P-3, Q-2, R-1$
(C) $P-2, Q-1, R-3$
(B) $P-3, Q-1, R-2$
(D) $P-1, Q-2, R-2$
3. Serial to parallel data conversion
5.72 The figure the internal schematic of a TTL AND-OR-OR-Invert (AOI) gate. For the inputs shown in the figure, the output Y is

(A) 0
(B) 1
(C) $A B$
(D) $\overline{A B}$

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

2004

TWO MARKS
5.73 11001, 1001, 111001 correspond to the 2's complement representation of which one of the following sets of number
(A) 25,9 , and 57 respectively
(B) $-6,-6$, and -6 respectively
(C) $-7,-7$ and -7 respectively
(D) $-25,-9$ and -57 respectively
5.74 In the modulo-6 ripple counter shown in figure, the output of the 2- input gate is used to clear the J-K flip-flop
The 2-input gate is

(A) a NAND gate
(B) a NOR gate
(C) an OR gate
(D) a AND gare
5.75 The minimum number of 2- to -1 multiplexers required to realize a 4- to -1 multiplexers is
(A) 1
(B) 2
(C) 3
(D) 4

The Boolean expression $A C+B \bar{C}$ is equivalent to
(A) $\bar{A} C+B \bar{C}+A C$
(B) $\bar{B} C+A C+B \bar{C}+\bar{A} C \bar{B}$
(C) $A C+B \bar{C}+\bar{B} C+A B C$
(D) $A B C+\bar{A} B \bar{C}+A B \bar{C}+A \bar{B} C$
5.77 A Boolean function f of two variables x and y is defined as follows : $f(0,0)=f(0,1)=f(1,1)=1 ; f(1,0)=0$
Assuming complements of x and y are not available, a minimum cost solution for realizing f using only 2 -input NOR gates and 2-
input OR gates (each having unit cost) would have a total cost of
(A) 1 unit
(B) 4 unit
(C) 3 unit
(D) 2 unit

The 8255 Programmable Peripheral Interface is used as described below.
(i) An A / D converter is interface to a microprocessor through an 8255.

The conversion is initiated by a signal from the 8255 on Port C. A signal on Port C causes data to be stobed into Port A.
(ii) Two computers exchange data using a pair of 8255 s. Port A works as a bidirectional data port supported by appropriate handshaking signals.
The appropriate modes of operation of the 8255 for (i) and (ii) would be
(A) Mode 0 for (i) and Mode 1 for (ii)
(ii)
(B) Mode 1 for (i) and Mode 2 for (ii)
(C) Mode for (i) and Mode 0 for (ii)
(D) Mode 2 for (i) and Mode 1 for (ii)

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

The number of memory cycles required to execute the following 8085 instructions
(i) LDA 3000 H
(ii) LXI D, FOF1H
would be
(A) 2 for (i) and 2 for (ii)
(B) 4 for (i) and 3 for (ii)
(C) 3 for (i) and 3 for (ii)
(D) 3 for (i) and 4 for (ii)

Consider the sequence of 8085 instructions given below

$$
\text { LXI H, } 9258
$$

MOV A, M
CMA
MOV M, A
Which one of the following is performed by this sequence?
(A) Contents of location 9258 are moved to the accumulator
(B) Contents of location 9258 are compared with the contents of the accumulator
(C) Contents of location 8529 are complemented and stored in location 8529
(D) Contents of location 5892 are complemented and stored in location 5892

It is desired to multiply the numbers 0 AH by 0 BH and store the result in the accumulator. The numbers are available in registers B and C respectively. A part of the 8085 program for this purpose is given below :

MVI A, 00H
LOOP

$$
\begin{aligned}
& -------------- \\
& \text {------ } \\
& \text { HLT } \\
& \text { FND }
\end{aligned}
$$

The sequence of instructions to complete the program would be
(A) JNX LOOP, ADD B, DCR C
(B) ADD B, JNZ LOOP, DCR C
(C) DCR C, JNZ LOOP, ADD B
(D) ADD B, DCR C, JNZ LOOP
5.82 The number of distinct Boolean expressions of 4 variables is
(A) 16
(B) 256
(C) 1023
(D) 65536
5.83 The minimum number of comparators required to build an 8-bits flash ADC is
(A) 8
(B) 63
(C) 255
(D) 256
5.84 The output of the 74 series of GATE of TTL gates is taken from a BJT in
(A) totem pole and common collector configuration
(B) either totem pole or open collector configuration
(C) common base configuration
(D) common collector configuration
5.85 Without any additional circuitry, an 8:1 MUX can be used to obtain
(A) some but not all Boolean functions of 3 variables
(B) all functions of 3 variables but non of 4 variables
(C) all functions of 3 variables and some but not all of 4 variables
(D) all functions of 4 variables
5.86 A 0 to 6 counter consists of 3 flip flops and a combination circuit of 2 input gate (s). The common circuit consists of
(A) one AND gate
(B) one OR gate
(C) one AND gate and one OR gate
(D) two AND gates
5.87 The circuit in the figure has 4 boxes each described by inputs P, Q, R and outputs Y, Z with $Y=P \oplus Q \oplus R$ and $Z=R Q+\bar{P} R+Q \bar{P}$ The circuit acts as a

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(A) 4 bit adder giving $P+Q$
(B) 4 bit subtractor giving $P-Q$
(C) 4 bit subtractor giving $\mathrm{Q}-\mathrm{P}$
(D) 4 bit adder giving $P+Q+R$

If the function W, X, Y and Z are as follows

$$
\begin{aligned}
& W=R+\bar{P} Q+\bar{R} S \quad X=P Q \overline{R S}+\overline{P Q R S}+P \overline{Q R S} \\
& Y=R S+\overline{P R+P \bar{Q}+\bar{P} \cdot \bar{Q}} \\
& Z=R+S+\overline{P Q+\bar{P} \cdot \bar{Q} \cdot \bar{R}+P \bar{Q} \cdot \bar{S}}
\end{aligned}
$$

Then,
(A) $W=Z, X=\bar{Z}$
(B) $W=Z, X=Y$
(C) $W=Y$
(D) $W=Y=\bar{Z}$
5.89 A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then
(A) $R=10 \mathrm{~ns}, S=40 \mathrm{~ns}$
(B) $R=40 \mathrm{~ns}, S=10 \mathrm{~ns}$
(C) $R=10 \mathrm{~ns} S=30 \mathrm{~ns}$
(D) $R=30 \mathrm{~ns}, S=10 \mathrm{~ns}$

In the circuit shown in the figure, A is parallel-in, parallel-out 4 bit register, which loads at the rising edge of the clock C. The input lines are connected to a 4 bit bus, W. Its output acts at input to a $16 \times 4 \mathrm{ROM}$ whose output is floating when the input to a partial table of the contents of the ROM is as follows

Data	0011	1111	0100	1010	1011	1000	0010	1000
Address	0	2	4	6	8	10	11	14

The clock to the register is shown, and the data on the W bus at time t_{1} is 0110 . The data on the bus at time t_{2} is

(A) 1111
(B) 1011
(C) 1000
(D) 0010

The DTL, TTL, ECL and CMOS famil GATE of digital ICs are compared in the following 4 columns

(P)				
Fanout is minimum	DTL	DTL	TTL	CMOS
Power consumption is minimum	TTL	CMOS	ECL	DTL

Propagation delay is minimum	CMOS	ECL	TTL	TTL

The correct column is
(A) P
(B) Q
(C) R
(D) S
5.92 The circuit shown in figure converts

(A) BCD to binary code
(B) Binary to excess - 3 code
(C) Excess -3 to gray code
(D) Gray to Binary code

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
In an 8085 microprocessor, the instruction CMP B has been executed while the content of the accumulator is less than that of register B . As a result
(A) Carry flag will be set but Zero flag will be reset
(B) Carry flag will be rest but Zero flag will be set
(C) Both Carry flag and Zero flag will be rest
(D) Both Carry flag and Zero flag will be set
5.94 The circuit shown in the figure is a 4 bit DAC

The input bits 0 and 1 are represented by 0 and 5 V respectively. The OP AMP is ideal, but all the resistance and the 5 v inputs have a tolerance of $\pm 10 \%$. The specification (rounded to nearest multiple of 5%) for the tolerance of the DAC is
(A) $\pm 35 \%$
(B) $\pm 20 \%$
(C) $\pm 10 \%$
(D) $\pm 5 \%$
5.95 4 - bit 2's complement representation of a decimal number is 1000 The number is
(A) +8
(B) 0
(C) -7
(D) -8

If the input to the digital circuit (in the figure) consisting of a
cascade of 20 XOR - gates is X, then the output Y is equal to

(A) 0
(B) 1
(C) \bar{X}
(D) X

The number of comparators required in a 3-bit comparators type ADC
(A) 2
(B) 3
(C) 7
(D) 8

The circuit in the figure has two CMOS NOR gates. This circuit functions as a:

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(A) flip-flop
(B) Schmitt trigger
(C) Monostable multivibrator
(D) astable multivibrator

The gates G_{1} and G_{2} in the figure have propagation delays of 10 ns and 20 ns respectively. If the input V_{1}, makes an output change from logic 0 to 1 at time $t=t_{0}$, then the output waveform V_{0} is

(A)

(B)

(C)

(D)

${ }_{5.100}$ If the input $X_{3}, X_{2}, X_{1}, X_{0}$ to the ROM in the figure are 8421 BCD numbers, then the outputs $Y_{3}, Y_{2}, Y_{1}, Y_{0}$ are

(A) gray code numbers
(B) 2421 BCD numbers
(C) excess - 3 code numbers
(D) none of the above

Consider the following assembly language program

$$
\begin{aligned}
& \text { MVI B, } 87 \mathrm{H} \\
& \text { MOV A, B } \\
& \text { JMP NEXT } \\
& \text { MVI B, 00H } \\
& \text { XRA B } \\
& \text { OUT PORT1 } \\
& \text { HLT } \\
& \text { XRA B } \\
& \text { JP START } \\
& \text { OUT PORT2 } \\
& \text { HTL }
\end{aligned}
$$

START : JMP NEXT

NEXT : XRA B

The execution of above program in an 8085 microprocessor will result in
(A) an output of 87 H at PORT1
(B) an output of 87 H at PORT2
(C) infinite looping of the program execution with accumulator data remaining at 00 H
(D) infinite looping of the program execution with accumulator data alternating between 00 H and 87 H
5.102 The 2's complement representation of -17 is
(A) 101110
(B) 101111
(C) 111110
(D) 110001

For the ring oscillator shown in the figure, the propagation delay of each inverter is 100 pico sec. What is the fundamental frequency of the oscillator output

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(A) 10 MHz
(B) 100 MHz
(C) 1 GHz
(D) 2 GHz
5.104 Ab 8085 microprocessor based system uses a $4 K \times 8$ bit RAM whose starting address is AA 00 H . The address of the last byte in this RAM is
(A) OFFFH
(B) 1000 H
(C) B9FFH
(D) BA 00 H

2001

TWO MARKS
${ }^{5.105}$ In the TTL circuit in the figure, S_{2} and S_{0} are select lines and X_{7} and X_{0} are input lines. S_{0} and X_{0} are LSBs. The output Y is

(A) indeterminate
(B) $A \oplus B$
(C) $\overline{A \oplus B}$
(D) $\bar{C}(\overline{A \oplus B})+C(A \oplus B)$
5.106 In the figure, the LED

(A) emits light when both S_{1} and S_{2} are closed
(B) emits light when both S_{1} and S_{2} are open
(C) emits light when only of S_{1} and S_{2} is closed
(D) does not emit light, irrespective of the switch positions.
5.107 The digital block in the figure is realized using two positive edge triggered D-flip-flop. Assume that for $t<t_{0}, Q_{1}=Q_{2}=0$. The circuit in the digital block is given by

(A)

(B)

(C)

(D)

${ }_{5.108}$ In the DRAM cell in the figure, the V_{t} of the NMOSFET is 1 V. For the following three combinations of WL and BL voltages.

(A) $5 \mathrm{~V} ; 3 \mathrm{~V} ; 7 \mathrm{~V}$
(B) $4 \mathrm{~V} ; 3 \mathrm{~V} ; 4 \mathrm{~V}$
(C) $5 \mathrm{~V} ; 5 \mathrm{~V} ; 5 \mathrm{~V}$
(D) $4 \mathrm{~V} ; 4 \mathrm{~V} ; 4 \mathrm{~V}$

2000

ONE MARKS
5.109 An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is $20 \mu \mathrm{~s}$. The conversion time for a 2 V input will be
(A) $10 \mu \mathrm{~s}$
(B) $20 \mu \mathrm{~s}$
(C) $40 \mu \mathrm{~s}$
(D) $50 \mu \mathrm{~s}$
5.110 The number of comparator in a 4-bit flash ADC is
(A) 4
(B) 5

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(C) 15
(D) 16
5.111 For the logic circuit shown in the figure, the required input condition (A, B, C) to make the output $(X)=1$ is

(A) $1,0,1$
(B) $0,0,1$
(C) $1,1,1$
(D) $0,1,1$
5.112 The number of hardware interrupts (which require an external signal to interrupt) present in an 8085 microprocessor are
(A) 1
(B) 4
(C) 5
(D) 13
5.113 In the microprocessor, the RST6 instruction transfer the program execution to the following location :
(A) 30 H
(B) 24 H
(C) 48 H
(D) 60 H

2000

TWO MARKS
5.114 The contents of register (B) and accumulator (A) of 8085 microprocessor are 49J are 3AH respectively. The contents of A and status of carry (CY) and sign (S) after execution SUB B instructions are
(A) $\mathrm{A}=\mathrm{F} 1, \mathrm{CY}=1, \mathrm{~S}=1$
(B) $\mathrm{A}=0 \mathrm{~F}, \mathrm{CY}=1, \mathrm{~S}=1$
(C) $\mathrm{A}=\mathrm{F} 0, \mathrm{CY}=0, \mathrm{~S}=0$
(D) $\mathrm{A}=1 \mathrm{~F}, \mathrm{CY}=1, \mathrm{~S}=1$
5.115 For the logic circuit shown in the figure, the simplified Boolean expression for the output Y is

(A) $A+B+C$
(B) A
(C) B
(D) C
${ }_{5.116}$ For the 4 bit DAC shown in the figure, the output voltage V_{0} is

(A) 10 V
(B) 5 V
(C) 4 V
(D) 8 V

GATE Electronics \& Communication
by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
5.117 A sequential circuit using D flip-flop and logic gates is shown in the figure, where X and Y are the inputs and Z is the inputs. The circuit is

(A) $S-R$ Flip-Flop with inputs $X=R$ and $Y=S$
(B) $S-R$ Flip-Flop with inputs $X=S$ and $Y=R$
(C) $J-K$ Flip-Flop with inputs $X=J$ and $Y=K$
(D) $J-K$ Flip-Flop with input $X=K$ and $Y=J$
${ }^{5.118}$ In the figure, the J and K inputs of all the four Flip-Flips are made high. The frequency of the signal at output Y is

(A) 0.833 kHz
(B) 1.0 kHz
(C) 0.91 kHz
(D) 0.77 kHz
5.119 The logical expression $y=A+\bar{A} B$ is equivalent to
(A) $y=A B$
(B) $y=\bar{A} B$
(C) $y=\bar{A}+B$
(D) $y=A+B$
5.120 A Darlington emitter follower circuit is sometimes used in the output stage of a TTL gate in order to
(A) increase its $I_{O L}$
(B) reduce its $I_{O H}$
(C) increase its speed of operation
(D) reduce power dissipation
5.121 Commercially available ECL gears use two ground lines and one negative supply in order to
(A) reduce power dissipation
(B) increase fan-out
(C) reduce loading effect
(D) eliminate the effect of power line glitches or the biasing circuit
5.122 The resolution of a 4-bit counting ADC is 0.5 volts. For an analog input of 6.6 volts, the digital output of the ADC will be
(A) 1011
(B) 1101
(C) 1100
(D) 1110
5.123 The minimized form of the logical expression $(\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} B C+A B \bar{C})$ is
(A) $\bar{A} \bar{C}+B \bar{C}+\bar{A} B$
(B) $A \bar{C}+\bar{B} C+\bar{A} B$
(C) $\bar{A} C+\bar{B} C+\bar{A} B$
(D) $A \bar{C}+\bar{B} C+A \bar{B}$

For a binary half-subtractor having two inputs A and B , the correct set of logical expressions for the outputs $\mathrm{D}(=\mathrm{A}$ minus B$)$ and X (= borrow) are
(A) $D=A B+\bar{A} B, X=\bar{A} B$
$D=\bar{A} B+A \bar{B}+A \bar{B}, X=A \bar{B}$
(C) $D=\bar{A} B+A \bar{B}, X=\bar{A} B$
(D) $D=A B+\bar{A} \bar{B}, X=A \bar{B}$
5.125 The ripple counter shown in the given figure is works as a

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) mod-3 up counter
(B) mod-5 up counter
(C) mod-3 down counter
(D) mod-5 down counter

If $C S=A_{15} A_{14} A_{13}$ is used as the chip select logic of a 4 K RAM in an 8085 system, then its memory range will be
(A) $3000 \mathrm{H}-3 \mathrm{FFF} \mathrm{H}$
(B) $7000 \mathrm{H}-7$ FFF H
(C) $5000 \mathrm{H}-5$ FFF H and $6000 \mathrm{H}-6$ FFF H
(D) $6000 \mathrm{H}-6$ FFF H and $7000 \mathrm{H}-7$ FFF H

1998

ONE MARK
${ }_{5.127}$ The minimum number of 2-input NAND gates required to implement of Boolean function $Z=A \bar{B} C$, assuming that A, B and C are available, is
(A) two
(B) three
(C) five
(D) six
5.128 The noise margin of a TTL gate is about
(A) 0.2 V
(B) 0.4 V
(C) 0.6 V
(D) 0.8 V
5.129 In the figure is $A=1$ and $B=1$, the input B is now replaced by a sequence $101010 \ldots$. , the output x and y will be

(A) fixed at 0 and 1 , respectively
(B) $x=1010 \ldots$. while $y=0101 \ldots \ldots$
(C) $x=1010 \ldots$ and $y=1010 \ldots \ldots$
(D) fixed at 1 and 0 , respectively

An equivalent 2's complement representation of the 2's complement number 1101 is
(A) 110100
(B) 01101
(C) 110111
(D) 111101
5.131 The threshold voltage for each transistor in the figure is 2 V . For this circuit to work as an inverter, V_{i} must take the values

(A) -5 V and 0 V
(B) -5 V and 5 V
(C) -0 V and 3 V
(D) 3 V and 5 V
5.132 An I / O processor control the flow of information between
(A) cache memory and I / O devices
(B) main memory and I / O devices
(C) two I / O devices
(D) cache and main memories
5.133 Two 2's complement number having sign bits x and y are added and the sign bit of the result is z. Then, the occurrence of overflow is indicated by the Boolean function
(A) $x y z$
(B) $\bar{x} \bar{y} \bar{z}$
(C) $\bar{x} \bar{y} z+x y \bar{z}$
(D) $x y+y z+z x$
5.134 The advantage of using a dual slope ADC in a digital voltmeter is that
(A) its conversion time is small
(B) its accuracy is high
(C) it gives output in BCD format
(D) it does not require a

For the identity $A B+\bar{A} C+B C=A B+\bar{A} C$, the dual form is
(A) $(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)$
(B) $(\bar{A}+\bar{B})(A+\bar{C})(\bar{B}+\bar{C})=(\bar{A}+\bar{B})(A+\bar{C})$
(C) $(A+B)(\bar{A}+C)(B+C)=(\bar{A}+\bar{B})(A+\bar{C})$
(D) $\bar{A} \bar{B}+A \bar{C}+\bar{B} \bar{C}=\bar{A} \bar{B}+A \bar{C}$
5.136 An instruction used to set the carry Flag in a computer can be classified as
(A) data transfer
(B) arithmetic
(C) logical
(D) program control

The figure is shows a mod- K counter, here K is equal to

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(A) 1
(B) 2
(C) 3
(D) 4
5.138 The current I through resistance r in the circuit shown in the figure is

(A) $\frac{-V}{12 R}$
(B) $\frac{V}{12 R}$
(C) $\frac{V}{6 R}$
(D) $\frac{V}{3 T}$
5.139 The K-map for a Boolean function is shown in the figure is the number of essential prime implicates for this function is

(A) 4
(B) 5
(C) 6
(D) 8

ONE MARK
5.140 Each cell of a static Random Access Memory contains
(A) 6 MOS transistors
(B) 4 MOS transistors and 2 capacitors
(C) 2 MOS transistors and 4 capacitors
(D) 1 MOS transistors and 1 capacitors
5.141 A 2 bit binary multiplier can be implemented using
(A) 2 inputs ANSs only
(B) 2 input XORs and 4 input AND gates only
(C) Two 2 inputs NORs and one XNO gate
(D) XOR gates and shift registers
5.142 In standard TTL, the 'totem pole' stage refers to
(A) the multi-emitter input stage
(B) the phase splitter
(C) the output buffer
(D) open collector output stage

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
5.143 The inverter 74 ALSO4 has the following specifications
$I_{O H \max }=-0.4 \mathrm{~A}, I_{O L \max }=8 \mathrm{~mA}, I_{I H \max }=20 \mathrm{~mA}, I_{I L \max }=-0.1 \mathrm{~mA}$
The fan out based on the above will be
(A) 10
(B) 20
(C) 60
(D) 100
5.144 The output of the logic gate in the figure is

(A) 0
(B) 1
(C) A
(D) F
5.145 In an $8085 \mu \mathrm{P}$ system, the RST instruction will cause an interrupt
(A) only if an interrupt service routine is not being executed
(B) only if a bit in the interrupt mask is made 0
(C) only if interrupts have been enabled by an EI instruction
(D) None of the above
5.146 The decoding circuit shown in the figure is has been used to generate the active low chip select signal for a microprocessor peripheral. (The address lines are designated as AO to $A 7$ for I / O address)

The peripheral will correspond to I / O address in the range
(A) 60 H to 63 H
(B) A4 to A 7 H
(C) 30 H to 33 H
(D) 70 H to 73 H
${ }^{5.147}$ The following instructions have been executed by an $8085 \mu \mathrm{P}$

ADDRESS (HEX)

6010
6013
6015
6016
6017
6018

INSTRUCTION
LXI H, 8 A 79 H
MOV A, L
ADDH
DAA
MOV H, A
PCHL

From which address will the next instruction be fetched ?
(A) 6019
(B) 6379
(C) 6979
(D) None of the above
5.148 A signed integer has been stored in a byte using the 2's complement format. We wish to store the same integer in a 16 bit word. We should
(A) copy the original byte to the less significant byte of the word and fill the more significant with zeros
(B) copy the original byte to the more significant byte of the word and fill the less significant byte with zeros
(C) copy the original byte to the less significant byte of the word and make each fit of the more significant byte equal to the most significant bit of the original byte
(D) copy the original byte to the less significant byte as well as the more significant byte of the word

1997

TWO MARKS
5.149 For the NMOS logic gate shown in the figure is the logic function implemented is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) $\overline{A B C D E}$
(B) $(A B+\bar{C}) \cdot(\overline{D+E})$
(C) $\overline{A \cdot(B+C)+D \cdot E}$
(D) $(\overline{A+B}) \cdot C+\bar{D} \cdot \bar{E}$
5.150 In a J-K flip-flop we have $J=Q$ and $K=1$. Assuming the flip flop was initially cleared and then clocked for 6 pulses, the sequence at the Q output will be

(A) 010000
(B) 011001
(C) 010010
(D) 010101
5.151 The gate delay of an NMOS inverter is dominated by charge time rather than discharge time because
(A) the driver transistor has larger threshold voltage than the load transistor
(B) the driver transistor has larger leakage currents compared to the load transistor
(C) the load transistor has a smaller W / L ratio compared to the driver transistor
(D) none of the above
5.152 The boolean function $A+B C$ is a reduced form of
(A) $A B+B C$
(B) $(A+B) \cdot(A+C)$
(C) $\bar{A} B+A \bar{B} C$
(D) $(A+C) \cdot B$

1996

ONE MARK
5.153 Schottky clamping is resorted in TTl gates
(A) to reduce propagation delay
(B) to increase noise margins
(C) to increase packing density
(D) to increase fan-out
5.154 A pulse train can be delayed by a finite number of clock periods using
(A) a serial-in serial-out shift register
(B) a serial-in parallel-out shift register
(C) a parallel-in serial-out shift register
(D) a parallel-in parallel-out shift register
5.155 A 12 -bit ADC is operating with a 1μ sec clock period and the total conversion time is seen to be $14 \mu \mathrm{sec}$. The ADC must be of the
(A) flash type
(B) counting type
(C) intergrating type
(D) successive approximation type
${ }^{5.156}$ The total number of memory accesses involved (inclusive of the opcode fetch) when an 8085 processor executes the instruction LDA 2003 is
(A) 1
(B) 2
(C) 3
(D) 4

1996

TWO MARKS
5.157 A dynamic RAM cell which hold 5 V has to be refreshed every 20 m sec, so that the stored voltage does not fall by more than 0.5 V . If the cell has a constant discharge current of 1 pA , the storage capacitance of the cell is
(A) $4 \times 10^{-6} \mathrm{~F}$
(B) $4 \times 10^{-9} \mathrm{~F}$
(C) $4 \times 10^{-12} \mathrm{~F}$
(D) $4 \times 10^{-15} \mathrm{~F}$
5.158 A 10-bit ADC with a full scale output voltage of 10.24 V is designed to have a $\pm \mathrm{LSB} / 2$ accuracy. If the ADC is calibrated at $25^{\circ} \mathrm{C}$ and the operating temperature ranges from $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, then the maximum net temperature coefficient of the ADC should not exceed
(A) $\pm 200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
(B) $\pm 400 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
(C) $\pm 600 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
(D) $\pm 800 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
5.159 A memory system of size 26 K bytes is required to be designed using memory chips which have 12 address lines and 4 data lines each. The number of such chips required to design the memory system is
(A) 2
(B) 4

(C) 8

(D) 13
5.160 The following sequence of instructions are executed by an 8085 microprocessor:

1000	LXI SP, 27 FF
1003	CALL 1006
1006	POP H

The contents of the stack pointer (SP) and the HL, register pair on completion of execution of these instruction are
(A) $\mathrm{SP}=27 \mathrm{FF}, \mathrm{HL}=1003$
(B) $\mathrm{SP}=27 \mathrm{FD}, \mathrm{HL}=1003$
(C) $\mathrm{SP}=27 \mathrm{FF}, \mathrm{HL}=1006$
(D) $\mathrm{SP}=27 \mathrm{FD}, \mathrm{HL}=1006$

SOLUTIONS

5.1 Option (C) is correct.

Let A denotes the position of switch at ground floor and B denotes the position of switch at upper floor. The switch can be either in up position or down position. Following are the truth table given for different combinations of A and B

A	B	Y(Bulb)
$\operatorname{up}(1)$	$\operatorname{up}(1)$	$\operatorname{OFF}(0)$
$\operatorname{Down}(0)$	$\operatorname{Down}(0)$	OFF (0)
$\operatorname{up}(1)$	$\operatorname{Down}(0)$	ON (1)
Down (0)	$\operatorname{up}(1)$	ON (1)

When the switches A and B are both up or both down, output will be zero (i.e. Bulb will be OFF). Any of the switch changes its

GATE Electronics \& Communication

 by RK Kanodia
Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
position leads to the ON state of bulb. Hence, from the truth table, we get

$$
Y=A \oplus B
$$

i.e., the XOR gate

Option (A) is correct.
The program is being executed as follows

$$
\begin{array}{ll}
\text { MVI A }, 0.5 \mathrm{H} ; & \mathrm{A}=05 \mathrm{H} \\
\text { MVI B }, 0.5 \mathrm{H} ; & \mathrm{B}=05 \mathrm{H}
\end{array}
$$

At the next instruction, a loop is being introduced in which for the instruction "DCR B" if the result is zero then it exits from loop so, the loop is executed five times as follows :

Content in B	Output of ADD B (Stored value at A)
05	$05+05$
04	$05+05+04$
03	$05+05+04+03$
02	$05+05+04+03+02$
01	$05+05+04+03+02+01$
00	System is out of loop

i.e., $\quad A=05+05+04+03+02+01=144$

At this stage, the 8085 microprocessor exits from the loop and reads the next instruction. i.e., the accumulator is being added to 03 H . Hence, we obtain

$$
A=A+03 \mathrm{H}=14+03=17 \mathrm{H}
$$

Option (D) is correct.
For chip-1, we have the following conclusions:
it is enable when (i)

$$
S_{1} S_{0}=00
$$

and (ii)

$$
\text { Input }=1
$$

For $S_{1} S_{0}=00$
We have $\quad A_{13}=A_{12}=0$
and for $\mathrm{I} / \mathrm{p}=1$ we obtain

$$
\begin{aligned}
& \bar{A}_{10}=1 \text { or } A_{10}=0 \\
& A_{11}=1 \\
& \bar{A}_{14}=1 \text { or } A_{14}=0 \\
& \bar{A}_{15}=1 \text { or } A_{15}=0
\end{aligned}
$$

Since, $A_{0}-A_{9}$ can have any value 0 or 1
Therefore, we have the address range as

	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	A_{10}	A_{9}	A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
From	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
to	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1

In Hexadecimal $\Rightarrow 0800 \mathrm{H}$ to 0BFFH
Similarly, for chip 2, we obtain the range as follows

$$
E=1 \text { for } S_{1} S_{0}=01
$$

$$
\text { so, } \quad A_{13}=0 \text { and } A_{12}=1
$$

and also the $\mathrm{I} / \mathrm{P}=1$ for
$A_{10}=0, A_{11}=1, A_{14}=0, A_{15}=0$
so, the fixed I/ps are

A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	A_{10}
0	0	0	1	1	0

Therefore, the address range is

	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	A_{10}	A_{9}	A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
From	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
to	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1

In hexadecimal it is from 1800 H to 1 BFFH . There is no need to obtain rest of address ranged as only ($\mathrm{D)} \mathrm{is} \mathrm{matching} \mathrm{to} \mathrm{two} \mathrm{re-}$ sults.
5.4 Option (A) is correct.

The given circuit is

Condition for the race-around
It occurs when the output of the circuit $\left(Y_{1}, Y_{2}\right)$ oscillates between

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

' 0 ' and ' 1 ' checking it from the options.

1. Option (A): When $C L K=0$

Output of the NAND gate will be $A_{1}=B_{1}=\overline{0}=1$. Due to these input to the next NAND gate, $Y_{2}=\overline{Y_{1} \cdot 1}=\bar{Y}_{1}$ and $Y_{1}=\overline{Y_{2} \cdot 1}=\overline{Y_{2}}$. If $Y_{1}=0, \quad Y_{2}=\bar{Y}_{1}=1$ and it will remain the same and doesn't oscillate.
If $Y_{2}=0, \quad Y_{1}=\bar{Y}_{2}=1$ and it will also remain the same for the clock period. So, it won't oscillate for $C L K=0$.
So, here race around doesn't occur for the condition $C L K=0$.
2. Option (C): When $C L K=1, A=B=1$

$$
A_{1}=B_{1}=0 \text { and so } Y_{1}=Y_{2}=1
$$

And it will remain same for the clock period. So race around
doesn't occur for the condition.
3. Option (D): When $C L K=1, A=B=0$

So, $\quad A_{1}=B_{1}=1$
And again as described for Option (B) race around doesn't occur for the condition.

Option () is correct.

$$
Y=1, \text { when } A>B
$$

	$=a_{1} a_{0}, B=b_{1} b_{0}$			
a_{1}	a_{0}	b_{1}	b_{0}	Y
0	1	0	0	1
1	0	0	0	1
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1

$$
\text { Total combination }=6
$$

Option (A) is correct.
Parallel connection of $M O S \Rightarrow O R$ operation
Series connection of MOS $\Rightarrow A N D$ operation
The pull-up network acts as an inverter. From pull down network we write $\quad Y=\overline{(A+B) C}=\overline{(A+B)}+\bar{C}=\bar{A} \bar{B}+\bar{C}$
Option (A) is correct.
Prime implicants are the terms that we get by solving K-map

$$
F=\frac{X \bar{Y}+\bar{X} Y}{\text { pinime impicants }}
$$

Option (A) is correct.
Given the circuit as below :

Since all the parameters of PMOS and NMOS are equal.
So,

$$
C_{O X}\left(\frac{W}{L}\right)_{M_{1}}=C_{O X}\left(\frac{W}{L}\right)_{M_{2}}=C_{O X}\left(\frac{W}{L}\right)
$$

Given that M_{1} is in linear region. So, we assume that M_{2} is either in cutoff or saturation.
Case 1: M_{2} is in cut off
So,

$$
I_{2}=I_{1}=0
$$

Where I_{1} is drain current in M_{1} and I_{2} is drain current in M_{2}.

Since,

$$
\begin{array}{ll}
\text { Since, } & I_{1}=\frac{\mu_{p} C_{O X}}{2}\left(\frac{W}{L}\right)\left[2 V_{S D}\left(V_{S G}-V_{T_{p}}\right)-V_{S D}^{2}\right] \\
\Rightarrow & 0=\frac{\mu_{p} C_{O X}}{2}\left(\frac{W}{L}\right)\left[2 V_{S D}\left(V_{S G}-V_{T_{p}}\right)-V_{S D}^{2}\right]
\end{array}
$$

Solving it we get,

$$
\begin{array}{lr}
\Rightarrow & 2\left(5-V_{i n}-1\right)=5-V_{D} \\
\Rightarrow & V_{i n}=\frac{V_{D}+3}{2}
\end{array}
$$

$$
\text { For } \quad I_{1}=0, V_{D}=5 \mathrm{~V}
$$

So,

$$
V_{i n}=\frac{5+3}{2}=4 \mathrm{~V}
$$

So for the NMOS

$$
V_{G S}=V_{i n}-0=4-0=4 \mathrm{~V} \text { and } V_{G S}>V_{T n}
$$

So it can't be in cutoff region.
Case 2: M_{2} must be in saturation region.
So,

$$
I_{1}=I_{2}
$$

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

$$
\begin{array}{cc}
& \frac{\mu_{p} C_{O X}}{2} \frac{W}{L}\left[2\left(V_{S G}-V_{T_{p}}\right) V_{S D}-V_{S D}^{2}\right]=\frac{\mu_{n} C_{O X}}{2} \frac{W}{L}\left(V_{G S}-V_{T n}\right)^{2} \\
\Rightarrow & 2\left(V_{S G}-V_{T_{p}}\right) V_{S D}-V_{S D}^{2}=\left(V_{G S}-V_{T n}\right)^{2} \\
\Rightarrow & 2\left(5-V_{i n}-1\right)\left(5-V_{D}\right)-\left(5-V_{D}\right)^{2}=\left(V_{i n}-0-1\right)^{2} \\
\Rightarrow & 2\left(4-V_{i n}\right)\left(5-V_{D}\right)-\left(5-V_{D}\right)^{2}=\left(V_{i n}-1\right)^{2} \\
\text { Substituting } V_{D}=V_{D S}=V_{G S}-V_{T n} \text { and for } N-\operatorname{MOS} \Rightarrow V_{D}=V_{i n}-1 \\
\Rightarrow & 2\left(4-V_{i n}\right)\left(6-V_{i n}\right)-\left(6-V_{i n}\right)^{2}=\left(V_{i n}-1\right)^{2} \\
\Rightarrow & 48-36-8 V_{i n}=-2 V_{i n}+1 \\
\Rightarrow & 6 V_{i n}=11 \\
\Rightarrow & V_{i n}=\frac{11}{6}=1.833 \mathrm{~V}
\end{array}
$$

So for M_{2} to be in saturation $V_{i n}<1.833 \mathrm{~V}$ or $V_{\text {in }}<1.875 \mathrm{~V}$
5.9 Option (D) is correct.

Let Q_{n+1} is next state and Q_{n} is the present state. From the given below figure.

$$
\text { If } A=0, \quad Q_{n+1}=\overline{Q_{n}} \quad \text { (toggle of previous state) }
$$

$$
\text { If } A=1 \text {, }
$$

$$
\begin{aligned}
D & =Y=\bar{A} X_{0}+A X_{1} \\
Q_{n+1} & =D=\bar{A} X_{0}+A X_{1} \\
Q_{n+1} & =\bar{A} \overline{Q_{n}}+A Q_{n} \quad X_{0}=\bar{Q}, X_{1}=Q \\
Q_{n+1} & \left.=\overline{Q_{n}} \quad \text { (toggle of previous state }\right) \\
Q_{n+1} & =Q_{n}
\end{aligned}
$$

So state diagram is

Option (B) is correct.
The given circuit is shown below:

$$
\begin{aligned}
\overline{(\overline{P Q} \overline{Q R}) \overline{P R}} & =\overline{(\overline{P Q+Q R} \overline{P R}} \\
& =\overline{\overline{P Q+Q R}}+\overline{\overline{P R}} \\
& =P Q+Q R+P R
\end{aligned}
$$

If any two or more inputs are ' 1 ' then output y will be 1 .
Option (A) is correct.
For the output to be high, both inputs to AND gate should be high. The D-Flip Flop output is the same, after a delay.
Let initial input be 0;
(Consider Option A) then $\bar{Q}=1$ (For $1^{s t}$ D-Flip Flop). This is given as input to $2^{n d} \mathrm{FF}$.
Let the second input be 1 . Now, considering after 1 time interval; The output of $1^{\text {st }}$ Flip Flop is 1 and $2^{\text {nd }}$ FF is also 1 . Thus Output

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
$=1$.
Option (D) is correct.

$$
\begin{aligned}
& F=\overline{S_{1}} \overline{S_{0}} I_{0}+\overline{S_{1}} S_{0} I_{1}+S_{1} \overline{S_{0}} I_{2}+S_{1} S_{0} I_{3} \\
& I_{0}=I_{3}=0 \\
& F=\bar{P} Q+P \bar{Q}=\operatorname{XOR}(P, Q) \quad\left(S_{1}=P, S_{0}=Q\right)
\end{aligned}
$$

Option (A) is correct.
All the states of the counter are initially unset.

State Initially are shown below in table :

Q_{2}	Q_{1}	Q_{0}	
0	0	0	0
1	0	0	4
1	1	0	6
1	1	1	7
0	1	1	3
0	0	1	1
0	0	0	0

Option (D) is correct.
The sequence is $Q_{B} Q_{A}$

$$
\begin{array}{cccc}
00 \rightarrow 11 \rightarrow 01 \rightarrow 10 \rightarrow 00 \rightarrow \ldots \\
Q_{B} & Q_{A} & Q_{B}(t+1) & Q_{A}(t+1) \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}
$$

$Q_{B}(t+1)$

			1
0		1	1
		0	0

$Q_{B}(t+1)=\bar{Q}_{A}$

$1 \quad 1$ 0 0 $0 \quad 0 \quad 0$

$$
D_{A}=\bar{Q}_{A} \bar{Q}_{B}+Q_{A} Q_{B}
$$

Option (C) is correct.
Initially Carry Flag, $C=0$
MVI A, $07 \mathrm{H} \quad ; A=00000111$
RLC
; Rotate left without carry. $A=00001110$
MVO B, A $\quad ; B=A=00001110$
RLC $\quad ; A=00011100$
RLC $\quad ; A=00111000$
ADD B

$$
\begin{array}{lr}
; A= & 00111000 \\
; & +0000110 \\
; & 01000110
\end{array}
$$

RRC
; Rotate Right with out carry, $A=00100011$
Thus $A=23 \mathrm{H}$
5.16 Option () is correct.

5.17 Option (B) is correct.

Since \bar{G}_{2} is active low input, output of NAND gate must be 0

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

$$
\overline{G_{2}}=\overline{\overline{A_{15}} \cdot \overline{A_{14}} A_{13} \overline{A_{12}} A_{11}}=0
$$

So, $\quad A_{15} A_{14} A_{13} A_{12} A_{11}=00101$
To select Y_{5} Decoder input

$$
A B C=A_{8} A_{9} A_{10}=101
$$

Address range
$A_{15} A_{14} A_{13} A_{12} A_{11} A_{10} A_{9} A_{8} \ldots \ldots . \ldots A_{0}$
$\underbrace{001}_{2} \underbrace{1101}_{D} \ldots \ldots . . . A_{0}$
$(2 D 00-2 D F F)$
5.18 Option (A) (B) (C) are correct.

In the circuit

$$
F=(A \oplus B) \odot(A \odot B) \odot C
$$

For two variables $\quad A \oplus B=\overline{A \odot B}$
So, $\quad(A \oplus B) \odot(A \odot B)=0$ (always)

$$
F=0 \odot C=0 \cdot C+1 \cdot \bar{C}=\bar{C}
$$

So, $F=1$ when $\bar{C}=1$ or $C=0$
Option (D) is correct.
Let $Q_{A}(n), Q_{B}(n), Q_{C}(n)$ are present states and $Q_{A}(n+1), Q_{B}(n+1)$, $Q_{C}(n+1)$ are next states of flop-flops.
In the circuit

$$
\begin{aligned}
& Q_{A}(n+1)=Q_{B}(n) \odot Q_{C}(n) \\
& Q_{B}(n+1) Q_{A}(n) \\
& Q_{C}(n+1) Q_{B}(n)
\end{aligned}
$$

Initially all flip-flops are reset
$1^{\text {st }}$ clock pulse

$$
\begin{aligned}
Q_{A} & =0 \odot 0=1 \\
Q_{B} & =0 \\
Q_{C} & =0
\end{aligned}
$$

$2^{\text {nd }}$ clock pulse

$$
\begin{aligned}
& Q_{A}=0 \odot 0=1 \\
& Q_{B}=1 \\
& Q_{C}=0
\end{aligned}
$$

$3^{\text {rd }}$ clock pulse

$$
\begin{aligned}
Q_{A} & =1 \odot 0=0 \\
Q_{B} & =1 \\
Q_{C} & =1
\end{aligned}
$$

$4^{\text {th }}$ clock pulse

$$
\begin{aligned}
Q_{A} & =1 \odot 1=1 \\
Q_{B} & =0 \\
Q_{C} & =1
\end{aligned}
$$

So, sequence $\quad Q_{A}=01101 \ldots$.
Option (D) is correct.
Output of the MUX can be written as

$$
F=I_{0} \overline{S_{0}} \overline{S_{1}}+I_{1} \overline{S_{0}} S_{1}+I_{2} S_{0} \overline{S_{1}}+I_{3} S_{0} S_{1}
$$

Here, $I_{0}=C, I_{1}=D, I_{2}=\bar{C}, I_{3}=\overline{C D}$
and $S_{0}=A, S_{1}=B$
So, $\quad F=C \bar{A} \bar{B}+D \bar{A} B+\bar{C} A \bar{B}+\bar{C} \bar{D} A \bar{B}$
Writing all SOP terms

$$
\begin{aligned}
F= & \underbrace{\bar{A} \bar{B} C \bar{D}}_{m_{s}}+\underbrace{\bar{A} \bar{B} C \bar{D}}_{m_{2}}+\underbrace{\bar{A} B C D}_{m_{7}}+\underbrace{\bar{A} B \bar{C} D}_{m_{s}} \\
& \quad+\underbrace{A \bar{B} \bar{C} D}_{m_{3}}+\underbrace{A \bar{D} \bar{D}}_{m_{s}}+\underbrace{A B \bar{D}}_{m_{12}} \\
F= & \sum m(2,3,5,7,8,9,12)
\end{aligned}
$$

Option (C) is correct.
By executing instruction one by one
MVI A, $45 \mathrm{H} \Rightarrow$ MOV 45 H into accumulator, $A=45 \mathrm{H}$
$\mathrm{STC} \Rightarrow$ Set carry, $C=1$
CMC \Rightarrow Complement carry flag, $C=0$
RAR \Rightarrow Rotate accumulator right through carry

$$
A=00100010
$$

XRA B \Rightarrow XOR A and B

$$
A=A \oplus B=00100010 \oplus 01000101=01100111=674
$$

5.22 Option (C) is correct.

TTL \rightarrow Transistor - Transistor logic
CMOS \rightarrow Complementary Metal Oxide Semi-conductor
Option (D) is correct.
Vectored interrupts : Vectored interrupts are those interrupts in which program control transferred to a fixed memory location.
Maskable interrupts : Maskable interrupts are those interrupts which can be rejected or delayed by microprocessor if it is performing some critical task.
5.24 Option (D) is correct.

We have $[X+Z\{\bar{Y}+(\bar{Z}+X \bar{Y})\}][\bar{X}+\bar{Z}(X+Y)]=1$
Substituting $X=1$ and $\bar{X}=0$ we get $[1+Z\{\bar{Y}+(\bar{Z}+1 \bar{Y})\}][0+\bar{Z}(1+Y)]=1$
or $\quad[1][\bar{Z}(1)]=1 \quad 1+A=1$ and $0+A=A$
or $\quad \bar{Z}=1 \leftrightarrow Z=0$
5.25 Option (A) is correct.

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

The AND gate implementation by $2: 1$ mux is as follows

$$
Y=\bar{A} I_{0}+A I_{1}=A B
$$

The $E X-O R$ gate implementation by $2: 1$ mux is as follows

$$
Y=\bar{B} I_{0}+B I_{1}=A \bar{B}+B \bar{A}
$$

Option (A) is correct.
The given circuit is as follows.

The truth table is as shown below. Sequence is $00,11,10,00 \ldots$

CLK	J_{1}	K_{1}	Q_{1}	J_{2}	K_{2}	Q_{2}
1	1	1	0	1	1	0
2	1	1	1	1	1	1
3	0	0	1	0	1	0
4	1	1	0	1	1	0

Option (B) is correct.
The given situation is as follows

$P_{1}=0, P_{2}=0$

$P_{1}=1$

$P_{2}=1$

$P_{1}=1, P_{2}=1$

The truth table is as shown below

P_{1}	P_{2}	a	b	c	d	e	f	g
0	0	1	1	1	1	1	1	0
0	1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	0	1
1	1	1	0	0	1	1	1	1

From truth table we can write

$$
\begin{aligned}
a & =1 \\
b & =\bar{P}_{1} \bar{P}_{2}+P_{1} \bar{P}_{2}=\bar{P}_{2}
\end{aligned}
$$

1 NOT Gate

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

$$
\begin{aligned}
& c=\overline{P_{1}} \overline{P_{2}}+\bar{P}_{1} P_{2}=\overline{P_{1}} \\
& d=1=c+e
\end{aligned}
$$

1 NOT Gate
and

$$
\begin{array}{ll}
c=\overline{\overline{P_{1}} P_{2}}=P_{1}+\overline{P_{2}} & 1 \text { OR GATE } \\
f=\overline{P_{1} \overline{P_{2}}}=\overline{P_{1}}+P_{2} & 1 \text { OR GATE } \\
g=\overline{P_{1}} \overline{P_{2}}=P_{1}+P_{2} & 1 \text { OR GATE }
\end{array}
$$

Thus we have $g=P_{1}+P_{2}$ and $d=1=c+e$. It may be observed easily from figure that
Led g does not glow only when both P_{1} and P_{2} are 0 . Thus

$$
g=P_{1}+P_{2}
$$

LED d is 1 all condition and also it depends on

$$
d=c+e
$$

Option (D) is correct.
As shown in previous solution 2 NOT gates and 3-OR gates are required.
Option (C) is correct.
For the NAND latche the stable states are as follows

For the NOR latche the stable states are as follows

5.30 Option (D) is correct.

From the figure shown below it may be easily seen upper MOSFET are shorted and connected to $V_{d d}$ thus OUT is 1 only when the node S is 0,

Since the lower MOSFETs are shorted to ground, node S is 0 only when input P and Q are 1 . This is the function of AND gate.
Option (B) is correct.
MSB of both number are 1 , thus both are negative number. Now we get

$$
\text { and } \quad \begin{aligned}
11101101 & =(-19)_{10} \\
11100110 & =(-26)_{10} \\
P-Q & =(-19)-(-26)=7
\end{aligned}
$$

Thus 7 signed two's complements form is

$$
(7)_{10}=00000111
$$

5.32 Option (D) is correct.

The circuit is as shown below

$$
\begin{aligned}
X & =\overline{P Q} \\
Y & =(P+Q) \\
\text { So } \quad Z & =\overline{P Q}(P+Q) \\
& =(\bar{P}+\bar{Q})(P+Q)=\bar{P} Q+P \bar{Q}=P \oplus Q \\
\text { and } \quad M_{1} & =Z \oplus R=(P \oplus Q) \oplus R
\end{aligned}
$$

5.33 Option (A) is correct.

The circuit is as shown below

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

The truth table is shown below. When CLK make transition Q goes to 1 and when D goes to $1, Q$ goes to 0
5.34 Option (B) is correct.

Since the input to both JK flip-flop is 11, the output will change every time with clock pulse. The input to clock is

The output Q_{0} of first FF occurs after time $\triangle T$ and it is as shown below

The output Q_{1} of second FF occurs after time $\triangle T$ when it gets input (i.e. after ΔT from t_{1}) and it is as shown below

Option (D) is correct.
We have $\quad V_{D A C}=\sum_{n=0}^{3} 2^{n-1} b_{n}=2^{-1} b_{0}+2^{0} b_{1}+2^{1} b_{2}+2^{2} b_{3}$
or
$V_{D A C}=0.5 b_{0}+b_{1}+2 b_{2}+4 b_{3}$
The counter outputs will increase by 1 from 0000 till $V_{t h}>V_{D A C}$.
The output of counter and $V_{D A C}$ is as shown below

Clock	$b_{3} b_{3} b_{2} b_{0}$	$V_{D A C}$
1	0001	0
2	0010	0.5
3	0011	1
4	0100	1.5
5	0101	2
6	0110	2.5
7	0111	3
8	1000	3.5
9	1001	4
10	1010	4.5
11	1011	5
12	1100	5.5
13	1101	6
14	1110	6.5

and when $V_{A D C}=6.5 \mathrm{~V}$ (at 1101), the output of AND is zero and the counter stops. The stable output of LED display is 13 .
Option (B) is correct.
The $V_{A D C}-V_{\text {in }}$ at steady state is

$$
=6.5-6.2=0.3 V
$$

Option (A) is correct.

$$
\begin{aligned}
Z & =I_{0} \overline{R S}+I_{1} \bar{R} S+I_{2} R \bar{S}+I_{3} R S \\
& =(P+\bar{Q}) \overline{R S}+P \bar{R} S+P Q R \bar{S}+P R S \\
& =P \overline{R S}+\overline{Q R S}+P \bar{R} S+P Q R \bar{S}+P R S
\end{aligned}
$$

The k - Map is as shown below

$$
Z=P Q+P \bar{Q} S+\overline{Q R S}
$$

Option (C) is correct.
2710H LXI H, 30A0H 2713H DAD H 2714H PCHL
; Load 16 bit data 30A0 in HL pair ; 6140H \rightarrow HL
; Copy the contents 6140 H of HL in PC

Thus after execution above instruction contests of PC and HL are same and that is 6140 H
5.39 Option (C) is correct.

MSB of Y is 1 , thus it is negative number and X is positive number
Now we have

$$
\begin{aligned}
X & =01110=(14)_{10} \\
Y & =11001=(-7)_{10} \\
X+Y & =(14)+(-7)=7
\end{aligned}
$$

and

In signed two's complements from 7 is $(7)_{10}=000111$
5.40 Option (B) is correct.

$$
Y=A B+C D=\overline{\overline{A B} \cdot \overline{C D}}
$$

This is SOP form and we require only 3 NAND gate
5.41 Option (A) is correct.

The circuit is as shown below

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
Y=\bar{A} B+A \bar{B}
$$

and

$$
\begin{aligned}
X & =\bar{Y} C+Y \bar{C}=\overline{(\bar{A} B+A \bar{B})} C+(\bar{A} B+A \bar{B}) \bar{C} \\
& =(\overline{A B}+A B) C+(\bar{A} B+A \bar{B}) \bar{C} \\
& =\overline{A B} C+A B C+\bar{A} B \bar{C}+A \overline{B C}
\end{aligned}
$$

5.42 Option (D) is correct.

$$
\begin{array}{rlr}
Y & =\bar{A} B C \bar{D}+\bar{A} B C \bar{D}+A \overline{B C} D+A B \overline{C D} & \\
& =\bar{A} B C \bar{D}+A B \overline{C D}+A \overline{B C} D+\overline{A B C D} & \\
& =\bar{A} B C \bar{D}+A B \overline{C D}+\overline{B C} D(A+\bar{A}) & \\
& =\bar{A} B C \bar{D}+A B \overline{C D}+\overline{B C} D & A+\bar{A}=1
\end{array}
$$

5.43 Option (B) is correct.

In given TTL NOT gate when $V_{i}=2.5(\mathrm{HIGH})$, then
$Q_{1} \rightarrow$ Reverse active
$Q_{2} \rightarrow$ Saturation
$Q_{3} \rightarrow$ Saturation
$Q_{4} \rightarrow$ cut - off region
5.44 Option (C) is correct.

For $X=0, Y=1 \quad P=1, Q=0$
For $X=0, Y=0 \quad P=1, Q=1$
For $X=1, Y=1 \quad P=1, Q=0$ or $P=0, Q=1$
5.45 Option (C) is correct.

Chip 8255 will be selected if bits A_{3} to A_{7} are 1. Bit A_{0} to A_{2} can
be 0 or.

1. Thus address range is

$$
\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & & \text { F8H } \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & \text { FFH }
\end{array}
$$

Option (B) is correct.
Since the inverting terminal is at virtual ground the resistor network can be reduced as follows

The current from voltage source is
GATE Electronics \& Communication by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

$$
I=\frac{V_{R}}{R}=\frac{10}{10 k}=1 \mathrm{~mA}
$$

This current will be divide as shown below

Now $\quad i=\frac{I}{16}=\frac{1 \times 10^{-3}}{16}=62.5 \mu \mathrm{~A}$
Option (C) is correct.
The net current in inverting terminal of OP - amp is

So that

$$
I_{-}=\frac{1}{4}+\frac{1}{16}=\frac{5 I}{16}
$$

Option (B) is correct.
Line
1 : MVI A, B5H ; Move B5H to A
2: MVI B, 0EH ; Move 0EH to B
$3:$ XRI $69 \mathrm{H} \quad ;[\mathrm{A}] \mathrm{XOR} 69 \mathrm{H}$ and store in A
; Contents of A is CDH
4:ADDB ;Add the contents of A to contents of B and ; store in A, contents of A is EAH
$5:$ ANI 9BH $\quad ; \quad[\mathrm{a}]$ AND 9 BH , and store in A ,
; Contents of A is 8 AH
$6:$ CPI 9FH ; Compare 9FH with the contents of A
; Since $8 \mathrm{AH}<9 \mathrm{BH}, \mathrm{CY}=1$
7 : STA 3010 H

H

8: HLT
; Stop
Thus the contents of accumulator after execution of ADD instruction is EAH.
Option (C) is correct.
The $C Y=1$ and $Z=0$
Option (A) is correct.
For this circuit the counter state $\left(Q_{1}, Q_{0}\right)$ follows the sequence 00,01 , $10,00 \ldots$ as shown below

Clock	$D_{1} D_{0}$	$Q_{1} Q_{0}$	Q_{1} NOR Q_{0}
		00	1
1st	01	10	0
2 nd	10	01	0
3rd	00	00	0

1	0	0	1
0	d	0	0
0	0	d	1
1	0	0	1

Option (A) is correct.
As shown below there are 2 terms in the minimized sum of product expression.

1	0	0	1
0	d	0	0
0	0	d	1
1	0	0	1

Option (B) is correct.
The output is taken from the 5th line.
5.53 Option (D) is correct.

After applying two clock poles, the outputs of the full adder is $S=1$, $C_{0}=1$

	A	B	C_{i}	S	C_{o}
1st	1	0	0	0	1
2nd	1	1	1	1	1

5.54 Option (D) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$\underbrace{100}_{4} \underbrace{010}_{2} \underbrace{011}_{3} \underbrace{001}_{1}$

5.55 Option (B) is correct.

In this the diode D_{2} is connected to the ground. The following table shows the state of counter and D / A converter

$Q_{2} Q_{1} Q 0$	$D_{3}=Q_{2}$	$D_{2}=0$	$D_{1}=Q_{1}$	$D_{0}=Q_{0}$	V_{o}
000	0	0	0	0	0
001	0	0	0	1	1
010	0	0	1	0	2
011	0	0	1	1	3

100	1	0	0	0	8
101	1	0	0	1	9
110	1	0	1	0	10
111	1	0	1	1	11
000	0	0	0	0	0
001	0	0	0	1	1

Thus option (B) is correct
Option (B) is correct.

LXI, EFFF H

CALL 3000 H
; Load SP with data EFFH
; Jump to location 3000 H

3000H LXI H, 3CF4
; Load HL with data 3CF4H
PUSH PSW POP PSW
PRE
; Store contnets of PSW to Stack ; Restore contents of PSW from stack ; stop

Before instruction SPHL the contents of SP is 3CF4H.
After execution of POP PSW, SP $+2 \rightarrow \mathrm{SP}$
After execution of RET, $\mathrm{SP}+2 \rightarrow \mathrm{SP}$
Thus the contents of SP will be 3CF4H $+4=3 \mathrm{CF} 8 \mathrm{H}$
Option (A) is correct.
The inputs D_{0} and D_{1} respectively should be connected as $\overline{Q_{1}}$ and Q_{0} where $Q_{0} \rightarrow D_{1}$ and $\overline{Q_{1}} \rightarrow D_{0}$
Option (D) is correct.
If the point P is stuck at 1 , then output f is equal to A

Option (B) is correct.
Dividing 43 by 16 we get
16 $\stackrel{2}{43}$
$\underline{32}$
11
11 in decimal is equivalent is B in hexamal.
$\begin{array}{lr}\text { Thus } & 43_{10} \longleftrightarrow 2 B_{16} \\ \text { Now } & 4_{10} \longleftrightarrow 0100_{2} \\ & \\ & 3_{10} \leftrightarrows 0011_{2} \\ \text { Thus } & 43_{10} \leftrightarrows 01000011_{B C D}\end{array}$
Option (A) is correct.
The diagram is as shown in fig

$$
\begin{aligned}
& f=B \bar{C}+\bar{B} C \\
& f=f A+\bar{f} 0=f A=A B \bar{C}+A \bar{B} C
\end{aligned}
$$

Option (C) is correct.

The circuit is as shown below

If output is at logic 0 , the we have $V_{0}=0$ which signifies BJT Q_{3} is in saturation and applying KVL we have

$$
\begin{aligned}
V_{B E 3} & =I_{R} \times 1 k \\
0.75 & =I_{R} \times 1 k \\
I_{R} & =0.75 \mathrm{~mA}
\end{aligned}
$$

5.62 Option (A) is correct.

$$
\text { We have } \quad \begin{aligned}
f & =\bar{A} B C+A B \bar{C} \\
& =B(\bar{A} C+A \bar{C})=B(A+C)(\bar{A}+\bar{C})
\end{aligned}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
5.63 Option (C) is correct.

Characteristic equation for a jk flip-flop is written as

$$
Q_{n+1}=J \bar{Q}_{n}+\bar{K} Q_{n}
$$

Where $\quad Q_{n}$ is the present output

$$
Q_{n+1} \text { is next output }
$$

So,

$$
\begin{aligned}
Q_{n+1} & =1 \overline{0}+\bar{K} \cdot 0 \\
Q_{n+1} & =1
\end{aligned}
$$

$$
Q_{n}=0
$$

5.64 Option (C) is correct.

Since $T_{2} T_{1} T_{0}$ is at 111, at every clock $Q_{2} Q_{1} Q_{0}$ will be changes. Ir present state is 011 , the next state will be 100 .
5.65 Option (D) is correct.
5.66 Option (C) is correct. 0100H LXI SP, 00FF 0103H LXI H, 0701 0106H MVI A, 20H 0108 H SUB M

0109H ORI 40H 010BH ADD M
; Load SP with 00FFG
; Load HL with 0107H
; Move A with 20 H
; Subtract the contents of memory
; location whose address is stored in HL ; from the A and store in A
; 40 H OR [A] and store in A
; Add the contents of memeory location ; whose address is stored in HL to A ; and store in A

HL contains 0107 H and contents of 0107 H is 20 H
Thus after execution of SUB the data of A is $20 \mathrm{H}-20 \mathrm{H}=00$
5.67 Option (C) is correct.

Before ORI instruction the contents of A is 00 H . On execution the ORI 40 H the contents of A will be 40 H

$$
00 \mathrm{H}=00000000
$$

$40 \mathrm{H}=01000000$
ORI 01000000

After ADD instruction the contents of memory location whose address is stored in HL will be added to and will be stored in A

$$
40 \mathrm{H}+20 \mathrm{H}=60 \mathrm{H}
$$

5.68 Option (C) is correct.

A master slave D-flip flop is shown in the figure.

In the circuit we can see that output of flip-flop call be triggered only by transition of clock from 1 to 0 or when state of slave latch is affected.

Option (A) is correct.
The range of signed decimal numbers that can be represented by $n-$ bits 1 's complement number is $-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$. Thus for $n=6$ we have

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{aligned}
\text { Range } & =-\left(2^{6-1}-1\right) \text { to }+\left(2^{6-1}-1\right) \\
& =-31 \text { to }+31
\end{aligned}
$$

Option (D) is correct.
The minimum number of bit require to encode 100 increment is

$$
2^{n} \geq 100
$$

or $\quad n \geq 7$
5.71 Option (B) is correct.

Shift Register \rightarrow Serial to parallel data conversion
Counter \rightarrow Frequency division
Decoder \rightarrow Addressing in memory chips.
Option (A) is correct.
For the TTL family if terminal is floating, then it is at logic 1.

$$
\text { Thus } \quad Y=(\overline{A B+1})=\overline{A B} \cdot 0=0
$$

Option (C) is correct.

11001	1001	111001
00110	0110	000110
+1	$\frac{+1}{0111}$	$\overline{000111}$
00111	7	7

Thus 2's complement of 11001,1001 and 111001 is 7 . So the number given in the question are 2's complement correspond to -7 .
5.74 Option (C) is correct.

In the modulo - 6 ripple counter at the end of sixth pulse (i.e. after 101 or at 110) all states must be cleared. Thus when $C B$ is 11 the all states must be cleared. The input to 2 -input gate is \bar{C} and \bar{B} and the desired output should be low since the CLEAR is active low Thus when \bar{C} and \bar{B} are 0,0 , then output must be 0 . In all other case the output must be 1 . OR gate can implement this functions.
${ }^{5.75}$ Option (C) is correct.
Number of MUX is $\frac{4}{3}=2$ and $\frac{2}{2}=1$. Thus the total number 3
multiplexers is required.
5.76 Option (D) is correct.

$$
\begin{aligned}
A C+B \bar{C} & =A C 1+B \bar{C} 1 \\
& =A C(B+\bar{B})+B \bar{C}(A+\bar{A}) \\
& =A C B+A C \bar{B}+B \bar{C} A+B \overline{C A}
\end{aligned}
$$

5.77 Option (D) is correct.

We have

$$
f(x, y)=\overline{x y}+\bar{x} y+x y=\bar{x}(\bar{y}+y)+x y
$$

$=\bar{x}+x y$
or

$$
f(x, y)=\bar{x}+y
$$

Here compliments are not available, so to get \bar{x} we use NOR gate.
Thus desired circuit require 1 unit OR and 1 unit NOR gate giving total cost 2 unit.
Option (D) is correct.
For 8255 , various modes are described as following.
Mode 1 : Input or output with hand shake
In this mode following actions are executed

1. Two port $(\mathrm{A} \& \mathrm{~B})$ function as 8 - bit input output ports.
2. Each port uses three lines from C as a hand shake signal
3. Input \& output data are latched.

Form (ii) the mode is 1.
Mode 2 : Bi-directional data transfer
This mode is used to transfer data between two computer. In this mode port A can be configured as bidirectional port. Port A uses five signal from port C as hand shake signal.
For (1), mode is 2
5.79 Option (B) is correct.

LDA 16 bit \Rightarrow Load accumulator directly this instruction copies data byte from memory location (specified within the instruction) the accumulator.
It takes 4 memory cycle-as following.

1. in instruction fetch
2. in reading 16 bit address
3. in copying data from memory to accumulator

LXI D, (F0F1) ${ }_{4} \Rightarrow$ It copies 16 bit data into register pair D and E.
It takes 3 memory cycles.
5.80 Option (A) is correct.

LXI H, 9258 H	$; 9258 \mathrm{H} \rightarrow \mathrm{HL}$
MOV A, M	$;(9258 \mathrm{H}) \rightarrow \mathrm{A}$
CMa	$; \bar{A} \rightarrow A$

For more GATE Resources, Mock Test and Study material join the community http:/Iwww.facebook.com/gateec 2014

MOV M, A $\quad ; A \rightarrow M$
This program complement the data of memory location 9258 H .
5.81 Option (D) is correct.

MVI A, 00H	; Clear accumulator
LOOP ADD B	; Add the contents of B to A
DCR C	; Decrement C
JNZ LOOP	; If C is not zero jump to loop
HLT	
END	

This instruction set add the contents of B to accumulator to contents of C times.
5.82 Option (D) is correct.

The number of distinct boolean expression of n variable is $2^{2 n}$. Thus

$$
2^{2^{4}}=2^{16}=65536
$$

Option (C) is correct.
In the flash analog to digital converter, the no. of comparators is equal to 2^{n-1}, where n is no. of bit.s
So, $\quad 2^{n-1}=2^{8}-1=255$
5.84 Option (B) is correct.

When output of the 74 series gate of TTL gates is taken from BJT then the configuration is either totem pole or open collector configuration .
Option (D) is correct.
A $2^{n}: 1$ MUX can implement all logic functions of $(n+1)$ variable without andy additional circuitry. Here $n=3$. Thus a $8: 1 \mathrm{MUX}$ can implement all logic functions of 4 variable.
5.86 Option (D) is correct.

Counter must be reset when it count 111. This can be implemented by following circuitry

Option (B) is correct.

$$
\text { We have } \quad \begin{aligned}
Y & =P \oplus Q \oplus R \\
Z & =R Q+\bar{P} R+Q \bar{P}
\end{aligned}
$$

Here every block is a full subtractor giving $P-Q-R$ where R is borrow. Thus circuit acts as a 4 bit subtractor giving $P-Q$.

Option (A) is correct.

$$
\begin{aligned}
W & =R+\overline{P Q} Q+\bar{R} S \\
X & =P Q \overline{R S}+\overline{P Q R S}+P \overline{Q R S} \\
Y & =R S+\overline{P R+P \bar{Q}+\overline{P Q}} \\
& =R S+P R \cdot \overline{P \bar{Q} \cdot \overline{P Q}} \\
& =R S+(\bar{P}+\bar{R})(\bar{P}+Q)(P+Q) \\
& =R S+(\bar{P}+\overline{P Q}+\overline{P R}+Q \bar{R})(P+Q) \\
& =R S+\bar{P} Q+Q \bar{R}(P+\bar{P})+Q \bar{R} \\
& =R S+\overline{P Q} Q+\overline{Q R} \\
Z & =R+S+\overline{P Q+\overline{P Q R}+P \overline{P S}} \\
& =R+S+\overline{P Q} \cdot \overline{P Q R} \cdot \overline{P \overline{Q S}}
\end{aligned}
$$

$$
=R+S+(\bar{P}+\bar{Q})(P+Q+R)(\bar{P}+Q+S)
$$

$$
=R+S+\bar{P} Q+\bar{P} Q+\bar{P} Q S+\bar{P} R+\bar{P} Q R
$$

$$
+\bar{P} R S+P \bar{Q}+P \bar{Q} S+\overline{P Q} R+\bar{Q} R S
$$

$$
=R+S+\bar{P} Q+\bar{P} Q S+\bar{P} R+\bar{P} Q R+\bar{P} R S
$$

$$
+P \bar{Q} S+\overline{P Q} R+\bar{Q} R S
$$

$$
=R+S+\bar{P} Q(1+S)+\bar{P} R(1+\bar{P})+\bar{P} R S
$$

$$
+P \bar{Q} S+\overline{P Q} R+\bar{Q} R S
$$

$$
=R+S+\bar{P} Q+\bar{P} R+\bar{P} R S+P \bar{Q} S
$$

$$
+\overline{P Q} R+\bar{Q} R S
$$

$$
=R+S+\bar{P} Q+\bar{P} R(1+\bar{Q})+P \bar{Q} S+\bar{Q} R S
$$

$$
=R+S+\bar{P} Q+\bar{P} R+P \bar{Q} S+\bar{Q} R S
$$

Thus $W=Z$ and $X=\bar{Z}$
5.89 Option (B) is correct.

Propagation delay of flip flop is

$$
t_{p d}=10 \mathrm{nsec}
$$

Propagation delay of 4 bit ripple counter

$$
R=4 t_{p d}=40 \mathrm{~ns}
$$

and in synchronous counter all flip-flop are given clock simultaneously, so

$$
S=t_{p d}=10 \mathrm{~ns}
$$

5.90 Option (C) is correct.

After $t=t_{1}$, at first rising edge of clock, the output of shift register is 0110 , which in input to address line of ROM. At 0110 is applied to register. So at this time data stroed in ROM at 1010 (10), 1000 will be on bus.
When W has the data 0110 and it is 6 in decimal, and it's data value at that add is 1010
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
then 1010 i.e. 10 is acting as odd, at time t_{2} and data at that movement is 1000 .
5.91 Option (B) is correct.

The DTL has minimum fan out and CMOS has minimum power consumption. Propagation delay is minimum in ECL.
5.92 Option (D) is correct.

Let input be 1010;
Let input be 0110; output will be 1101 output will be 0100
Thus it convert gray to Binary code.
.93 Option (A) is correct.
CMP B $\quad \Rightarrow$ Compare the accumulator content with context of Register B
If $\mathrm{A}<\mathrm{R} \quad \mathrm{CY}$ is set and zero flag will be reset.
5.94 Option (A) is correct.

$$
V_{o}=-V_{1}\left[\frac{R}{R} b_{o}+\frac{R}{2 R} b_{1}+\frac{R}{4 R} b_{2}+\frac{R}{4 R} b_{3}\right]
$$

Exact value when $V_{1}=5$, for maximum output

$$
V_{o E x a c t}=-5\left[1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right]=-9.375
$$

Maximum $V_{\text {out }}$ due to tolerance

$$
\begin{aligned}
V_{o \max } & =-5.5\left[\frac{110}{90}+\frac{110}{2 \times 90}+\frac{110}{4 \times 90}+\frac{110}{8 \times 90}\right] \\
& =-12.604 \\
& =34.44 \%=35 \%
\end{aligned}
$$

Tolerance
Option (D) is correct.
If the 4 - bit 2's complement representation of a decimal number is 1000 , then the number is -8
5.96 Option (B) is correct.

Output of 1 st $\mathrm{XOR}==\bar{X} \cdot 1+X \cdot \overline{1}=\bar{X}$
Output of 2 nd $\mathrm{XOR}=\overline{X X}+X X=1$

So after $4,6,8, \ldots 20$ XOR output will be 1 .
5.97 Option (C) is correct.

In the comparator type ADC , the no. of comparators is equal to 2^{n-1} , where n is no. of bit.s
So, $\quad 2^{3}-1=7$
5.98 Option (C) is correct.

The circuit is as shown below

The circuit shown is monostable multivibrator as it requires an external triggering and it has one stable and one quasistable state.
Option (B) is correct.
They have prorogation delay as respectively,

$$
\begin{aligned}
& G_{1} \rightarrow 10 \mathrm{nsec} \\
& G_{2} \rightarrow 20 \mathrm{nsec}
\end{aligned}
$$

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

For abrupt change in V_{i} from 0 to 1 at time $t=t_{0}$ we have to assume the output of $N O R$ then we can say that option (B) is correct waveform.

Option (B) is correct.
Let $X_{3} X_{2} X_{1} X_{0}$ be 1001 then $Y_{3} Y_{2} Y_{1} Y_{0}$ will be 1111.
Let $X_{3} X_{2} X_{1} X_{0}$ be 1000 then $Y_{3} Y_{2} Y_{1} Y_{0}$ will be 1110
Let $X_{3} X_{2} X_{1} X_{0}$ be 0110 then $Y_{3} Y_{2} Y_{1} Y_{0}$ will be 1100
So this converts 2-4-2-1 BCD numbers.
Option (B) is correct.

	MVI B, 87H	$; \mathrm{B}=87$
MOV A, B	$; \mathrm{A}=\mathrm{B}=87$	
START :	JMP NEXT	$;$ Jump to next
	XRA B	$; A \oplus B \rightarrow A$,
		$; A=00, B=87$
	JP START	$;$ Since $A=00$ is positive
NEXT :		$;$ so jump to START
	JMP NEXT	$;$ Jump to NEXT ; unconditionally
		$; \mathrm{B} ; A \oplus B \rightarrow A, A=87$,
JP	START	$; \mathrm{B}=87 \mathrm{H}$
OUT	PORT2	$; A=87 \rightarrow P O R T 2$

Option (B) is correct
The two's compliment representation of 17 is

$$
17=010001
$$

Its 1's complement is 101110
So 2 's compliment is
101110
$+\quad 1$
$\overline{101111}$
5.103 Option (C) is correct.

The propagation delay of each inverter is $t_{p d}$ then The fundamental frequency of oscillator output is

$$
f=\frac{1}{2 n t_{p d}}=\frac{1}{2 \times 5 \times 100 \times 10^{-12}}=1 \mathrm{GHz}
$$

5.104 Option (C) is correct.
$4 K \times 8$ bit means 1024_{10} location of byte are present
Now $\quad 1024_{10} \longleftrightarrow 1000_{H}$
It starting address is $A A 00_{H}$ then address of last byte is
$A A 00_{H}+1000_{H}-0001_{H}=B 9 F F_{H}$
5.105 Option (D) is correct.

$$
\begin{aligned}
Y & =I_{0}+I_{3}+I_{5}+I_{6} \\
& =\overline{C B} A+\bar{C} A B+C \bar{B} A+C B \bar{A} \\
Y & =\bar{C}(\overline{A \oplus B})+C(A \oplus B)
\end{aligned}
$$

5.106 Option (D) is correct.

For the LED to glow it must be forward biased. Thus output of NAND must be LOW for LED to emit light. So both input to NAND must be HIGH. If any one or both switch are closed, output of AND will be LOW. If both switch are open, output of XOR will be LOW. So there can't be both input HIGH to NAND. So LED doesn't emit light.
5.107 Option (C) is correct.

The output of options (C) satisfy the given conditions

5.108 Option (B) is correct.
5.109 Option (B) is correct.

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

Conversion time of successive approximate analog to digital converters is independent of input voltage. It depends upon the number of bits only. Thus it remains unchanged.
Option (C) is correct.
In the flash analog to digital converter, the no. of comparators is equal to 2^{n-1}, where n is no. of bits.
So, $\quad 2^{4}-1=15$
5.111 Option (D) is correct.

As the output of AND is $X=1$, the all input of this AND must be 1. Thus

$$
\begin{equation*}
\bar{A} B+A \bar{B}=1 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\overline{B C}+B C & =1 \\
C & =1
\end{align*}
$$

From (2) and (3), if $C=1$, then $B=1$
If $B=1$, then from (1) $A=0$. Thus $A=0, B=1$ and $C=1$
Option (C) is correct.
Interrupt is a process of data transfer by which an external device can inform the processor that it is ready for communication. 8085 microprocessor have five interrupts namely TRAP, INTR, RST 7.5, RST 6.5 and RST 5.5

Option (A) is correct.
For any RST instruction, location of program transfer is obtained in following way.

$$
\begin{array}{ll}
\text { RST } x & \Rightarrow(x * 8)_{10} \rightarrow \text { convert in hexadecimal } \\
\text { So for RST } 6 & \Rightarrow(6 * 8)_{10}=(48)_{10}=(30)_{\mathrm{H}}
\end{array}
$$

Option (A) is correct.

$$
\text { Accumulator contains } A=49 \mathrm{H}
$$

$$
\text { Register } B=3 \mathrm{AH}
$$

$$
\begin{aligned}
\text { SUB } B & =A \text { minus } B \\
A & =49 \mathrm{H}=01001001 \\
B & =3 \mathrm{AH}=00111010
\end{aligned}
$$

$$
2 \text { 's complement of }(-B)=11000110
$$

$$
\begin{aligned}
& \begin{array}{l}
A-B=A+(-B) \\
\quad 01001001 \\
\Rightarrow \\
+11000110 \\
00001111 \\
\text { Carry }=1
\end{array} \\
& \hline
\end{aligned}
$$

$$
\text { so here output } A=0 \mathrm{~F}
$$

$$
\text { Carry } C Y=1
$$

$$
\text { Sign flag } S=1
$$

5.115 Option (C) is correct.

The circuit is as shown below :

$$
Y=\overline{\bar{B}+(\overline{B+\bar{C}})}=B(B+\bar{C})=B
$$

Option (B) is correct.
The circuit is as shown below

The voltage at non-inverting terminal is

$$
\begin{align*}
& V_{+}=\frac{1}{8}+\frac{1}{2}=\frac{5}{8} \\
& V_{-}=V_{+}=\frac{5}{8} \tag{1}
\end{align*}
$$

Now applying voltage divider rule

$$
\begin{equation*}
V_{-}=\frac{1 k}{1 k+7 k} V_{o}=\frac{1}{8} V_{o} \tag{2}
\end{equation*}
$$

From (1) and (2) we have

$$
V_{o}=8 \times \frac{5}{8}=5 V
$$

5.117 Option (D) is correct.

The truth table is shown below

$$
Z=\bar{X} Q+Y \bar{Q}
$$

Comparing from the truth table of $J-K$ FF

$$
\begin{aligned}
& Y=J \\
& X=K
\end{aligned}
$$

X	Y	Z
0	0	Q
0	1	0
1	0	1

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

1	1	\bar{Q}_{1}

5.118 Option (B) is correct.

In the figure the given counter is mod-10 counter, so frequency of output is $\frac{10 k}{10}=1 k$
5.119 Option (D) is correct.

We have $\quad y=A+\bar{A} B$
we know from Distributive property

$$
x+y z=(x+y)(x+z)
$$

Thus $\quad y=(A+\bar{A})(A+B)=A+B$
5.120 Option (C) is correct.

Darligton emitter follower provides a low output impedance in both logical state (1 or 0). Due to this low output impedance, any stray capacitance is rapidly charged and discharged, so the output state changes quickly. It improves speed of operation.
5.121 Option (D) is correct.
5.122 Option (B) is correct.

For ADC we can write
Analog input $=($ decimal eq of digital output $) \times$ resol
$6.6=($ decimal eq. of digital output $) \times 0.5$
$\frac{6.6}{0.5}=$ decimal eq of digital. output
$13.2=$ decimal equivalent of digital output so out-
put of ADC is $=1101$.
5.123 Option (A) is correct.

We use the K-map as below.

So given expression equal to

$$
=\bar{A} \bar{C}+B \bar{C}+\bar{A} B
$$

5.124 Option (C) is correct.

For a binary half-subtractor truth table si given below.

A	B	$D=A$ minus B	Borrow (X)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

from truth table we can find expressions of $D \& X$

$$
\begin{aligned}
& D=A \oplus B=\bar{A} B+A \bar{B} \\
& X=\bar{A} B
\end{aligned}
$$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
5.125 Option (D) is correct.

From the given figure we can write the output

For the state 010 all preset $=1$ and output $Q_{A} Q_{B} Q_{C}=111$ so here total no. of states $=5$ (down counter)
Option (B) is correct.
We have 4 K RAM (12 address lines)

address range
(111)

$$
A_{15} A_{14} A_{13} A_{12} A_{11} A_{10} A_{9} A_{8} A_{7} A_{6} A_{5} A_{4} A_{3} A_{2} A_{1} A_{0}
$$

initial $\quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
address $\quad \Rightarrow 7000 \mathrm{H}$

address $\quad \Rightarrow 7 \mathrm{FFFH}$
so address range is ($7000 \mathrm{H}-7 \mathrm{~F} \mathrm{~F} \mathrm{~F} \mathrm{H})$
5.127 Option (C) is correct.

Given boolean function is

Now

$$
Z=A \bar{B} C
$$

$$
\bar{Z}=\overline{A \overline{B C}}=\overline{A C \bar{B}}=\overline{A C}+B
$$

Thus
$Z=\overline{\overline{A C}+B}$
we have $\quad Z=\overline{X+Y}$ (1 NOR gate)
where $\quad X=\overline{A C}$ (1 NAND gate)
To implement a NOR gate we required 4 NAND gates as shown below in figure.

here total no. of NAND gates required

$$
=4+1=5
$$

5.128 Option (B) is correct.

For TTL worst cases low voltages are

$$
\begin{aligned}
V_{O L}(\max) & =0.4 \mathrm{~V} \\
V_{I L}(\max) & =0.8 \mathrm{~V}
\end{aligned}
$$

Worst case high voltages are

$$
\begin{aligned}
V_{O H}(\min) & =2.4 \mathrm{~V} \\
V_{I H}(\min) & =2 \mathrm{~V}
\end{aligned}
$$

The difference between maximum input low voltage and maximum output low voltage is called noise margin. It is 0.4 V in case of TTL.
5.129 Option (D) is correct.

From the figure we can see

If	$A=1$	$B=0$
then	$y=1$	$x=0$
If	$A=1$	$B=1$
then also	$y=1$	$x=0$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

so for sequence $B=101010 \ldots$...output x and y will be fixed at 0 and 1 respectively.
5.130 Option (D) is correct.

Given 2's complement no. 1101; the no. is 0011
for 6 digit output we can write the no. is -000011
2's complement representation of above no. is 111101
5.131 Option (A) is correct.
5.132 Option (B) is correct.

An I / O Microprocessor controls data flow between main memory and the I / O device which wants to communicate.
5.133 Option (D) is correct.
5.134 Option (B) is correct.

Dual slope ADC is more accurate.
5.135 Option (A) is correct.

Dual form of any identity can be find by replacing all AND function to OR and vice-versa. so here dual form will be

$$
(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)
$$

5.136 Option (B) is correct.

Carry flag will be affected by arithmetic instructions only.
5.137 Option (C) is correct.

This is a synchronous counter. we can find output as

Q_{A}	Q_{B}
0	0
1	0
0	1
0	0
\vdots	

So It counts only three states. It is a mod-3 counter.

$$
K=3
$$

5.138 Option (B) is correct.
5.139 Option (A) is correct.

Essential prime implicates for a function is no. of terms that we get by solving K-map. Here we get 4 terms when solve the K-map.

$$
y=\bar{B} \bar{D}+\bar{A} \bar{C} \bar{D}+\bar{C} A \bar{B}+C \bar{A} \bar{B}
$$

so no of prime implicates is 4
5.140 Option (A) is correct.
5.141 Option (B) is correct.

For a 2 bit multiplier

$$
\begin{array}{cccc}
& & B_{1} & B_{0} \\
& & \times A_{1} & A_{0} \\
& & A_{0} B_{1} & A_{0} B_{0} \\
& \times A_{1} B_{1} & A_{1} B_{0} & \\
\hline C_{3} & C_{2} & C_{1} & C_{0}
\end{array}
$$

This multiplication is identical to AND operation and then addition. Option (C) is correct.
In totem pole stage output resistance will be small so it acts like a output buffer.
Option (B) is correct.
Consider high output state

$$
\text { fan out }=\frac{I_{O H} \max }{I_{I H} \max }=\frac{400 \mathrm{~mA}}{20 \mathrm{~mA}}=20
$$

Consider low output state

$$
\text { fan out }=\frac{I_{O L} \max }{I_{I L} \max }=\frac{8 \mathrm{~mA}}{0.1 \mathrm{~mA}}=80
$$

Thus fan out is 20
5.144

The given gate is ex-OR so output

$$
\begin{array}{ll}
& F=A \bar{B}+\bar{A} B \\
\text { Here input } & B=0 \text { so, } \\
& F=A 1+\bar{A} 0=A
\end{array}
$$

5.145 Option (C) is correct.
$E I=$ Enabled Interput flag,RST will cause an Interrupt only it we enable $E I$.
5.146 Option (A) is correct.

Here only for the range 60 to 63 H chipselect will be 0 , so peripheral will correspond in this range only $\overline{\text { chipselect }}=1$ for rest of the given address ranges.

Option (B) is correct.
By executing instructions one by one
LXI H, 8A79 H (Load HL pair by value 8A79)

$$
\mathrm{H}=8 \mathrm{AH} \quad L=79 \mathrm{H}
$$

MOV A, L (copy contain of L to accumulator)

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
A=79 \mathrm{H}
$$

ADDH (add contain of H to accumulator)

$$
\begin{aligned}
A & =79 \mathrm{H}=\quad 01111001 \\
\mathrm{H} & =8 \mathrm{AH}=\frac{\text { add } 10001010}{00000011} \\
& =\mathrm{A}=\quad 000
\end{aligned}
$$

$$
\text { Carry }=1
$$

DAA (Carry Flag is set, so DAA adds 6 to high order four bits) 01111001

DAA add 10001010

$$
\mathrm{A}=00000011=63 \mathrm{H}
$$

MOV H, A (copy contain of A to H)

$$
\mathrm{H}=63 \mathrm{H}
$$

PCHL (Load program counter by HL pair)

$$
\mathrm{PC}=6379 \mathrm{H}
$$

5.148 Option (C) is correct.
5.149 Option (C) is correct.

NMOS In parallel makes OR Gate \& in series makes AND so here we can have

$$
F=\overline{A(B+C)+D E}
$$

we took complement because there is another NMOS given above (works as an inverter)
5.150 Option (D) is correct.

For a $J-K$ flip flop we have characteristic equation as

$$
Q(t+1)=J \bar{Q}(t)+\bar{K} Q(t)
$$

$Q(t) \& Q(t+1)$ are present \& next states.
In given figure

$$
\begin{aligned}
J & =\bar{Q}(t), \quad K=1 \text { so } \\
Q(t+1) & =\bar{Q}(t) \bar{Q}(t)+0 Q(t) \\
Q(t+1) & =\bar{Q}(t)[\text { complement of previous state }]
\end{aligned}
$$

we have initial input $Q(t)=0$
so for 6 clock pulses sequence at output Q will be 010101
5.151 Option (C) is correct.
5.152 Option (B) is correct.

By distributive property in boolean algebra we have

$$
\begin{aligned}
(A+B C) & =(A+B)(A+C) \\
(A+B)(A+C) & =A A+A C+A B+B C \\
& =A(1+C)+A B+B C \\
& =A+A B+B C \\
& =A(1+B)+B C=A+B C
\end{aligned}
$$

5.153 Option (A) is correct.

The current in a $p n$ junction diode is controlled by diffusion of majority carriers while current in schottky diode dominated by the flow of majority carrier over the potential barrier at metallurgical junction. So there is no minority carrier storage in schottky diode, so switching time from forward bias to reverse bias is very short compared to $p n$ junction diode. Hence the propagation delay will reduces.
5.154 Option (B) is correct.

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (D) is correct.
The total conversion time for different type of ADC are given asτ is clock period

$$
\begin{aligned}
\text { For flash type } & \Rightarrow 1 \tau \\
\text { Counter type } & \Rightarrow\left(2^{n}-\tau\right)=4095 \mu \mathrm{sec} \\
n & =\text { no.of bits }
\end{aligned}
$$

Integrating type conver time $>4095 \mu$ sec successive approximation type $n \tau=12 \mu \mathrm{sec}$

$$
\text { here } \begin{aligned}
n & =12 \quad \text { so } \\
n \tau & =12 \\
12 \tau & =12
\end{aligned}
$$

so this is succ. app. type ADC.
${ }_{5.156}$ Option (D) is correct.
LDA 2003 (Load accumulator by a value 2003 H) so here total no. of memory access will be 4 .
$1=$ Fetching instruction
$2=$ Read the value from memory
$1=$ write value to accumulator
5.157 Option (D) is correct.

Storage capacitance

$$
\begin{aligned}
C & =\frac{i}{\left(\frac{d v}{d t}\right)}=\frac{1 \times 10^{-12}}{\left(\frac{5-0.5}{20 \times 10^{-3}}\right)} \\
& =\frac{1 \times 10^{-12} \times 20 \times 10^{-3}}{4.5}=4.4 \times 10^{-15} \mathrm{~F}
\end{aligned}
$$

Option (A) is correct.

$$
\text { Accuracy } \pm \frac{1}{2} L S B=T_{\text {coff }} \times \Delta T
$$

or

$$
\frac{1}{2} \times \frac{10.24}{2^{10}}=T_{\text {coff }} \times \Delta T
$$

or

$$
T_{\text {coff }}=\frac{10.24}{2 \times 1024 \times(50-25)^{\circ} \mathrm{C}}
$$

$=200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
5.159 Option (D) is correct.

$$
\text { No. of chips }=\frac{26 \times 2^{10} \times 8}{2^{12} \times 4}=13
$$

Option (C) is correct.
Given instruction set
1000 LXI SP 27FF
1003 CALL 1006
1006 POP H
First Instruction will initialize the SP by a value

$$
27 \mathrm{FF} \quad S P \leftarrow 27 \mathrm{FF}
$$

CALL 1006 will "Push PC" and Load PC by value 1006 PUSH PC will store value of PC in stack

now POP H will be executed which load HL pair by stack values

$$
\begin{aligned}
& H L=1006 \quad \text { and } \\
& S P=S P^{\prime}+2 \\
& S P=S P^{\prime}+2=S P-2+2=S P \\
& S P=27 \mathrm{FF}
\end{aligned}
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

SIGNALS \& SYSTEMS

2013

ONE MARK
6.1 Two systems with impulse responses $h_{1}(t)$ and $h_{2}(t)$ are connected in cascade. Then the overall impulse response of the cascaded system is given by
(A) product of $h_{1}(t)$ and $h_{2}(t)$
(B) sum of $h_{1}(t)$ and $h_{2}(t)$
(C) convolution of $h_{1}(t)$ and $h_{2}(t)$
(D) subtraction of $h_{2}(t)$ from $h_{1}(t)$

The impulse response of a system is $h(t)=t u(t)$. For an input $u(t-1)$, the output is
(A) $\frac{t^{2}}{2} u(t)$
(B) $\frac{t(t-1)}{2} u(t-1)$
(C) $\frac{(t-1)^{2}}{2} u(t-1)$
(D) $\frac{t^{2}-1}{2} u(t-1)$
6.3 For a periodic signal $v(t)=30 \sin 100 t+10 \cos 300 t+6 \sin (500 t+\pi / 4)$, the fundamental frequency in rad/s
(A) 100
(B) 300
(C) 500
(D) 1500
6.4 A band-limited signal with a maximum frequency of 5 kHz is to be sampled. According to the sampling theorem, the sampling frequency which is not valid is
(A) 5 kHz
(B) 12 kHz
(C) 15 kHz
(D) 20 kHz

Which one of the following statements is NOT TRUE for a continuous time causal and stable LTI system?
(A) All the poles of the system must lie on the left side of the $j \omega$ axis
(B) Zeros of the system can lie anywhere in the s-plane
(C) All the poles must lie within $|s|=1$
(D) All the roots of the characteristic equation must be located on the left side of the $j \omega$ axis.
6.6 Assuming zero initial condition, the response $y(t)$ of the system given below to a unit step input $u(t)$ is

(A) $u(t)$
(B) $t u(t)$
(C) $\frac{t^{2}}{2} u(t)$
(D) $e^{-t} u(t)$
6.7 Let $g(t)=e^{-\pi t^{2}}$, and $h(t)$ is a filter matched to $g(t)$. If $g(t)$ is applied as input to $h(t)$, then the Fourier transform of the output is
(A) $e^{-\pi f^{f}}$
(B) $e^{-\pi f / 2}$
(C) $e^{-\pi|f|}$
(D) $e^{-2 \pi f}$
6.8 The impulse response of a continuous time system is given by $h(t)=\delta(t-1)+\delta(t-3)$. The value of the step response at $t=2$ is
(A) 0
(B) 1
(C) 2
(D) 3
6.9 A system described by the differential equation $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+\begin{gathered}6 y(t)=x(t) . \text { Let } x(t) \text { be a rectangular pulse given by } \\ 0<t<2\end{gathered}$ $x(t)= \begin{cases}d t^{2} & 0<t<2 \\ 0 & \text { otherwise }\end{cases}$
Assuming that $y(0)=0$ and $\frac{d y}{d t}=0$ at $t=0$, the Laplace transform of $y(t)$ is
(A) $\frac{e^{-2 s}}{s(s+2)(s+3)}$
(B) $\frac{1-e^{-2 s}}{s(s+2)(s+3)}$
(C) $\frac{e^{-2 s}}{(s+2)(s+3)}$
(D) $\frac{1-e^{-2 s}}{(s+2)(s+3)}$
6.10 A system described by a linear, constant coefficient, ordinary, first

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
www.nodia.co.in
order differential equation has an exact solution given by $y(t)$ for $t>0$, when the forcing function is $x(t)$ and the initial condition is $y(0)$. If one wishes to modify the system so that the solution becomes $-2 y(t)$ for $t>0$, we need to
(A) change the initial condition to $-y(0)$ and the forcing function to $2 x(t)$
(B) change the initial condition to $2 y(0)$ and the forcing function to $-x(t)$
(C) change the initial condition to $j \sqrt{2} y(0)$ and the forcing function to $j \sqrt{2} x(t)$
(D) change the initial condition to $-2 y(0)$ and the forcing function to $-2 x(t)$
6.11 The DFT of a vector $\left[\begin{array}{llll}a & b & c & d\end{array}\right]$ is the vector $\left[\begin{array}{llll}\alpha & \beta & \gamma & \delta\end{array}\right]$. Consider the product

$$
\left[\begin{array}{llll}
p & q & r & s
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{llll}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{array}\right]
$$

The DFT of the vector $\left[\begin{array}{llll}p & q & r & s\end{array}\right]$ is a scaled version of
(A) $\left[\begin{array}{llll}\alpha^{2} & \beta^{2} & \gamma^{2} & \delta^{2}\end{array}\right]$
(B) $\left[\begin{array}{llll}\sqrt{\alpha} & \sqrt{\beta} & \sqrt{\gamma} & \sqrt{\delta}\end{array}\right]$
(C) $\left[\begin{array}{ll}\alpha+\beta & \beta+\delta \\ \delta & \gamma+\gamma \\ \gamma\end{array}\right]$
(D) $\left[\begin{array}{lll}\alpha & \beta & \gamma \\ \hline\end{array}\right]$
6.12 The unilateral Laplace transform of $f(t)$ is $\frac{1}{s^{2}+s+1}$. The unilateral Laplace transform of $t f(t)$ is
(A) $-\frac{s}{\left(s^{2}+s+1\right)^{2}}$
(B) $-\frac{2 s+1}{\left(s^{2}+s+1\right)^{2}}$
(C) $\frac{s}{\left(s^{2}+s+1\right)^{2}}$
(D) $\frac{2 s+1}{\left(s^{2}+s+1\right)^{2}}$
6.13 If $x[n]=(1 / 3)^{|n|}-(1 / 2)^{n} u[n]$, then the region of convergence (ROC) of its z-transform in the z-plane will be
(A) $\frac{1}{3}<|z|<3$
(B) $\frac{1}{3}<|z|<\frac{1}{2}$
(C) $\frac{1}{2}<|z|<3$
(D) $\frac{1}{3}<|z|$

2012

TWO MARKS
6.14 The input $x(t)$ and output $y(t)$ of a system are related as $y(t)=\int_{-\infty}^{t} x(\tau) \cos (3 \tau) d \tau$. The system is
(A) time-invariant and stable
(B) stable and not time-invariant
(C) time-invariant and not stable
(D) not time-invariant and not stable
6.15 The Fourier transform of a signal $h(t)$ is $H(j \omega)=(2 \cos \omega)(\sin 2 \omega) / \omega$. The value of $h(0)$ is
(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 2

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
6.16 Let $y[n]$ denote the convolution of $h[n]$ and $g[n]$, where $h[n]=(1 / 2)^{n} u[n]$ and $g[n]$ is a causal sequence. If $y[0]=1$ and $y[1]=1 / 2$, then $g[1]$ equals
(A) 0
(B) $1 / 2$
(C) 1
(D) $3 / 2$

2011

ONE MARK

The differential equation $100 \frac{d^{2} y}{d t^{2}}-20 \frac{d y}{d t}+y=x(t)$ describes a system with an input $x(t)$ and an output $y(t)$. The system, which is initially relaxed, is excited by a unit step input. The output $y(t)$ can be represented by the waveform
(A)

(B)

(C)

(D)

6.18 The trigonometric Fourier series of an even function does not have the
(A) dc term
(B) cosine terms
(C) sine terms
(D) odd harmonic terms

A system is defined by its impulse response $h(n)=2^{n} u(n-2)$. The system is
(A) stable and causal
(B) causal but not stable
(C) stable but not causal
(D) unstable and non-causal
6.20 If the unit step response of a network is $\left(1-e^{-\alpha t}\right)$, then its unit impulse response is
(A) $\alpha e^{-\alpha t}$
(B) $\alpha^{-1} e^{-\alpha t}$
(C) $\left(1-\alpha^{-1}\right) e^{-\alpha t}$
(D) $(1-\alpha) e^{-\alpha t}$

2011
TWO MARKS
6.21 An input $x(t)=\exp (-2 t) u(t)+\delta(t-6)$ is applied to an LTI system with impulse response $h(t)=u(t)$. The output is
(A) $[1-\exp (-2 t)] u(t)+u(t+6)$
(B) $[1-\exp (-2 t)] u(t)+u(t-6)$
(C) $0.5[1-\exp (-2 t)] u(t)+u(t+6)$
(D) $0.5[1-\exp (-2 t)] u(t)+u(t-6)$
6.22 Two systems $H_{1}(Z)$ and $H_{2}(Z)$ are connected in cascade as shown below. The overall output $y(n)$ is the same as the input $x(n)$ with a one unit delay. The transfer function of the second system $H_{2}(Z)$ is

(A) $\frac{1-0.6 z^{-1}}{z^{-1}\left(1-0.4 z^{-1}\right)}$
(B) $\frac{z^{-1}\left(1-0.6 z^{-1}\right)}{\left(1-0.4 z^{-1}\right)}$
(C) $\frac{z^{-1}\left(1-0.4 z^{-1}\right)}{\left(1-0.6 z^{-1}\right)}$
(D) $\frac{1-0.4 z^{-1}}{z^{-1}\left(1-0.6 z^{-1}\right)}$
6.23 The first six points of the 8-point DFT of a real valued sequence are $5,1-j 3,0,3-j 4,0$ and $3+j 4$. The last two points of the DFT are respectively
(A) $0,1-j 3$
(B) $0,1+j 3$
(C) $1+j 3,5$
(D) $1-j 3,5$
6.24 The trigonometric Fourier series for the waveform $f(t)$ shown below contains

> For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

(A) only cosine terms and zero values for the dc components
(B) only cosine terms and a positive value for the dc components
(C) only cosine terms and a negative value for the dc components
(D) only sine terms and a negative value for the dc components

Consider the z-transform $x(z)=5 z^{2}+4 z^{-1}+3 ; 0<|z|<\infty$. The inverse z - transform $x[n]$ is
(A) $5 \delta[n+2]+38[n]+48[n-1]$
(B) $5 \delta[n-2]+38[n]+4 \delta[n+1]$
(C) $5 u[n+2]+3 u[n]+4 u[n-1]$
(D) $5 u[n-2]+3 u[n]+4 u[n+1]$

Two discrete time system with impulse response $h_{1}[n]=\delta[n-1]$ and $h_{2}[n]=\delta[n-2]$ are connected in cascade. The overall impulse response of the cascaded system is
(A) $\delta[n-1]+\delta[n-2]$
(B) $\delta[n-4]$
(C) $\delta[n-3]$
(D) $\delta[n-1] \delta[n-2]$

For a N-point FET algorithm $N=2^{m}$ which one of the following statements is TRUE ?
(A) It is not possible to construct a signal flow graph with both input and output in normal order
(B) The number of butterflies in the $m^{\text {th }}$ stage in N / m
(C) In-place computation requires storage of only 2 N data
(D) Computation of a butterfly requires only one complex multiplication.

2010

TWO MARKS
Given $f(t)=L^{-1}\left[\frac{3 s+1}{s^{3}+4 s^{2}+(k-3) s}\right]$. If $\lim _{t \rightarrow \infty} f(t)=1$, then the value
of k is
(A) 1
(B) 2
(C) 3
(D) 4

A continuous time LTI system is described by

$$
\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d y(t)}{d t}+3 y(t)=2 \frac{d x(t)}{d t}+4 x(t)
$$

Assuming zero initial conditions, the response $y(t)$ of the above system for the input $x(t)=e^{-2 t} u(t)$ is given by
(A) $\left(e^{t}-e^{3 t}\right) u(t)$
(B) $\left(e^{-t}-e^{-3 t}\right) u(t)$
(C) $\left(e^{-t}+e^{-3 t}\right) u(t)$
(D) $\left(e^{t}+e^{3 t}\right) u(t)$

The transfer function of a discrete time LTI system is given by

$$
H(z)=\frac{2-\frac{3}{4} z^{-1}}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}
$$

Consider the following statements:
S1: The system is stable and causal for ROC: $|z|>1 / 2$
S2: The system is stable but not causal for ROC: $|z|<1 / 4$
S3: The system is neither stable nor causal for ROC:
$1 / 4<|z|<1 / 2$
Which one of the following statements is valid?
(A) Both S1 and S2 are true
(B) Both S2 and S3 are true
(C) Both S1 and S3 are true
(D) S1, S2 and S3 are all true

2009

ONE MARK
The Fourier series of a real periodic function has only
(P) cosine terms if it is even
(Q) sine terms if it is even
(R) cosine terms if it is odd
(S) sine terms if it is odd

Which of the above statements are correct?
(A) P and S
(B) P and R
(C) Q and S
(D) Q and R
6.32 A function is given by $f(t)=\sin ^{2} t+\cos 2 t$. Which of the following is true?
(A) f has frequency components at 0 and $\frac{1}{2 \pi} \mathrm{~Hz}$
(B) f has frequency components at 0 and $\frac{1}{\pi} \mathrm{~Hz}$
(C) f has frequency components at $\frac{1}{2 \pi}$ and $\frac{1}{\pi} \mathrm{~Hz}$
(D) f has frequency components at $\frac{0.1}{2 \pi}$ and $\frac{1}{\pi} \mathrm{~Hz}$
6.33 The ROC of z-transform of the discrete time sequence

$$
x(n)=\left(\frac{1}{3}\right)^{n} u(n)-\left(\frac{1}{2}\right)^{n} u(-n-1) \text { is }
$$

(A) $\frac{1}{3}<|z|<\frac{1}{2}$
(B) $|z|>\frac{1}{2}$
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(C) $|z|<\frac{1}{3}$
(D) $2<|z|<3$

2009

TWO MARKS
6.34 Given that $F(s)$ is the one-side Laplace transform of $f(t)$, the Laplace transform of $\int_{0}^{t} f(\tau) d \tau$ is
(A) $s F(s)-f(0)$
(B) $\frac{1}{s} F(s)$
(C) $\int_{0}^{s} F(\tau) d \tau$
(D) $\frac{1}{s}[F(s)-f(0)]$
6.35 A system with transfer function $H(z)$ has impulse response $h($. defined as $h(2)=1, h(3)=-1$ and $h(k)=0$ otherwise. Consider the following statements.

S1: $H(z)$ is a low-pass filter. S2: $H(z)$ is an FIR filter.
Which of the following is correct?
(A) Only S2 is true
(B) Both S1 and S2 are false
(C) Both S 1 and S 2 are true, and S 2 is a reason for S 1
(D) Both S 1 and S 2 are true, but S 2 is not a reason for S 1
6.36 Consider a system whose input x and output y are related by the equation $y(t)=\int_{-\infty}^{\infty} x(t-\tau) g(2 \tau) d \tau$ where $h(t)$ is shown in the graph.

Which of the following four properties are possessed by the system ?
BIBO : Bounded input gives a bounded output.

Causal : The system is causal,
LP : The system is low pass.
LTI : The system is linear and time-invariant.
(A) Causal, LP
(B) BIBO, LTI
(C) BIBO, Causal, LTI
(D) LP, LTI

The 4 -point Discrete Fourier Transform (DFT) of a discrete time sequence $\{1,0,2,3\}$ is
(A) $[0,-2+2 j, 2,-2-2 j]$
(B) $[2,2+2 j, 6,2-2 j]$
(C) $[6,1-3 j, 2,1+3 j]$
(D) $[6,-1+3 j, 0,-1-3 j]$

An LTI system having transfer function $\frac{s^{2}+1}{s^{2}+2 s+1}$ and input $x(t)=\sin (t+1)$ is in steady state. The output is sampled at a rate $\omega_{s} \mathrm{rad} / \mathrm{s}$ to obtain the final output $\{x(k)\}$. Which of the following is true?
(A) $y($.$) is zero for all sampling frequencies \omega_{s}$
(B) $y($.$) is nonzero for all sampling frequencies \omega_{s}$
(C) $y($.$) is nonzero for \omega_{s}>2$, but zero for $\omega_{s}<2$
(D) $y($.$) is zero for \omega_{s}>2$, but nonzero for $\omega_{2}<2$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

2008

ONE MARK
The input and output of a continuous time system are respectively denoted by $x(t)$ and $y(t)$. Which of the following descriptions corresponds to a causal system ?
(A) $y(t)=x(t-2)+x(t+4)$
(B) $y(t)=(t-4) x(t+1)$
(C) $y(t)=(t+4) x(t-1)$
(D) $y(t)=(t+5) x(t+5)$

The impulse response $h(t)$ of a linear time invariant continuous time system is described by $h(t)=\exp (\alpha t) u(t)+\exp (\beta t) u(-t)$ where $u(-t)$ denotes the unit step function, and α and β are real constants. This system is stable if
(A) α is positive and β is positive
(B) α is negative and β is negative
(C) α is negative and β is negative
(D) α is negative and β is positive

2008

TWO MARKS

A linear, time - invariant, causal continuous time system has a rational transfer function with simple poles at $s=-2$ and $s=-4$ and one simple zero at $s=-1$. A unit step $u(t)$ is applied at the input of the system. At steady state, the output has constant value of 1 . The impulse response of this system is
(A) $[\exp (-2 t)+\exp (-4 t)] u(t)$
(B) $[-4 \exp (-2 t)-12 \exp (-4 t)-\exp (-t)] u(t)$
(C) $[-4 \exp (-2 t)+12 \exp (-4 t)] u(t)$
(D) $[-0.5 \exp (-2 t)+1.5 \exp (-4 t)] u(t)$

The signal $x(t)$ is described by

$$
x(t)= \begin{cases}1 & \text { for }-1 \leq t \leq+1 \\ 0 & \text { otherwise }\end{cases}
$$

Two of the angular frequencies at which its Fourier transform be-
comes zero are
(A) $\pi, 2 \pi$
(B) $0.5 \pi, 1.5 \pi$
(C) $0, \pi$
(D) $2 \pi, 2.5 \pi$
6.43 A discrete time linear shift - invariant system has an impulse response $h[n]$ with $h[0]=1, h[1]=-1, h[2]=2$, and zero otherwise The system is given an input sequence $x[n]$ with $x[0]=x[2]=1$, and zero otherwise. The number of nonzero samples in the output sequence $y[n]$, and the value of $y[2]$ are respectively
(A) 5,2
(B) 6,2
(C) 6,1
(D) 5,3

Let $x(t)$ be the input and $y(t)$ be the output of a continuous time system. Match the system properties P1, P2 and P3 with system relations R1, R2, R3, R4

Properties
P1 : Linear but NOT time - invariant
P2: Time - invariant but NOT linear
P3 : Linear and time - invariant
(A) (P1, R1), (P2, R3), (P3, R4)
(B) (P1, R2), (P2, R3), (P3, R4)
(C) (P1, R3), (P2, R1), (P3, R2)
(D) (P1, R1), (P2, R2), (P3, R3)
${ }_{6.45} \quad\{x(n)\}$ is a real - valued periodic sequence with a period $N . x(n)$ and $X(k)$ form N-point Discrete Fourier Transform (DFT) pairs. The DFT $Y(k)$ of the sequence $y(n)=\frac{1}{N} \sum_{r=0}^{N-1} x(r) x(n+r)$ is
(A) $|X(k)|^{2}$
(B) $\frac{1}{N} \sum_{r=0}^{N-1} X(r) X(k+r)$
(C) $\frac{1}{N} \sum_{r=0}^{N-1} X(r) X(k+r)$
(D) 0

Statement for Linked Answer Question 6.31 and 6.32:

In the following network, the switch is closed at $t=0^{-}$and the sampling starts from $t=0$. The sampling frequency is 10 Hz .

For more GATE Resources, Mock Test and Study material join the community http:/Iwww.facebook.com/gateec2014

6.46 The samples $x(n), n=(0,1,2, \ldots)$ are given by
(A) $5\left(1-e^{-0.05 n}\right)$
(B) $5 e^{-0.05 n}$
(C) $5\left(1-e^{-5 n}\right)$
(D) $5 e^{-5 n}$
6.47 The expression and the region of convergence of the z-transform of the sampled signal are
(A) $\frac{5 z}{z-e^{5}},|z|<e^{-5}$
(B) $\frac{5 z}{z-e^{-0.05}},|z|<e^{-0.05}$
(C) $\frac{5 z}{z-e^{-0.05}},|z|>e^{-0.05}$
(D) $\frac{5 z}{z-e^{-5}},|z|>e^{-5}$

Statement for Linked Answer Question 6.33 \& 6.34:

The impulse response $h(t)$ of linear time - invariant continuous
time system is given by $h(t)=\exp (-2 t) u(t)$, where $u(t)$ denotes the unit step function.
The frequency response $H(\omega)$ of this system in terms of angular frequency ω, is given by $H(\omega)$
(A) $\frac{1}{1+j 2 \omega}$
(B) $\frac{\sin \omega}{\omega}$
(C) $\frac{1}{2+j \omega}$
(D) $\frac{j \omega}{2+j \omega}$
6.49 The output of this system, to the sinusoidal input $x(t)=2 \cos 2 t$ for all time t, is
(A) 0
(B) $2^{-0.25} \cos (2 t-0.125 \pi)$
(C) $2^{-0.5} \cos (2 t-0.125 \pi)$
(D) $2^{-0.5} \cos (2 t-0.25 \pi)$

2007

ONE MARK

If the Laplace transform of a signal $Y(s)=\frac{1}{s(s-1)}$, then its final
value is value is
(A) -1
(B) 0
(C) 1
(D) Unbounded

2007

TWO MARKS
The $3-\mathrm{dB}$ bandwidth of the low-pass signal $e^{-t} u(t)$, where $u(t)$ is the unit step function, is given by
(A) $\frac{1}{2 \pi} \mathrm{~Hz}$
(B) $\frac{1}{2 \pi} \sqrt{\sqrt{2}-1} \mathrm{~Hz}$
(C) ∞
(D) 1 Hz

A 5-point sequence $x[n]$ is given as $x[-3]=1, x[-2]=1, x[-1]=0$, $x[0]=5$ and $x[1]=1$. Let $X\left(e^{i \omega}\right)$ denoted the discrete-time Fourier transform of $x[n]$. The value of $\int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega$ is
(A) 5
(B) 10π
(C) 16π
(D) $5+j 10 \pi$

The z-transform $X(z)$ of a sequence $x[n]$ is given by $X[z]=\frac{0.5}{1-2 z^{-1}}$. It is given that the region of convergence of $X(z)$ includes the unit circle. The value of $x[0]$ is
(A) -0.5
(B) 0
(C) 0.25
(D) 05
6.54 A Hilbert transformer is a
(A) non-linear system
(B) non-causal system
(C) time-varying system
(D) low-pass system
6.55 The frequency response of a linear, time-invariant system is given by $H(f)=\frac{5}{1+j 10 \pi f}$. The step response of the system is
(A) $5\left(1-e^{-5 t}\right) u(t)$
(B) $5\left[1-e^{-\frac{t}{5}}\right] u(t)$
(C) $\frac{1}{2}\left(1-e^{-5 t}\right) u(t)$
(D) $\frac{1}{5}\left(1-e^{-\frac{t}{5}}\right) u(t)$

2006

ONE MARK
Let $x(t) \longleftrightarrow X(j \omega)$ be Fourier Transform pair. The Fourier Transform of the signal $x(5 t-3)$ in terms of $X(j \omega)$ is given as
(A) $\frac{1}{5} e^{-\frac{j 3 \omega}{5}} X\left(\frac{j \omega}{5}\right)$
(B) $\frac{1}{5} e^{\frac{j 3 \omega}{5}} X\left(\frac{j \omega}{5}\right)$
(C) $\frac{1}{5} e^{-j 3 \omega} X\left(\frac{j \omega}{5}\right)$
(D) $\frac{1}{5} e^{j 3 \omega} X\left(\frac{j \omega}{5}\right)$

The Dirac delta function $\delta(t)$ is defined as
(A) $\delta(t)=\left\{\begin{array}{cc}1 & t=0 \\ 0 & \text { otherwise }\end{array}\right.$
(B) $\delta(t)= \begin{cases}\infty & t=0 \\ 0 & \text { otherwise }\end{cases}$
(C) $\delta(t)=\left\{\begin{array}{ll}1 & t=0 \\ 0 & \text { otherwise }\end{array}\right.$ and $\int_{-\infty}^{\infty} \delta(t) d t=1$
(D) $\delta(t)=\left\{\begin{array}{ll}\infty & t=0 \\ 0 & \text { otherwise }\end{array}\right.$ and $\int_{-\infty}^{\infty} \delta(t) d t=1$
6.58 If the region of convergence of $x_{1}[n]+x_{2}[n]$ is $\frac{1}{3}<|z|<\frac{2}{3}$ then the region of convergence of $x_{1}[n]-x_{2}[n]$ includes
(A) $\frac{1}{3}<|z|<3$
(B) $\frac{2}{3}<|z|<3$
(C) $\frac{3}{2}<|z|<3$
(D) $\frac{1}{3}<|z|<\frac{2}{3}$
6.59 In the system shown below, $x(t)=(\sin t) u(t)$ In steady-state, the response $y(t)$ will be

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

wWw.nodia.co.in
(A) $\frac{1}{\sqrt{2}} \sin \left(t-\frac{\pi}{4}\right)$
(B) $\frac{1}{\sqrt{2}} \sin \left(t+\frac{\pi}{4}\right)$
(C) $\frac{1}{\sqrt{2}} e^{-t} \sin t$
(D) $\sin t-\cos t$

2006

TWO MARKS
${ }^{6.60}$ Consider the function $f(t)$ having Laplace transform

$$
F(s)=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} \operatorname{Re}[s]>0
$$

The final value of $f(t)$ would be
(A) 0
(B) 1
(C) $-1 \leq f(\infty) \leq 1$
(D) ∞
6.61 Asystem withinput $x[n]$ and output $y[n]$ is given as $y[n]=\left(\sin \frac{5}{6} \pi n\right) x[n]$. The system is
(A) linear, stable and invertible
(B) non-linear, stable and non-invertible
(C) linear, stable and non-invertible
(D) linear, unstable and invertible
6.62 The unit step response of a system starting from rest is given by $c(t)=1-e^{-2 t}$ for $t \geq 0$. The transfer function of the system is
(A) $\frac{1}{1+2 s}$
(B) $\frac{2}{2+s}$
(C) $\frac{1}{2+s}$
(D) $\frac{2 s}{1+2 s}$
6.63 The unit impulse response of a system is $f(t)=e^{-t}, t \geq 0$. For this system the steady-state value of the output for unit step input is equal to
(A) -1
(B) 0
(C) 1
(D) ∞

2005

ONE MARK
Choose the function $f(t) ;-\infty<t<\infty$ for which a Fourier series cannot be defined.
(A) $3 \sin (25 t)$
(B) $4 \cos (20 t+3)+2 \sin (710 t)$
(C) $\exp (-|t|) \sin (25 t)$
(D) 1

The function $x(t)$ is shown in the figure. Even and odd parts of a unit step function $u(t)$ are respectively,

(A) $\frac{1}{2}, \frac{1}{2} x(t)$
(B) $-\frac{1}{2}, \frac{1}{2} x(t)$
(C) $\frac{1}{2},-\frac{1}{2} x(t)$
(D) $-\frac{1}{2},-\frac{1}{2} x(t)$

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

The region of convergence of z - transform of the sequence
$\left(\frac{5}{6}\right)^{n} u(n)-\left(\frac{6}{5}\right)^{n} u(-n-1)$ must be
(A) $|z|<\frac{5}{6}$
(B) $|z|>\frac{5}{6}$
(C) $\frac{5}{6}<|z|<\frac{6}{5}$
(D) $\frac{6}{5}<|z|<\infty$

Which of the following can be impulse response of a causal system ?
(A)

(B)

(C)

(D)

6.68 Let $x(n)=\left(\frac{1}{2}\right)^{n} u(n), y(n)=x^{2}(n)$ and $Y\left(e^{j \omega}\right)$ be the Fourier transform of $y(n)$ then $Y\left(e^{j 0}\right)$
(A) $\frac{1}{4}$
(B) 2^{4}
(C) 4
(D) $\frac{4}{3}$
6.69 The power in the signal $s(t)=8 \cos \left(20 \pi-\frac{\pi}{2}\right)+4 \sin (15 \pi t)$ is (A) 40
(B) 41
(C) 42
(D) 82

The output $y(t)$ of a linear time invariant system is related to its input $x(t)$ by the following equations

$$
y(t)=0.5 x\left(t-t_{d}+T\right)+x\left(t-t_{d}\right)+0.5 x\left(t-t_{d}+T\right)
$$

The filter transfer function $H(\omega)$ of such a system is given by
(A) $(1+\cos \omega T) e^{-j \omega t_{d}}$
(B) $(1+0.5 \cos \omega T) e^{-j \omega t_{d}}$
(C) $(1-\cos \omega T) e^{-j \omega t_{d}}$
(D) $(1-0.5 \cos \omega T) e^{-j \omega t_{d}}$
6.71 Match the following and choose the correct combination. Group 1
E. Continuous and aperiodic signal
F. Continuous and periodic signal
G. Discrete and aperiodic signal
H. Discrete and periodic signal Group 2

1. Fourier representation is continuous and aperiodic
2. Fourier representation is discrete and aperiodic
3. Fourier representation is continuous and periodic
4. Fourier representation is discrete and periodic
(A) $\mathrm{E}-3, \mathrm{~F}-2, \mathrm{G}-4, \mathrm{H}-1$
(B) $\mathrm{E}-1, \mathrm{~F}-3, \mathrm{G}-2, \mathrm{H}-4$
(C) $\mathrm{E}-1, \mathrm{~F}-2, \mathrm{G}-3, \mathrm{H}-4$
(D) $\mathrm{E}-2, \mathrm{~F}-1, \mathrm{G}-4, \mathrm{H}-3$
6.72 A signal $x(n)=\sin \left(\omega_{0} n+\phi\right)$ is the input to a linear time- invariant system having a frequency response $H\left(e^{j \omega}\right)$. If the output of the system $A x\left(n-n_{0}\right)$ then the most general form of $\angle H\left(e^{j \omega}\right)$ will be
(A) $-n_{0} \omega_{0}+\beta$ for any arbitrary real
(B) $-n_{0} \omega_{0}+2 \pi k$ for any arbitrary integer k
(C) $n_{0} \omega_{0}+2 \pi k$ for any arbitrary integer k
(D) $-n_{0} \omega_{0} \phi$

Statement of linked answer question 6.59 and 6.60 :
A sequence $x(n)$ has non-zero values as shown in the figure.

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

6.73 The sequence $y(n)=\left\{\begin{array}{ll}x\left(\frac{n}{2}-1\right), & \text { For } n \text { even } \\ 0, & \text { For } n \text { odd }\end{array}\right.$ will be
(A)

(B)

(C)

(D)

The Fourier transform of $y(2 n)$ will be
(A) $e^{-j 2 \omega}[\cos 4 \omega+2 \cos 2 \omega+2]$
(B) $\cos 2 \omega+2 \cos \omega+2$
(C) $e^{-j \omega}[\cos 2 \omega+2 \cos \omega+2]$
(D) $e^{-j 2 \omega}[\cos 2 \omega+2 \cos +2]$
${ }_{6.75}$ For a signal $x(t)$ the Fourier transform is $X(f)$. Then the inverse Fourier transform of $X(3 f+2)$ is given by
(A) $\frac{1}{2} x\left(\frac{t}{2}\right) e^{j 3 \pi t}$
(B) $\frac{1}{3} x\left(\frac{t}{3}\right) e^{-\frac{j 4 \pi t}{3}}$
(C) $3 x(3 t) e^{-j 4 \pi t}$
(D) $x(3 t+2)$

2004

ONE MARK
The impulse response $h[n]$ of a linear time-invariant system is given by $h[n]=u[n+3]+u[n-2)-2 n[n-7]$ where $u[n]$ is the unit step sequence. The above system is
(A) stable but not causal
(B) stable and causal
(C) causal but unstable
(D) unstable and not causal
6.77 The z-transform of a system is $H(z)=\frac{z}{z-0.2}$. If the ROC is $|z|<0.2$, then the impulse response of the system is
(A) $(0.2)^{n} u[n]$
(B) $(0.2)^{n} u[-n-1]$
(C) $-(0.2)^{n} u[n]$
(D) $-(0.2)^{n} u[-n-1]$
${ }_{6.78}$ The Fourier transform of a conjugate symmetric function is always
(A) imaginary
(B) conjugate anti-symmetric
(C) real
(D) conjugate symmetric

2004

TWO MARKS
Consider the sequence $x[n]=[-4-j 51+j 25]$. The conjugate antisymmetric part of the sequence is
(A) $[-4-j 2.5, j 2,4-j 2.5]$
(B) $[-j 2.5,1, j 2.5]$
(C) $[-j 2.5, j 2,0]$
(D) $[-4,1,4]$
6.80 A causal LTI system is described by the difference equation

$$
2 y[n]=\alpha y[n-2]-2 x[n]+\beta x[n-1]
$$

The system is stable only if
(A) $|\alpha|=2,|\beta|<2$
(B) $|\alpha|>2,|\beta|>2$
(C) $|\alpha|<2$, any value of β
(D) $|\beta|<2$, any value of α
6.81 The impulse response $h[n]$ of a linear time invariant system is given as

$$
h[n]= \begin{cases}-2 \sqrt{2} & n=1,-1 \\ 4 \sqrt{2} & n=2,-2 \\ 0 & \text { otherwise }\end{cases}
$$

If the input to the above system is the sequence $e^{j \pi n / 4}$, then the output is
(A) $4 \sqrt{2} e^{j \pi n / 4}$
(B) $4 \sqrt{2} e^{-j \pi n / 4}$
(C) $4 e^{j \pi n / 4}$
(D) $-4 e^{j \pi n / 4}$
${ }_{6.82}$ Let $x(t)$ and $y(t)$ with Fourier transforms $F(f)$ and $Y(f)$ respectively be related as shown in Fig. Then $Y(f)$ is

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(A) $-\frac{1}{2} X(f / 2) e^{-j \pi f}$
(B) $-\frac{1}{2} X(f / 2) e^{i 2 \pi f}$
(C) $-X(f / 2) e^{j 2 \pi f}$
(D) $-X(f / 2) e^{-j 2 \pi f}$

2003

ONE MARK
6.83 The Laplace transform of $i(t)$ is given by

$$
I(s)=\frac{2}{s(1+s)}
$$

At $t \rightarrow \infty$, The value of $i(t)$ tends to
(A) 0
(B) 1
(C) 2
(D) ∞

The Fourier series expansion of a real periodic signal with fundamental frequency f_{0} is given by $g_{p}(t)=\sum_{n=-\infty} c_{n} e^{j 2 \pi f_{b} t}$. It is given that $c_{3}=3+j 5$. Then c_{-3} is
(A) $5+j 3$
(B) $-3-j 5$
(C) $-5+j 3$
(D) $3-j 5$
6.85 Let $x(t)$ be the input to a linear, time-invariant system. The required output is $4 \pi(t-2)$. The transfer function of the system should be
(A) $4 e^{j 4 \pi f}$
(B) $2 e^{-38 \pi f}$
(C) $4 e^{-j 4 \pi f}$
(D) $2 e^{i 8 \pi f}$
6.86 A sequence $x(n)$ with the z-transform $X(z)=z^{4}+z^{2}-2 z+2-3 z^{-4}$ is applied as an input to a linear, time-invariant system with the impulse response $h(n)=2 \delta(n-3)$ where

$$
\delta(n)= \begin{cases}1, & n=0 \\ 0, & \text { otherwise }\end{cases}
$$

The output at $n=4$ is
(A) -6
(B) zero
(C) 2
(D) -4

2003

TWO MARKS
Let P be linearity, Q be time-invariance, R be causality and S be stability. A discrete time system has the input-output relationship,

$$
y(n)= \begin{cases}x(n) & n \geq 1 \\ 0, & n=0 \\ x(n+1) & n \leq-1\end{cases}
$$

where $x(n)$ is the input and $y(n)$ is the output. The above system has the properties
(A) P, S but not Q, R
(B) P, Q, S but not R
(C) P, Q, R, S

GATE Electronics \& Communication

 by RK Kanodia
Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
(D) $\mathrm{Q}, \mathrm{R}, \mathrm{S}$ but not P

Common Data For Q. 6.73 \& 6.74 :

The system under consideration is an RC low-pass filter (RC-LPF) with $R=1 \mathrm{k} \Omega$ and $C=1.0 \mu \mathrm{~F}$.

Let $H(f)$ denote the frequency response of the RC-LPF. Let f_{1} be the highest frequency such that $0 \leq|f| \leq f \frac{\left|H\left(f_{1}\right)\right|}{H(0)} \geq 0.95$. Then f_{1} (in Hz) is
(A) 324.8
(B) 163.9
(C) 52.2
(D) 104.4
6.89 Let $t_{g}(f)$ be the group delay function of the given RC-LPF and $f_{2}=100 \mathrm{~Hz}$. Then $t_{g}\left(f_{2}\right)$ in ms , is
(A) 0.717
(B) 7.17
(C) 71.7
(D) 4.505

2002

ONE MARK
6.90 Convolution of $x(t+5)$ with impulse function $\delta(t-7)$ is equal to
(A) $x(t-12)$
(B) $x(t+12)$
(C) $x(t-2)$
(D) $x(t+2)$

Which of the following cannot be the Fourier series expansion of a periodic signal?
(A) $x(t)=2 \cos t+3 \cos 3 t$
(B) $x(t)=2 \cos \pi t+7 \cos t$
(C) $x(t)=\cos t+0.5$
(D) $x(t)=2 \cos 1.5 \pi t+\sin 3.5 \pi t$
6.92 The Fourier transform $F\left\{e^{-1} u(t)\right\}$ is equal to $\frac{1}{1+j 2 \pi f}$. Therefore, $F\left\{\frac{1}{1+j 2 \pi t}\right\}$ is
(A) $e^{f} u(f)$
(B) $e^{-f} u(f)$
(C) $e^{f} u(-f)$
(D) $e^{-f} u(-f)$
${ }_{6.93}$ A linear phase channel with phase delay T_{p} and group delay T_{g} must have
(A) $T_{p}=T_{g}=\mathrm{constant}$
(B) $T_{p} \propto f$ and $T_{g} \propto f$
(C) $T_{p}=$ constant and $T_{g} \propto f(f$ denote frequency)
(D) $T_{p} \propto f$ and $T_{p}=\mathrm{constant}$

2002
TWO MARKS
The Laplace transform of continuous - time signal $x(t)$ is $X(s)=\frac{5-s}{s^{2}-s-2}$. If the Fourier transform of this signal exists, the $x(t)$ is
(A) $e^{2 t} u(t)-2 e^{-t} u(t)$
(B) $-e^{2 t} u(-t)+2 e^{-t} u(t)$
(C) $-e^{2 t} u(-t)-2 e^{-t} u(t)$
(D) $e^{2 t} u(-t)-2 e^{-t} u(t)$
6.95 If the impulse response of discrete - time system is

$$
h[n]=-5^{n} u[-n-1]
$$

then the system function $H(z)$ is equal to
(A) $\frac{-z}{z-5}$ and the system is stable
(B) $\frac{z}{z-5}$ and the system is stable
(C) $\frac{-z}{z-5}$ and the system is unstable
(D) $\frac{z}{z-5}$ and the system is unstable

2001

ONE MARK
6.96 The transfer function of a system is given by $H(s)=\frac{1}{s^{2}(s-2)}$. The
impulse response of the system is
(A) $\left(t^{2} * e^{-2 t}\right) u(t)$
(B) $\left(t^{*} e^{2 t}\right) u(t)$
(C) $\left(t e^{-2} t\right) u(t)$
(D) $\left(t e^{-2 t}\right) u(t)$
6.97 The region of convergence of the z - transform of a unit step function is
(A) $|z|>1$
(B) $|z|<1$
(C) $($ Real part of $z)>0$
(D) $($ Real part of $z)<0$
6.98 Let $\delta(t)$ denote the delta function. The value of the integral $\int_{-\infty}^{\infty} \delta(t) \cos \left(\frac{3 t}{2}\right) d t$ is

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(A) 1
(B) -1
(C) 0
(D) $\frac{\pi}{2}$
6.99 If a signal $f(t)$ has energy E, the energy of the signal $f(2 t)$ is equal to
(A) 1
(B) $E / 2$
(C) $2 E$
(D) $4 E$
${ }^{6.100}$ The impulse response functions of four linear systems S1, S2, S3, S4 are given respectively by

$$
\begin{aligned}
& h_{1}(t)=1, h_{2}(t)=u(t), \\
& h_{3}(t)=\frac{u(t)}{t+1} \text { and } \\
& h_{4}(t)=e^{-3 t} u(t)
\end{aligned}
$$

where $u(t)$ is the unit step function. Which of these systems is time invariant, causal, and stable?
(A) S 1
(B) S 2
(C) S 3
(D) S 4

2000

ONE MARK
6.101 Given that $L[f(t)]=\frac{s+2}{s^{2}+1}, \quad L[g(t)]=\frac{s^{2}+1}{(s+3)(s+2)} \quad$ and $h(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau$.
$L[h(t)]$ is
(A) $\frac{s^{2}+1}{s+3}$
(B) $\frac{1}{s+3}$
(C) $\frac{s^{2}+1}{(s+3)(s+2)}+\frac{s+2}{s^{2}+1}$
(D) None of the above

The Fourier Transform of the signal $x(t)=e^{-3 t^{2}}$ is of the following form, where A and B are constants :
(A) $A e^{-B|f|}$
(B) $A e^{-B f}$
(C) $A+B|f|^{2}$
(D) $A e^{-B f}$
6.103 A system with an input $x(t)$ and output $y(t)$ is described by the relations : $y(t)=t x(t)$. This system is
(A) linear and time - invariant
(B) linear and time varying
(C) non - linear and time - invariant
(D) non - linear and time - varying
6.104 A linear time invariant system has an impulse response $e^{2 t}, t>0$. If the initial conditions are zero and the input is $e^{3 t}$, the output for $t>0$ is
(A) $e^{3 t}-e^{2 t}$
(B) $e^{5 t}$
(C) $e^{3 t}+e^{2 t}$
(D) None of these

2000

TWO MARKS
6.105 One period ($0, T$) each of two periodic waveforms W_{1} and W_{2} are shown in the figure. The magnitudes of the $n^{t h}$ Fourier series coefficients of W_{1} and W_{2}, for $n \geq 1, n$ odd, are respectively proportional to

(A) $\left|n^{-3}\right|$ and $\left|n^{-2}\right|$
(B) $\left|n^{-2}\right|$ and $\left|n^{-3}\right|$
(C) $\left|n^{-1}\right|$ and $\left|n^{-2}\right|$
(D) $\left|n^{-4}\right|$ and $\left|n^{-2}\right|$
6.106 Let $u(t)$ be the step function. Which of the waveforms in the figure corresponds to the convolution of $u(t)-u(t-1)$ with $u(t)-u(t-2)$?
(A)

(B)

(C)

(D)

6.107 A system has a phase response given by $\phi(\omega)$, where ω is the angular frequency. The phase delay and group delay at $\omega=\omega_{0}$ are respectively given by

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(A) $-\frac{\phi\left(\omega_{0}\right)}{\omega_{0}},-\left.\frac{d \phi(\omega)}{d \omega}\right|_{\omega=\omega_{0}}$
(B) $\phi\left(\omega_{o}\right),-\left.\frac{d^{2} \phi\left(\omega_{0}\right)}{d \omega^{2}}\right|_{\omega=\omega_{o}}$
(C) $\frac{\omega_{o}}{\phi\left(\omega_{o}\right)},-\left.\frac{d \phi(\omega)}{d(\omega)}\right|_{\omega=\omega_{o}}$
(D) $\omega_{o} \phi\left(\omega_{o}\right), \int_{-\infty}^{\omega_{o}} \phi(\lambda)$

1999

ONE MARK
6.108 The z-transform $F(z)$ of the function $f(n T)=a^{n T}$ is
(A) $\frac{z}{z-a^{T}}$
(B) $\frac{z}{z+a^{T}}$
(C) $\frac{z}{z-a^{-T}}$
(D) $\frac{z}{z+a^{-T}}$

If $[f(t)]=F(s)$, then $[f(t-T)]$ is equal to
(A) $e^{s T} F(s)$
(B) $e^{-s T} F(s)$
(C) $\frac{F(s)}{1-e^{s T}}$
(D) $\frac{F(s)}{1-e^{-s T}}$
6.110 A signal $x(t)$ has a Fourier transform $X(\omega)$. If $x(t)$ is a real and odd function of t, then $X(\omega)$ is
(A) a real and even function of ω
(B) a imaginary and odd function of ω
(C) an imaginary and even function of ω
(D) a real and odd function of ω
6.111 The Fourier series representation of an impulse train denoted by

$$
s(t)=\sum_{n=-\infty}^{\infty} d\left(t-n T_{0}\right) \text { is given by }
$$

(A) $\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \exp -\frac{j 2 \pi n t}{T_{0}}$
(B) $\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \exp -\frac{j \pi n t}{T_{0}}$
(C) $\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \exp \frac{j \pi n t}{T_{0}}$
(D) $\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \exp \frac{j 2 \pi n t}{T_{0}}$
6.112 The z-transform of a signal is given by

$$
C(z)=\frac{1 z^{-1}\left(1-z^{-4}\right)}{4\left(1-z^{-1}\right)^{2}}
$$

Its final value is
(A) $1 / 4$
(B) zero
(C) 1.0
(D) infinity

1998

ONE MARK
6.113 If $F(s)=\frac{\omega}{s^{2}+\omega^{2}}$, then the value of $\operatorname{Lim}_{t \rightarrow \infty} f(t)$
(A) cannot be determined
(B) is zero
(C) is unity
(D) is infinite
6.114 The trigonometric Fourier series of a even time function can have only
(A) cosine terms
(B) sine terms
(C) cosine and sine terms
(D) d.c and cosine terms

A periodic signal $x(t)$ of period T_{0} is given by

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
x(t)= \begin{cases}1, & |t|<T_{1} \\ 0, & T_{1}<|t|<\frac{T_{0}}{2}\end{cases}
$$

The dc component of $x(t)$ is
(A) $\frac{T_{1}}{T_{0}}$
(B) $\frac{T_{1}}{2 T_{0}}$
(C) $\frac{2 T_{1}}{T_{0}}$
(D) $\frac{T_{0}}{T_{1}}$
6.116 The unit impulse response of a linear time invariant system is the unit step function $u(t)$. For $t>0$, the response of the system to an excitation $e^{-a t} u(t), a>0$ will be
(A) $a e^{-a t}$
(B) $(1 / a)\left(1-e^{-a t}\right)$
(C) $a\left(1-e^{-a t}\right)$
(D) $1-e^{-a t}$
6.117 The z-transform of the time function $\sum_{k=0}^{\infty} \delta(n-k)$ is
(A) $\frac{z-1}{z}$
(B) $\frac{z}{z-1}$
(C) $\frac{z}{(z-1)^{2}}$
(D) $\frac{(z-1)^{2}}{z}$
6.118 A distorted sinusoid has the amplitudes $A_{1}, A_{2}, A_{3}, \ldots$ of the fundamental, second harmonic, third harmonic,..... respectively. The total harmonic distortion is
(A) $\frac{A_{2}+A_{3}+\ldots}{A_{1}}$
(B) $\frac{\sqrt{A_{2}^{2}+A_{3}^{2}+\ldots \ldots}}{A_{1}}$
(C) $\frac{\sqrt{A_{2}^{2}+A_{3}^{2}+\ldots \ldots}}{\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+\ldots}}$
(D) $\left(\frac{A_{2}^{2}+A_{3}^{2}+\ldots . .}{A_{1}}\right)$
6.119 The Fourier transform of a function $x(t)$ is $X(f)$. The Fourier transform of $\frac{d X(t)}{d f}$ will be
(A) $\frac{d X(f)}{d f}$
(B) $j 2 \pi f X(f)$
(C) $j f X(f)$
(D) $\frac{X(f)}{j f}$

The function $f(t)$ has the Fourier Transform $g(\omega)$. The Fourier Transform
$f f(t) g(t)\left(=\int_{-\infty}^{\infty} g(t) e^{-j \omega t} d t\right)$ is
(A) $\frac{1}{2 \pi} f(\omega)$
(B) $\frac{1}{2 \pi} f(-\omega)$
(C) $2 \pi f(-\omega)$
(D) None of the above
6.121 The Laplace Transform of $e^{\alpha t} \cos (\alpha t)$ is equal to
(A) $\frac{(s-\alpha)}{(s-\alpha)^{2}+\alpha^{2}}$
(B) $\frac{(s+\alpha)}{(s-\alpha)^{2}+\alpha^{2}}$
(C) $\frac{1}{(s-\alpha)^{2}}$
(D) None of the above

ONE MARK
6.122 The trigonometric Fourier series of an even function of time does not have the
(A) dc term
(B) cosine terms
(C) sine terms
(D) odd harmonic terms

The Fourier transform of a real valued time signal has
(A) odd symmetry
(B) even symmetry
(C) conjugate symmetry
(D) no symmetry

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

SOLUTIONS

6.1 Option (C) is correct.

If the two systems with impulse response $h_{1}(t)$ and $h_{2}(t)$ are connected in cascaded configuration as shown in figure, then the overall response of the system is the convolution of the individual impulse responses.

Option (C) is correct.
Given, the input

$$
x(t)=u(t-1)
$$

It's Laplace transform is

$$
X(s)=\frac{e^{-s}}{s}
$$

The impulse response of system is given

$$
h(t)=t u(t)
$$

Its Laplace transform is

$$
H(s)=\frac{1}{s^{2}}
$$

Hence, the overall response at the output is

$$
\begin{aligned}
Y(s) & =X(s) H(s) \\
& =\frac{e^{-s}}{s^{3}}
\end{aligned}
$$

its inverse Laplace transform is

$$
y(t)=\frac{(t-1)^{2}}{2} u(t-1)
$$

Option (A) is correct.
Given, the signal

$$
v(t)=30 \sin 100 t+10 \cos 300 t+6 \sin \left(500 t+\frac{\pi}{4}\right)
$$

So we have

$$
\begin{aligned}
\omega_{1} & =100 \mathrm{rad} / \mathrm{s} \\
\omega_{2} & =300 \mathrm{rad} / \mathrm{s} \\
\omega_{3} & =500 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Therefore, the respective time periods are

$$
\begin{aligned}
& T_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi}{100} \mathrm{sec} \\
& T_{2}=\frac{2 \pi}{\omega_{2}}=\frac{2 \pi}{300} \mathrm{sec} \\
& T_{3}=\frac{2 \pi}{500} \mathrm{sec}
\end{aligned}
$$

So, the fundamental time period of the signal is

$$
\begin{aligned}
\text { L.C.M. }\left(T_{1}, T_{2} T_{3}\right) & =\frac{L C M(2 \pi, 2 \pi, 2 \pi)}{H C F(100,300,500)} \\
\text { or, } \quad T_{0} & =\frac{2 \pi}{100}
\end{aligned}
$$

Hence, the fundamental frequency in rad/sec is

$$
\omega_{0}=\frac{2 \pi}{10}=100 \mathrm{rad} / \mathrm{s}
$$

6.4 Option (A) is correct.

Given, the maximum frequency of the band-limited signal

$$
f_{m}=5 \mathrm{kHz}
$$

According to the Nyquist sampling theorem, the sampling frequency must be greater than the Nyquist frequency which is given as

$$
f_{N}=2 f_{m}=2 \times 5=10 \mathrm{kHz}
$$

So, the sampling frequency f_{s} must satisfy

$$
\begin{aligned}
& f_{s} \geq f_{N} \\
& f_{s} \geq 10 \mathrm{kHz}
\end{aligned}
$$

only the option (A) doesn't satisfy the condition therefore, 5 kHz is not a valid sampling frequency.
6.5 Option (C) is correct.

For a system to be casual, the R.O.C of system transfer function $H(s)$ which is rational should be in the right half plane and to the right of the right most pole.

For the stability of $L T I$ system. All poles of the system should lie in the left half of S-plane and no repeated pole should be on imaginary axis. Hence, options (A), (B), (D) satisfies an LTI

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
system stability and causality both.
But, Option (C) is not true for the stable system as, $|S|=1$ have one pole in right hand plane also.
6.6 Option (B) is correct.

The Laplace transform of unit step fun ${ }^{n}$ is

$$
U(s)=\frac{1}{s}
$$

So, the O / P of the system is given as

$$
\begin{aligned}
Y(s) & =\left(\frac{1}{s}\right)\left(\frac{1}{s}\right) \\
& =\frac{1}{s^{2}}
\end{aligned}
$$

For zero initial condition, we check

$$
\begin{array}{ll}
\Rightarrow & u(t)=\frac{d y(t)}{d t} \\
\Rightarrow & U(s)=S Y(s)-y(0) \\
\text { or, } & U(s)=s\left(\frac{1}{s^{2}}\right)-y(0) \\
& U(s)=\frac{1}{s}
\end{array}
$$

$(y(0)=0)$
Hence, the O / P is correct which is

$$
Y(s)=\frac{1}{s^{2}}
$$

its inverse Laplace transform is given by

$$
y(t)=t u(t)
$$

6.7 No Option is correct.

The matched filter is characterized by a frequency response that is given as

$$
\begin{aligned}
H(f) & =G^{*}(f) \exp (-j 2 \pi f T) \\
g(t) & \xrightarrow{f} G(f)
\end{aligned}
$$

where
Now, consider a filter matched to a known signal $g(t)$. The fourier transform of the resulting matched filter output $g_{0}(t)$ will be

$$
G_{0}(f)=H(f) G(f)
$$

$$
\begin{aligned}
& =G^{*}(f) G(f) \exp (-j 2 \pi f T) \\
& =|G(f)|^{2} \exp (-j 2 \pi f T)
\end{aligned}
$$

T is duration of $g(t)$
Assume $\exp (-j 2 \pi f T)=1$
So, $\quad G_{0}(f)=|G(f)|^{2}$
Since, the given Gaussian function is

$$
g(t)=e^{-\pi t^{2}}
$$

Fourier transform of this signal will be

$$
g(t)=e^{-\pi t^{2}} \xrightarrow{f} e^{-\pi f^{2}}=G(f)
$$

Therefore, output of the matched filter is

$$
G_{0}(f)=\left|e^{-\pi f^{2}}\right|^{2}
$$

Option (B) is correct.
Given, the impulse response of continuous time system

$$
h(t)=\delta(t-1)+\delta(t-3)
$$

From the convolution property, we know

$$
x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)
$$

So, for the input

$$
\left.x(t)=u(t) \text { (Unit step fun }{ }^{n}\right)
$$

The output of the system is obtained as

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{aligned}
y(t) & =u(t) * h(t) \\
& =u(t) *[\delta(t-1)+\delta(t-3)] \\
& =u(t-1)+u(t-3)
\end{aligned}
$$

at $t=2$

$$
\begin{aligned}
y(2) & =u(2-1)+u(2-3) \\
& =1
\end{aligned}
$$

Option (B) is correct.
Given, the differential equation

$$
\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y(t)=x(t)
$$

Taking its Laplace transform with zero initial conditions, we have

$$
\begin{equation*}
s^{2} Y(s)+5 s Y(s)+6 Y(s)=X(s) \tag{1}
\end{equation*}
$$

Now, the input signal is

$$
x(t)= \begin{cases}1 & 0<t<2 \\ 0 & \text { otherwise }\end{cases}
$$

i.e., $\quad x(t)=u(t)-u(t-2)$

Taking its Laplace transform, we obtain

$$
\begin{aligned}
X(s) & =\frac{1}{s}-\frac{e^{-2 s}}{s} \\
& =\frac{1-e^{-2 s}}{s}
\end{aligned}
$$

Substituting it in equation (1), we get

$$
\begin{aligned}
Y(s) & =\frac{X(s)}{s^{2}+5 s+6}=\frac{1-e^{2 s}}{s\left(s^{2}+5 s+6\right)} \\
& =\frac{1-e^{-2 s}}{s(s+2)(s+3)}
\end{aligned}
$$

Option (D) is correct.
The solution of a system described by a linear, constant coefficient,
ordinary, first order differential equation with forcing function $x(t)$ is $y(t)$ so, we can define a function relating $x(t)$ and $y(t)$ as below

$$
P \frac{d y}{d t}+Q y+K=x(t)
$$

where P, Q, K are constant. Taking the Laplace transform both the sides, we get

$$
\begin{equation*}
P s Y(s)-P y(0)+Q Y(s)=X(s) \tag{1}
\end{equation*}
$$

Now, the solutions becomes
or, $\quad Y_{1}(s)=-2 Y(s)$
So, Eq. (1) changes to

$$
\begin{align*}
P s Y_{1}(s)-P y_{1}(0)+Q Y_{1}(s) & =X_{1}(s) \\
\text { or, } \quad-2 P S Y(s)-P y_{1}(0)-2 Q Y_{1}(s) & =X_{1}(s)
\end{align*}
$$

Comparing Eq. (1) and (2), we conclude that

$$
\begin{aligned}
X_{1}(s) & =-2 X(s) \\
y_{1}(0) & =-2 y(0)
\end{aligned}
$$

Which makes the two equations to be same. Hence, we require to change the initial condition to $-2 y(0)$ and the forcing equation to $-2 x(t)$
Option (A) is correct.
Given, the DFT of vector $\left[\begin{array}{llll}a & b & c & d\end{array}\right]$ as

$$
\text { D.F.T. }\left\{\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\right\}=\left[\begin{array}{llll}
\alpha & \beta & \gamma & \delta
\end{array}\right]
$$

Also, we have

$$
\left[\begin{array}{llll}
p & q & r & s
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{llll}
a & b & c & d \tag{1}\\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{array}\right]
$$

For matrix circular convolution, we know

$$
x[n] * h[n]=\left[\begin{array}{lll|l}
h_{0} & h_{2} & h_{1} \\
h_{1} & h_{0} & h_{2} & x_{0} \\
h_{2} & h_{1} & h_{0}
\end{array}\right]
$$

where $\left\{x_{0}, x_{1}, x_{2}\right\}$ are three point signals for $x[n]$ and similarly for $h[n], h_{0}, h_{1}$ and h_{2} are three point signals. Comparing this transformation to $\mathrm{Eq}(1)$, we get

$$
\left.\begin{array}{rl}
{\left[\begin{array}{llll}
p & q & r & s
\end{array}\right]} & =\left[\begin{array}{lll}
a & d & c \\
b & a & d \\
c & b & a \\
d & c & b
\end{array}\right]^{T}\left[\begin{array}{llll}
a & b & c & d
\end{array}\right] \\
& =\left[\begin{array}{lll}
a & b & c
\end{array}\right]
\end{array}\right]^{T} *\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]^{T} .
$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$
=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] *\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

Now, we know that

$$
x_{1}[n] * x_{2}[n]=X_{1 D F T}[k] X_{2, D F T}[k]
$$

So,

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] *\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right] *\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
\alpha^{2} & \beta^{2} & \gamma^{2} & \delta^{2}
\end{array}\right]
$$

Option (D) is correct.
Using s-domain differentiation property of Laplace transform.
If

$$
\begin{aligned}
& f(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F(s) \\
& t f(t) \stackrel{\mathcal{L}}{\longleftrightarrow}-\frac{d F(s)}{d s}
\end{aligned}
$$

So,

$$
\mathcal{L}[t f(t)]=\frac{-d}{d s}\left[\frac{1}{s^{2}+s+1}\right]=\frac{2 s+1}{\left(s^{2}+s+1\right)^{2}}
$$

Option (C) is correct.

$$
\begin{aligned}
& x[n]=\left(\frac{1}{3}\right)^{|n|}-\left(\frac{1}{2}\right)^{n} u[n] \\
& x[n]=\left(\frac{1}{3}\right)^{n} u[n]+\left(\frac{1}{3}\right)^{-n} u[-n-1]-\left(\frac{1}{2}\right)^{n} u(n)
\end{aligned}
$$

Taking z-transform
$X[z]$

$$
\begin{array}{rl}
=\sum_{n=-\infty}^{\infty}\left(\frac{1}{3}\right)^{n} z^{-n} & u[n]+\sum_{n=-\infty}^{\infty}\left(\frac{1}{3}\right)^{-n} z^{-n} u[-n-1]-\sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n} u[n] \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n} z^{-n}+\sum_{n=-\infty}^{-1}\left(\frac{1}{3}\right)^{-n} z^{-n}-\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n} \\
& =\underbrace{\sum_{n=0}^{\infty}\left(\frac{1}{3 z}\right)^{n}}_{\mathrm{I}}+\underbrace{\sum_{m=1}^{\infty}\left(\frac{1}{3} z\right)^{m}}_{\mathrm{II}}-\underbrace{\sum_{n=0}^{\infty}\left(\frac{1}{2 z}\right)^{n}}_{\mathrm{III}} \text { Taking } m=-n
\end{array}
$$

Series I converges if $\left|\frac{1}{3 z}\right|<1$ or $|z|>\frac{1}{3}$
Series II converges if $\left|\frac{1}{3} z\right|<1$ or $|z|<3$
Series III converges if $\left|\frac{1}{2 z}\right|<1$ or $|z|>\frac{1}{2}$
Region of convergence of $X(z)$ will be intersection of above three
So,

$$
\operatorname{ROC}: \frac{1}{2}<|z|<3
$$

Option (D) is correct.

$$
y(t)=\int_{-\infty}^{t} x(\tau) \cos (3 \tau) d \tau
$$

Time Invariance :
Let,

$$
\begin{aligned}
& x(t)=\delta(t) \\
& y(t)=\int_{-\infty}^{t} \delta(t) \cos (3 \tau) d \tau=u(t) \cos (0)=u(t)
\end{aligned}
$$

For a delayed input $\left(t-t_{0}\right)$ output is

$$
y\left(t, t_{0}\right)=\int_{-\infty}^{t} \delta\left(t-t_{0}\right) \cos (3 \tau) d \tau=u(t) \cos \left(3 t_{0}\right)
$$

Delayed output,

$$
\begin{aligned}
y\left(t-t_{0}\right) & =u\left(t-t_{0}\right) \\
y\left(t, t_{0}\right) & \neq y\left(t-t_{0}\right) \quad \text { System is not time invariant. }
\end{aligned}
$$

Stability :
Consider a bounded input $x(t)=\cos 3 t$

$$
y(t)=\int_{-\infty}^{t} \cos ^{2} 3 t=\int_{-\infty}^{t} \frac{1-\cos 6 t}{2}=\frac{1}{2} \int_{-\infty}^{t} 1 d t-\frac{1}{2} \int_{-\infty}^{t} \cos 6 t d t
$$

As $t \rightarrow \infty, y(t) \rightarrow \infty$ (unbounded) System is not stable.
Option (C) is correct.

$$
H(j \omega)=\frac{(2 \cos \omega)(\sin 2 \omega)}{\omega}=\frac{\sin 3 \omega}{\omega}+\frac{\sin \omega}{\omega}
$$

We know that inverse Fourier transform of $\sin c$ function is a rectangular function.

$\stackrel{\mathcal{F}}{\longleftrightarrow} \frac{\sin \omega}{\omega}$

So, inverse Fourier transform of $H(j \omega)$

$$
\begin{aligned}
h(t) & =h_{1}(t)+h_{2}(t) \\
h(0) & =h_{1}(0)+h_{2}(0)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Option (A) is correct.
Convolution sum is defined as

$$
y[n]=h[n] * g[n]=\sum_{k=-\infty}^{\infty} h[n] g[n-k]
$$

For causal sequence, $\quad y[n]=\sum_{k=0}^{\infty} h[n] g[n-k]$

$$
y[n]=h[n] g[n]+h[n] g[n-1]+h[n] g[n-2]+\ldots \ldots
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

For $n=0$

$$
\begin{align*}
y[0] & =h[0] g[0]+h[1] g[-1]+\ldots \ldots \ldots . \\
y[0] & =h[0] g[0] g[-1]=g[-2]=\ldots .0 \\
y[0] & =h[0] g[0]
\end{align*}
$$

For $n=1$,

$$
y[1]=h[1] g[1]+h[1] g[0]+h[1] g[-1]+\ldots
$$

$$
y[1]=h[1] g[1]+h[1] g[0]
$$

$$
\frac{1}{2}=\frac{1}{2} g[1]+\frac{1}{2} g[0] h[1]=\left(\frac{1}{2}\right)^{1}=\frac{1}{2}
$$

$$
1=g[1]+g[0]
$$

$$
g[1]=1-g[0]
$$

From equation (i),
$g[0]=\frac{y[0]}{h[0]}=\frac{1}{1}=1$
So,
$g[1]=1-1=0$
6.17 Option (A) is correct.

We have

$$
100 \frac{d^{2} y}{d t^{2}}-20 \frac{d y}{d t}+y=x(t)
$$

Applying Laplace transform we get

$$
100 s^{2} Y(s)-20 s Y(s)+Y(s)=X(s)
$$

or

$$
\begin{aligned}
H(s) & =\frac{Y(s)}{X(s)}=\frac{1}{100 s^{2}-20 s+1} \\
& =\frac{1 / 100}{s^{2}-(1 / 5) s+1 / 100}=\frac{A}{s^{2}+2 \xi \omega_{n} s+\omega^{2}}
\end{aligned}
$$

Here $\omega_{n}=1 / 10$ and $2 \xi \omega_{n}=-1 / 5$ giving $\xi=-1$
Roots are $s=1 / 10,1 / 10$ which lie on Right side of s plane thus unstable.
6.18 Option (C) is correct.

For an even function Fourier series contains dc term and cosine term (even and odd harmonics).
6.19 Option (B) is correct.

Function $h(n)=a^{n} u(n)$ stable if $|a|<1$ and Unstable if $|a| \geqslant 1$
We We have $\quad h(n) \quad=2^{n} u(n-2)$;

Here $|a|=2$ therefore $h(n)$ is unstable and since $h(n)=0$ for $n<0$ Therefore $h(n)$ will be causal. So $h(n)$ is causal and not stable.
Option (A) is correct.

$$
\begin{aligned}
\text { Impulse response } & =\frac{d}{d t}(\text { step response }) \\
& =\frac{d}{d t}\left(1-e^{-\alpha t}\right) \\
& =0+\alpha e^{-\alpha t}=\alpha e^{-\alpha t}
\end{aligned}
$$

Option (D) is correct.
We have $\quad x(t)=\exp (-2 t) \mu(t)+s(t-6)$ and $h(t)=u(t)$
Taking Laplace Transform we get

Now $\quad Y(s)=H(s) X(s)$

$$
=\frac{1}{s}\left[\frac{1}{s+2}+e^{-6 s}\right]=\frac{1}{s(s+2)}+\frac{e^{-6 s}}{s}
$$

or

$$
Y(s)=\frac{1}{2 s}-\frac{1}{2(s+2)}+\frac{e^{-6 s}}{s}
$$

Thus

$$
y(t)=0.5[1-\exp (-2 t)] u(t)+u(t-6)
$$

GATE Electronics \& Communication

by RK Kanodia

 Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

Option (B) is correct.

$$
\begin{aligned}
& y(n)=x(n-1) \\
& \text { or } \\
& Y(z)=z^{-1} X(z) \\
& \frac{Y(z)}{X(z)}=H(z)=z^{-1} \\
& \text { Now } \quad H_{1}(z) H_{2}(z)=z^{-1} \\
& \left(\frac{1-0.4 z^{-1}}{1-0.6 z^{-1}}\right) H_{2}(z)=z^{-1} \\
& H_{2}(z)=\frac{z^{-1}\left(1-0.6 z^{-1}\right)}{\left(1-0.4 z^{-1}\right)}
\end{aligned}
$$

Option (B) is correct.
For 8 point $\mathrm{DFT}, x^{*}[1]=x[7] ; x^{*}[2]=x[6] ; x^{*}[3]=x[5]$ and it is conjugate symmetric about $x[4], x[6]=0 ; x[7]=1+j 3$
Option (C) is correct.
For a function $x(t)$ trigonometric fourier series is

$$
x(t)=A_{o}+\sum_{n=1}^{\infty}\left[A_{n} \cos n \omega t+B_{n} \sin n \omega t\right]
$$

Where,

$$
A_{o} \frac{1}{T_{0}} \int_{T_{0}} x(t) d t \quad T_{0} \rightarrow \text { fundamental period }
$$

and

$$
\begin{aligned}
A_{n} & =\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos n \omega t d t \\
B_{n} & =\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin n \omega t d t
\end{aligned}
$$

For an even function $x(t), B_{n}=0$
Since given function is even function so coefficient $B_{n}=0$, only cosine and constant terms are present in its fourier series representation
Constant term

$$
\begin{aligned}
A_{0} & =\frac{1}{T} \int_{-T / 4}^{3 T / 4} x(t) d t \\
& =\frac{1}{T}\left[\int_{-T / 4}^{T / 4} A d t+\int_{T / 4}^{3 T / 4}-2 A d t\right] \\
& =\frac{1}{T}\left[\frac{T A}{2}-2 A \frac{T}{2}\right]=-\frac{A}{2}
\end{aligned}
$$

Constant term is negative.
6.25 Option (A) is correct.

We know that $\alpha Z^{ \pm a} \stackrel{\text { Inverse } \mathrm{Z} \text {-transform }}{\longleftrightarrow} \alpha \delta[n \pm a]$
Given that $\quad X(z)=5 z^{2}+4 z^{-1}+3$
Inverse z-transform $\quad x[n]=5 \delta[n+2]+4 \delta[n-1]+3 \delta[n]$
6.26 Option (C) is correct.

We have
$h_{1}[n]=\delta[n-1]$ or $H_{1}[Z]=Z^{-1}$
and

$$
h_{2}[n]=\delta[n-2] \text { or } H_{2}(Z)=Z^{-2}
$$

Response of cascaded system

$$
H(z)=H_{1}(z) \cdot H_{2}(z)
$$

$=z^{-1} \cdot z^{-2}=z^{-3}$
or,

$$
h[n]=\delta[n-3]
$$

6.27 Option (D) is correct.

For an N-point FET algorithm butterfly operates on one pair of samples and involves two complex addition and one complex multiplication.
6.28 Option (D) is correct.

We have

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left[\frac{3 s+1}{s^{3}+4 s^{2}+(k-3) s}\right] \\
\lim _{t \rightarrow \infty} f(t) & =1
\end{aligned}
$$

and
By final value theorem

$$
\begin{array}{rlrl}
& \lim _{t \rightarrow \infty} f(t) & =\lim _{s \rightarrow 0} s F(s)=1 \\
& \text { or } & \lim _{s \rightarrow 0} \frac{s \cdot(3 s+1)}{s^{3}+4 s^{2}+(k-3) s} & =1 \\
\text { or } & \lim _{s \rightarrow 0} \frac{s(3 s+1)}{s\left[s^{2}+4 s+(k-3)\right]} & =1 \\
& & \frac{1}{k-3} & =1 \\
\text { or } & k & =4
\end{array}
$$

6.29 Option (B) is correct.

System is described as

$$
\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d t(t)}{d t}+3 y(t)=2 \frac{d x(t)}{d t}+4 x(t)
$$

Taking Laplace transform on both side of given equation

$$
\begin{aligned}
s^{2} Y(s)+4 s Y(s)+3 Y(s) & =2 s X(s)+4 X(s) \\
\left(s^{2}+4 s+3\right) Y(s) & =2(s+2) X(s) s
\end{aligned}
$$

Transfer function of the system

For more GATE Resources, Mock Test and Study material join the community htto://wwww.facebook.com/gateec2014

$H(s)=\frac{Y(s)}{X(s)}=\frac{2(s+2)}{s^{2}+4 s+3}=\frac{2(s+2)}{(s+3)(s+1)}$
Input $\quad x(t)=e^{-2 t} u(t)$
or,

$$
X(s)=\frac{1}{(s+2)}
$$

Output

$$
Y(s)=H(s) \cdot X(s)
$$

$$
Y(s)=\frac{2(s+2)}{(s+3)(s+1)} \cdot \frac{1}{(s+2)}
$$

By Partial fraction

$$
Y(s)=\frac{1}{s+1}-\frac{1}{s+3}
$$

Taking inverse Laplace transform

$$
y(t)=\left(e^{-t}-e^{-3 t}\right) u(t)
$$

Option (C) is correct.
We have

$$
H(z)=\frac{2-\frac{3}{4} z^{-1}}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}
$$

By partial fraction $H(z)$ can be written as

$$
H(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)}+\frac{1}{\left(1-\frac{1}{4} z^{-1}\right)}
$$

For ROC : $|z|>1 / 2$

$$
h[n]=\left(\frac{1}{2}\right)^{n} u[n]+\left(\frac{1}{4}\right)^{n} u[n], n>0 \quad \frac{1}{1-z^{-1}}=a^{n} u[n],|z|>a
$$

Thus system is causal. Since ROC of $H(z)$ includes unit circle, so it is stable also. Hence S_{1} is True
For ROC : $|z|<\frac{1}{4}$

$$
h[n]=-\left(\frac{1}{2}\right)^{n} u[-n-1]+\left(\frac{1}{4}\right)^{n} u(n),|z|>\frac{1}{4},|z|<\frac{1}{2}
$$

System is not causal. ROC of $H(z)$ does not include unity circle, so it is not stable and S_{3} is True

Option (A) is correct.
The Fourier series of a real periodic function has only cosine terms if it is even and sine terms if it is odd.

Option (B) is correct.
Given function is

$$
f(t)=\sin ^{2} t+\cos 2 t=\frac{1-\cos 2 t}{2}+\cos 2 t=\frac{1}{2}+\frac{1}{2} \cos 2 t
$$

The function has a DC term and a cosine function. The frequency of cosine terms is

$$
\omega=2=2 \pi f \rightarrow f=\frac{1}{\pi} \mathrm{~Hz}
$$

The given function has frequency component at 0 and $\frac{1}{\pi} \mathrm{~Hz}$.
Option (A) is correct.

$$
x[n]=\left(\frac{1}{3}\right)^{n} u(n)-\left(\frac{1}{2}\right)^{n} u(-n-1)
$$

Taking z transform we have

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{n=\infty}\left(\frac{1}{3}\right)^{n} z^{-n}-\sum_{n=-\infty}^{n=-1}\left(\frac{1}{2}\right)^{n} z^{-n} \\
& =\sum_{n=0}^{n=\infty}\left(\frac{1}{3} z^{-1}\right)^{n}-\sum_{n=-\infty}^{n=-1}\left(\frac{1}{2} z^{-1}\right)^{n} \\
\frac{1}{3} z^{-1} & <1 \rightarrow \frac{1}{3}<|z| \\
\frac{1}{2} z^{-1} & >1 \rightarrow \frac{1}{2}>|z|
\end{aligned}
$$

First term gives

Second term gives
Thus its ROC is the common ROC of both terms. that is

$$
\frac{1}{3}<|z|<\frac{1}{2}
$$

6.34 Option (B) is correct.

By property of unilateral Laplace transform

$$
\int_{-\infty}^{t} f(\tau) d \tau \quad \stackrel{L}{\longleftrightarrow} \frac{F(s)}{s}+\frac{1}{s} \int_{-\infty}^{0^{-}} f(\tau) d \tau
$$

Here function is defined for $0<\tau<t$, Thus

$$
\int_{0}^{t} f(\tau) \stackrel{L}{\longleftrightarrow} \frac{F(s)}{s}
$$

Option (A) is correct.
We have $h(2)=1, h(3)=-1$ otherwise $h(k)=0$. The diagram of response is as follows :

It has the finite magnitude values. So it is a finite impulse response filter. Thus S_{2} is true but it is not a low pass filter. So S_{1} is false.
6.36 Option (B) is correct.

Here $h(t) \neq 0$ for $t<0$. Thus system is non causal. Again any bounded input $x(t)$ gives bounded output $y(t)$. Thus it is BIBO stable.
Here we can conclude that option (B) is correct.
6.37 Option (D) is correct.

We have

$$
\begin{aligned}
x[n] & =\{1,0,2,3) \text { and } N=4 \\
X[k] & =\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi n k / N} \quad k=0,1 \ldots N-1
\end{aligned}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

For $N=4$,

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{3} x[n] e^{-j 2 \pi n k / 4} k=0,1, \ldots 3 \\
X[0] & =\sum_{n=0}^{3} x[n] \\
& =x[0]+x[1]+x[2]+x[3]
\end{aligned}
$$

Now
$=1+0+2+3=6$

$$
\begin{aligned}
x[1] & =\sum_{n=0}^{3} x[n] e^{-j \pi n / 2} \\
& =x[0]+x[1] e^{-j \pi / 2}+x[2] e^{-j \pi}+x[3] e^{-j \pi 3 / 2} \\
& =1+0-2+j 3=-1+j 3
\end{aligned}
$$

$$
X[2]=\sum_{n=0}^{3} x[n] e^{-j \pi n}
$$

$$
=x[0]+x[1] e^{-j \pi}+x[2] e^{-j 2 \pi}+x[3] e^{-j \pi 3}
$$

$$
=1+0+2-3=0
$$

$$
X[3]=\sum_{n=0}^{3} x[n] e^{-j 3 \pi n / 2}
$$

$=x[0]+x[1] e^{-j 3 \pi / 2}+x[2] e^{-j 3 \pi}+x[3] e^{-j 9 \pi / 2}$

$$
=1+0-2-j 3=-1-j 3
$$

Thus $[6,-1+j 3, \quad 0,-1-j 3]$
6.38 Option (A) is correct.
6.39 Option (C) is correct.

The output of causal system depends only on present and past states only.
In option $(\mathrm{A}) y(0)$ depends on $x(-2)$ and $x(4)$.
In option (B) $y(0)$ depends on $x(1)$.
In option (C) $y(0)$ depends on $x(-1)$.
In option (D) $y(0)$ depends on $x(5)$.
Thus only in option (C) the value of $y(t)$ at $t=0$ depends on $x(-1)$ past value. In all other option present value depends on future value.

Option (D) is correct
We have $\quad h(t)=e^{\alpha t} u(t)+e^{\beta t} u(-t)$
This system is stable only when bounded input has bounded output For stability $\alpha t<0$ for $t>0$ that implies $\alpha<0$ and $\beta t>0$ for $t>0$ that implies $\beta>0$. Thus, α is negative and β is positive. Option (C) is correct.

$$
\begin{aligned}
G(s) & =\frac{K(s+1)}{(s+2)(s+4)}, \text { and } R(s)=\frac{1}{s} \\
C(s) & =G(s) R(s)=\frac{K(s+1)}{s(s+2)(s+4)} \\
& =\frac{K}{8 s}+\frac{K}{4(s+2)}-\frac{3 K}{8(s+4)}
\end{aligned}
$$

Thus

$$
c(t)=K\left[\frac{1}{8}+\frac{1}{4} e^{-2 t}-\frac{3}{8} e^{-4 t}\right] u(t)
$$

At steady-state , $c(\infty)=1$
Thus

$$
\frac{K}{8}=1 \text { or } K=8
$$

Then,

$$
G(s)=\frac{8(s+1)}{(s+2)(s+4)}=\frac{12}{(s+4)}-\frac{4}{(s+2)}
$$

GATE Electronics \& Communication

by RK Kanodia

Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
h(t)=L^{-1} G(s)=\left(-4 e^{-2 t}+12 e^{-4 t}\right) u(t)
$$

Option (A) is correct.
We have

$$
x(t)= \begin{cases}1 & \text { for }-1 \leq t \leq+1 \\ 0 & \text { otherwise }\end{cases}
$$

Fourier transform is

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-j \omega t} x(t) d t & =\int_{-1}^{1} e^{-j \omega t} 1 d t \\
& =\frac{1}{-j \omega}\left[e^{-j \omega t}\right]_{-1}^{1} \\
& =\frac{1}{-j \omega}\left(e^{-j \omega}-e^{j \omega}\right)=\frac{1}{-j \omega}(-2 j \sin \omega) \\
& =\frac{2 \sin \omega}{\omega}
\end{aligned}
$$

This is zero at $\omega=\pi$ and $\omega=2 \pi$
Option (D) is correct
Given

$$
\begin{aligned}
& h(n)=[1,-1,2] \\
& x(n)=[1,0,1] \\
& y(n)=x(n)^{*} h(n)
\end{aligned}
$$

The length of $y[n]$ is $=L_{1}+L_{2}-1=3+3-1=5$

$$
\begin{aligned}
y(n) & =x(n)^{*} h(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
y(2) & =\sum_{k=-\infty}^{\infty} x(k) h(2-k) \\
& =x(0) h(2-0)+x(1) h(2-1)+x(2) h(2-2) \\
& =h(2)+0+h(0)=1+2=3
\end{aligned}
$$

There are 5 non zero sample in output sequence and the value of $y[2]$ is 3
Option (B) is correct.
Mode function are not linear. Thus $y(t)=|x(t)|$ is not linear but this functions is time invariant. Option (A) and (B) may be correct.

The $y(t)=t|x(t)|$ is not linear, thus option (B) is wrong and (a) is correct. We can see that
$R_{1}: y(t)=t^{2} x(t)$ Linear and time variant.
$R_{2}: y(t)=t|x(t)|$ Non linear and time variant.
$R_{3}: y(t)=x|(t)|$ Non linear and time invariant
$R_{4}: y(t)=x(t-5)$ Linear and time invariant
Option (A) is correct.
Given : $\quad y(n)=\frac{1}{N} \sum_{r=0}^{N-1} x(r) x(n+r)$
It is Auto correlation.
Hence $\quad y(n)=r_{x x}(n) \xrightarrow{D F T}|X(k)|^{2}$
6.46 Option (B) is correct.

Current through resistor (i.e. capacitor) is

$$
\begin{aligned}
I & =I\left(0^{+}\right) e^{-t / R C} \\
I\left(0^{+}\right) & =\frac{V}{R}=\frac{5}{200 k}=25 \mu \mathrm{~A} \\
R C & =200 k \times 10 \mu=2 \mathrm{sec} \\
I & =25 e^{-\frac{t}{2}} \mu \mathrm{~A} \\
& =V_{R} \times R=5 e^{-\frac{t}{2}} \mathrm{~V}
\end{aligned}
$$

Here,

Here the voltages across the resistor is input to sampler at frequency of 10 Hz . Thus

$$
x(n)=5 e^{\frac{-n}{2 x \mid}}=5 e^{-0.05 n} \text { For } t>0
$$

6.47 Option (C) is correct.

Since $\quad x(n)=5 e^{-0.05 n} u(n)$ is a causal signal
Its z transform is

$$
X(z)=5\left[\frac{1}{1-e^{-0.05} z^{-1}}\right]=\frac{5 z}{z-e^{-0.05}}
$$

Its ROC is $\left|e^{-0.05} z^{-1}\right|>1 \rightarrow|z|>e^{-0.05}$
6.48 Option (C) is correct.

$$
\begin{aligned}
h(t) & =e^{-2 t} u(t) \\
H(j \omega) & =\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t \\
& =\int_{0}^{\infty} e^{-2 t} e^{-j \omega t} d t=\int_{0}^{\infty} e^{-(2+j \omega) t} d t=\frac{1}{(2+j \omega)}
\end{aligned}
$$

6.49 Option (D) is correct.

$$
H(j \omega)=\frac{1}{(2+j \omega)}
$$

The phase response at $\omega=2 \mathrm{rad} / \mathrm{sec}$ is

$$
\angle H(j \omega)=-\tan ^{-1} \frac{\omega}{2}=-\tan ^{-1} \frac{2}{2}=-\frac{\pi}{4}=-0.25 \pi
$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec 2014

Magnitude response at $\omega=2 \mathrm{rad} / \mathrm{sec}$ is

$$
|H(j \omega)|=\sqrt{\frac{1}{2^{2}+w^{2}}}=\frac{1}{2 \sqrt{2}}
$$

Input is

$$
\begin{aligned}
x(t) & =2 \cos (2 t) \\
& =\frac{1}{2 \sqrt{2}} \times 2 \cos (2 t-0.25 \pi) \\
& =\frac{1}{\sqrt{2}} \cos [2 t-0.25 \pi]
\end{aligned}
$$

Option (D) is correct.

$$
Y(s)=\frac{1}{s(s-1)}
$$

Final value theorem is applicable only when all poles of system lies in left half of S-plane. Here $s=1$ is right s-plane pole. Thus it is
unbounded.
Option (A) is correct.

$$
x(t)=e^{-t} u(t)
$$

Taking Fourier transform

$$
\begin{aligned}
X(j \omega) & =\frac{1}{1+j \omega} \\
|X(j \omega)| & =\frac{1}{1+\omega^{2}}
\end{aligned}
$$

Magnitude at 3 dB frequency is $\frac{1}{\sqrt{2}}$
Thus

$$
\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{1+\omega^{2}}}
$$

or $\quad \omega=1 \mathrm{rad}$
or $\quad f=\frac{1}{2 \pi} \mathrm{~Hz}$
Option (B) is correct.
For discrete time Fourier transform (DTFT) when $N \rightarrow \infty$

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

Putting $n=0$ we get

$$
x[0]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega 0} d \omega
$$

$=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega$
or $\quad \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega=2 \pi x[0]=2 \pi \times 5=10 \pi$
6.53 Option (B) is correct.

$$
X(z)=\frac{0.5}{1-2 z^{-1}}
$$

Since ROC includes unit circle, it is left handed system

$$
\begin{aligned}
& x(n)=-(0.5)(2)^{-n} u(-n-1) \\
& x(0)=0
\end{aligned}
$$

If we apply initial value theorem

$$
x(0)=\lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty} \frac{0.5}{1-2 z^{-1}}=0.5
$$

That is wrong because here initial value theorem is not applicable because signal $x(n)$ is defined for $n<0$.
Option (A) is correct.
A Hilbert transformer is a non-linear system.
Option (B) is correct.

$$
\begin{aligned}
& H(f)=\frac{5}{1+j 10 \pi f} \\
& H(s)=\frac{5}{1+5 s}=\frac{5}{5\left(s+\frac{1}{5}\right)}=\frac{1}{s+\frac{1}{5}}
\end{aligned}
$$

Step response

$$
Y(s)=\frac{1}{s} \frac{a}{\left(s+\frac{1}{5}\right)}
$$

or

$$
Y(s)=\frac{1}{s} \frac{1}{\left(s+\frac{1}{5}\right)}=\frac{5}{s}-\frac{5}{s+\frac{1}{5}}
$$

or
Option (A) is correct.

$$
y(t)=5\left(1-e^{-t / 5}\right) u(t)
$$

$$
x(t) \stackrel{F}{\longleftrightarrow} X(j \omega)
$$

Using scaling we have

$$
x(5 t) \stackrel{F}{\longleftrightarrow} \frac{1}{5} X\left(\frac{j \omega}{5}\right)
$$

Using shifting property we get

$$
x\left[5\left(t-\frac{3}{5}\right)\right] \stackrel{F}{\longleftrightarrow} \frac{1}{5} X\left(\frac{j \omega}{5}\right) e^{-\frac{j 3 \omega}{5}}
$$

Option (D) is correct.
Dirac delta function $\delta(t)$ is defined at $t=0$ and it has infinite value
a $t=0$. The area of dirac delta function is unity.
6.58 Option (D) is correct.

The ROC of addition or subtraction of two functions $x_{1}(n)$ and $x_{2}(n)$ is $R_{1} \cap R_{2}$. We have been given ROC of addition of two function and has been asked ROC of subtraction of two function. It will be same.
6.59 Option (A) is correct.

As we have

$$
x(t)=\sin t, \quad \text { thus } \omega=1
$$

Now

$$
H(s)=\frac{1}{s+1}
$$

or
$H(j \omega)=\frac{1}{j \omega+1}=\frac{1}{j+1}$
or

$$
H(j \omega)=\frac{1}{\sqrt{2}} \angle-45^{\circ}
$$

Thus

$$
y(t)=\frac{1}{\sqrt{2}} \sin \left(t-\frac{\pi}{4}\right)
$$

6.60 Option (C) is correct.

$$
F(s)=\frac{\omega_{0}}{s^{2}+\omega^{2}}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
\begin{aligned}
L^{-1} F(s) & =\sin \omega_{o} t \\
f(t) & =\sin \omega_{o} t
\end{aligned}
$$

Thus the final value is $-1 \leq f(\infty) \leq 1$
6.61 Option (C) is correct.

$$
\begin{array}{ll}
& y(n)=\left(\sin \frac{5}{6} \pi n\right) x(n) \\
\text { Let } & x(n)=\delta(n) \\
\text { Now } & y(n)=\sin 0=0 \text { (bounded) }
\end{array}
$$

BIBO stable
6.62 Option (B) is correct.

$$
c(t)=1-e^{-2 t}
$$

Taking Laplace transform

$$
C(s)=\frac{C(s)}{U(s)}=\frac{2}{s(s+2)} \times s=\frac{2}{s+2}
$$

6.63 Option (C) is correct.

$$
\begin{aligned}
& h(t)=e^{-t} \xrightarrow{L} \quad H(s)=\frac{1}{s+1} \\
& x(t)=u(t) \xrightarrow{L} \quad X(s)=\frac{1}{s} \\
& Y(s)=H(s) X(s)=\frac{1}{s+1} \times \frac{1}{s}=\frac{1}{s}-\frac{1}{s+1} \\
& y(t)=u(t)-e^{-t}
\end{aligned}
$$

In steady state i.e. $t \rightarrow \infty, y(\infty)=1$
6.64 Option (C) is correct.

Fourier series is defined for periodic function and constant.
$3 \sin (25 t)$ is a periodic function.
$4 \cos (20 t+3)+2 \sin (710 t)$ is sum of two periodic function and also a periodic function.
$e^{-|t|} \sin (25 t)$ is not a periodic function, so FS can't be defined for it. 1 is constant
Option (A) is correct.

$$
\begin{aligned}
\operatorname{Ev}\{g(t)\} & =\frac{g(t)+g(-t)}{2} \\
\operatorname{odd}\{g(t)\} & =\frac{g(t)-g(-t)}{2}
\end{aligned}
$$

Here $\quad g(t)=u(t)$
Thus

$$
\begin{aligned}
& u_{e}(t)=\frac{u(t)+u(-t)}{2}=\frac{1}{2} \\
& u_{o}(t)=\frac{u(t)-u(-t)}{2}=\frac{x(t)}{2}
\end{aligned}
$$

Option (C) is correct.
Here

$$
\begin{array}{ll}
x_{1}(n)=\left(\frac{5}{6}\right)^{n} u(n) & \\
X_{1}(z)=\frac{1}{1-\left(\frac{5}{6} z^{-1}\right)} & \text { ROC }: R_{1} \rightarrow|z|>\frac{5}{6} \\
x_{2}(n)=-\left(\frac{6}{5}\right)^{n} u(-n-1) & \\
X_{1}(z)=1-\frac{1}{1-\left(\frac{6}{5} z^{-1}\right)} & \text { ROC }: R_{2} \rightarrow|z|<\frac{6}{5}
\end{array}
$$

Thus ROC of $x_{1}(n)+x_{2}(n)$ is $R_{1} \cap R_{2}$ which is $\frac{5}{6}<|z|<\frac{6}{5}$

GATE Electronics \& Communication

by RK Kanodia

Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (D) is correct.
For causal system $h(t)=0$ for $t \leq 0$. Only (D) satisfy this condition. Option (D) is correct.
or

$$
\begin{aligned}
& x(n)=\left(\frac{1}{2}\right)^{n} u(n) \\
& y(n)=x^{2}(n)=\left(\frac{1}{2}\right)^{2 n} u^{2}(n)
\end{aligned}
$$

$$
\begin{align*}
y(n) & =\left[\left(\frac{1}{2}\right)^{2}\right]^{n} u(n)=\left(\frac{1}{4}\right)^{n} u(n) \tag{1}\\
Y\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{n=\infty} y(n) e^{-j \omega n}=\sum_{n=0}^{n=\infty}\left(\frac{1}{4}\right)^{n} e^{-j \omega n} \\
Y\left(e^{j 0}\right) & =\sum_{n=0}^{n=\infty}\left(\frac{1}{4}\right)^{n}=1+\left(\frac{1}{4}\right)^{1}+\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)^{3}+\left(\frac{1}{4}\right)^{4} \\
Y\left(e^{j 0}\right) & =\frac{1}{1-\frac{1}{4}}=\frac{4}{3}
\end{align*}
$$

or
or

Alternative :

Taking z transform of (1) we get

$$
Y(z)=\frac{1}{1-\frac{1}{4} z^{-1}}
$$

Substituting $z=e^{j \omega}$ we have

$$
\begin{aligned}
& Y\left(e^{j \omega}\right)=\frac{1}{1-\frac{1}{4} e^{-j \omega}} \\
& Y\left(e^{j 0}\right)=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}
\end{aligned}
$$

Option (A) is correct.

$$
\begin{aligned}
s(t) & =8 \cos \left(\frac{\pi}{2}-20 \pi t\right)+4 \sin 15 \pi t \\
& =8 \sin 20 \pi t+4 \sin 15 \pi t
\end{aligned}
$$

Here $A_{1}=8$ and $A_{2}=4$. Thus power is

$$
P=\frac{A_{1}^{2}}{2}+\frac{A_{2}^{2}}{2}=\frac{8^{2}}{2}+\frac{4^{2}}{2}=40
$$

Option (A) is correct.

$$
\begin{gathered}
y(t) \\
=0.5 x\left(t-t_{d}+T\right)+x\left(t-t_{d}\right)+0.5 x\left(t-t_{d}-T\right)
\end{gathered}
$$

Taking Fourier transform we have

$$
Y(\omega)
$$

$$
=0.5 e^{-j \omega \omega_{\omega}\left(-t_{t}+T\right)} X(\omega)+e^{-j \omega_{t} t_{\lambda}} X(\omega)+0.5 e^{-j \omega\left(-t_{t}-T\right)} X(\omega)
$$

$$
\text { or } \quad \frac{Y(\omega)}{X(\omega)}=e^{-j \omega t_{i}}\left[0.5 e^{j \omega T}+1+0.5 e^{-j \omega T}\right]
$$

$$
=e^{-j \omega_{t} t_{[}}[\cos \omega T+1]
$$

or

$$
H(\omega)=\frac{Y(\omega)}{X(\omega)}=e^{-j \omega t_{u}}(\cos \omega T+1)
$$

Option (C) is correct.
For continuous and aperiodic signal Fourier representation is continuous and aperiodic.
For continuous and periodic signal Fourier representation is discrete and aperiodic.
For discrete and aperiodic signal Fourier representation is continuous and periodic.
For discrete and periodic signal Fourier representation is discrete and periodic.
6.72 Option (B) is correct.

$$
y(n)=A x\left(n-n_{o}\right)
$$

Taking Fourier transform
$Y\left(e^{j \omega}\right)=A e^{-j \omega_{\omega_{0}} n_{0}} X\left(e^{j \omega}\right)$
or $\quad H\left(e^{j \omega}\right)=\frac{Y\left(e^{\omega_{\omega}}\right)}{X\left(e^{j_{\omega}}\right)}=A e^{-j \omega_{o} n_{0}}$
Thus $\quad \angle H\left(e^{j \omega}\right)=-\omega_{o} n_{o}$
For LTI discrete time system phase and frequency of $H\left(e^{j \omega}\right)$ are periodic with period 2π. So in general form

$$
\theta(\omega)=-n_{o} \omega_{o}+2 \pi k
$$

6.73 Option (A) is correct.

From
$n=-2$,

$$
n=-1, \quad y(-1)=0
$$

$$
n=0
$$

$$
\begin{aligned}
x(n) & =\left[\frac{1}{2}, 1,2,1,1, \frac{1}{2}\right] \\
y(n) & =x\left(\frac{n}{2}-1\right), n \text { even } \\
& =0, \text { for } n \text { odd } \\
y(-2) & =x\left(\frac{-2}{2}-1\right)=x(-2)=\frac{1}{2} \\
y(-1) & =0 \\
y(0) & =x\left(\frac{0}{2}-1\right)=x(-1)=1 \\
y(1) & =0
\end{aligned}
$$

$n=1$,

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$n=2$
$y(2)=x\left(\frac{2}{2}-1\right)=x(0)=2$
$n=3$,
$y(3)=0$
$n=4$
$y(4)=x\left(\frac{4}{2}-1\right)=x(1)=1$
$n=5$,
$y(5)=0$
$n=6$
$y(6)=x\left(\frac{6}{2}-1\right)=x(2)=\frac{1}{2}$
Hence

$$
y(n)
$$

$=\frac{1}{2} \delta(n+2)+\delta(n)+2 \delta(n-2)+\delta(n-4)+\frac{1}{2} \delta(n-6)$
6.74 Option (C) is correct.

Here $y(n)$ is scaled and shifted version of $x(n)$ and again $y(2 n)$ is scaled version of $y(n)$ giving

$$
\begin{aligned}
& z(n)=y(2 n)=x(n-1) \\
&= \frac{1}{2} \delta(n+1)+\delta(n)+2 \delta(n-1)+\delta(n-2)+\frac{1}{2} \delta(n-3)
\end{aligned}
$$

Taking Fourier transform.

$$
\begin{aligned}
Z\left(e^{j \omega}\right) & =\frac{1}{2} e^{j \omega}+1+2 e^{-j \omega}+e^{-2 j \omega}+\frac{1}{2} e^{-3 j \omega} \\
& =e^{-j \omega}\left(\frac{1}{2} e^{2 j \omega}+e^{j \omega}+2+e^{-j \omega}+\frac{1}{2} e^{-2 j \omega}\right) \\
& =e^{-j \omega}\left(\frac{e^{2 j \omega}+e^{-2 j \omega}}{2}+e^{j \omega}+2+e^{-j \omega}\right)
\end{aligned}
$$

or

$$
Z\left(e^{j \omega}\right)=e^{-j \omega}[\cos 2 \omega+2 \cos \omega+2]
$$

Option (B) is correct.

$$
x(t) \stackrel{F}{\longleftrightarrow} X(f)
$$

Using scaling we have

Thus

$$
x(a t) \stackrel{F}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{f}{a}\right)
$$

Using shifting property we get

$$
\text { Thus } \begin{aligned}
e^{-j 2 \pi f_{0} t} x(t) & =X\left(f+f_{0}\right) \\
\frac{1}{3} e^{-j \frac{4}{3} \pi t} x\left(\frac{1}{3} t\right) & \stackrel{F}{\longleftrightarrow} X(3 f+2) \\
e^{-j 2 \pi \frac{2}{3} t} x\left(\frac{1}{3} t\right) & \stackrel{F}{\longleftrightarrow} 3 X\left(3\left(f+\frac{2}{3}\right)\right) \\
\frac{1}{3} e^{-j \pi \frac{4}{3} t} x\left(\frac{1}{3} t\right) & \stackrel{F}{\longleftrightarrow} X\left[3\left(f+\frac{2}{3}\right)\right]
\end{aligned}
$$

Option (A) is correct.
A system is stable if $\sum_{n=-\infty}^{\infty}|h(n)|<\infty$. The plot of given $h(n)$ is

Thus

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}|h(n)| & =\sum_{n=-3}^{6}|h(n)| \\
& =1+1+1+1+2+2+2+2+2 \\
& =15<\infty
\end{aligned}
$$

Hence system is stable but $h(n) \neq 0$ for $n<0$. Thus it is not causal.

Option (D) is correct.

$$
H(z)=\frac{z}{z-0.2}
$$

We know that

$$
-a^{n} u[-n-1] \longleftrightarrow \frac{1}{1-a z^{-1}}
$$

Thus

$$
h[n]=-(0.2)^{n} u[-n-1]
$$

Option (C) is correct.
The Fourier transform of a conjugate symmetrical function is always real.

Option (A) is correct.

$$
\text { We have } \quad \begin{aligned}
x(n) & =\left[\begin{array}{lll}
-4-j 5, & 1+2 j, & 4
\end{array}\right] \\
x^{*}(n) & =\left[\begin{array}{lll}
-4+j 5, & 1-2 j, & 4
\end{array}\right] \\
x^{*}(-n) & =\left[\begin{array}{lll}
4, & 1-2 j, & -4+j 5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
x_{c a s}(n) & =\frac{x(n)-x^{*}(-n)}{2} \\
& =\left[-4-j \frac{5}{2}, \quad 2 j \quad 4-j \frac{5}{2}\right]
\end{aligned}
$$

6.80 Option (C) is correct.

We have $\quad 2 y(n)=\alpha y(n-2)-2 x(n)+\beta x(n-1)$
Taking z transform we get

$$
\left.\left.\begin{array}{rl}
& \begin{array}{rl}
2 Y(z) & =\alpha Y(z) z^{-2}-2 X(z)+\beta X(z) z^{-1} \\
\text { or } & \frac{Y(z)}{X(z)}
\end{array}=\left(\frac{\beta z^{-1}-2}{2-\alpha z^{-2}}\right) \\
\text { or } & H(z)
\end{array}\right)=\frac{z\left(\frac{\beta}{2}-z\right)}{\left(z^{2}-\frac{\alpha}{2}\right)}\right)
$$

It has poles at $\pm \sqrt{\alpha / 2}$ and zero at 0 and $\beta / 2$. For a stable system poles must lie inside the unit circle of z plane. Thus

$$
\left|\sqrt{\frac{\alpha}{2}}\right|<1
$$

or

$$
|\alpha|<2
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
But zero can lie anywhere in plane. Thus, β can be of any value.
6.81 Option (D) is correct.
$\begin{array}{ll}\text { We have } & x(n)=e^{j \pi n / 4} \\ \text { and } & h(n) \\ =4 \sqrt{2} \delta(n+2)-2 \sqrt{2} \delta(n+1)-2 \sqrt{2} \delta(n-1)\end{array}$

$$
+4 \sqrt{2} \delta(n-2)
$$

Now

$$
y(n)=x(n)^{*} h(n)
$$

$$
=\sum_{k=-\infty}^{\infty} x(n-k) h(k)=\sum_{k=-2}^{2} x(n-k) h(k)
$$

or

$$
y(n)=x(n+2) h(-2)+x(n+1) h(-1)
$$

$$
+x(n-1) h(1)+x(n-2) h(2)
$$

$=4 \sqrt{2} e^{j \frac{j}{4}(n+2)}-2 \sqrt{2} e^{j \frac{\pi}{4}(n+1)}-2 \sqrt{2} e^{j_{\overline{4}}^{4}(n-1)}+4 \sqrt{2} e^{j \frac{\pi}{4}(n-2)}$
$=4 \sqrt{2}\left[e^{j \frac{\pi}{4}(n+2)}+e^{j \frac{\pi}{4}(n-2)}\right]-2 \sqrt{2}\left[e^{j \frac{\pi}{4}(n+1)}+e^{j \frac{\pi}{4}(n-1)}\right]$
$=4 \sqrt{2} e^{j \frac{\pi}{4} n}\left[e^{j \frac{\pi}{2}}+e^{-j \frac{\pi}{2}}\right]-2 \sqrt{2} e^{j \frac{\pi}{2} n}\left[e^{j \frac{\pi}{4}}+e^{-j \frac{\pi}{4}}\right]$

$$
=4 \sqrt{2} e^{j \frac{\pi}{4} n}[0]-2 \sqrt{2} e^{j \frac{j_{4}^{4} n}{4}}\left[2 \cos \frac{\pi}{4}\right]
$$

or

$$
y(n)=-4 e^{j \frac{\pi}{4} n}
$$

6.82 Option (B) is correct.

From given graph the relation in $x(t)$ and $y(t)$ is

$$
\begin{aligned}
& y(t)=-x[2(t+1)] \\
& x(t) \stackrel{F}{\longleftrightarrow} X(f)
\end{aligned}
$$

Using scaling we have

Thus

$$
\begin{aligned}
& x(a t) \stackrel{F}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{f}{a}\right) \\
& x(2 t) \stackrel{F}{\longleftrightarrow} \frac{1}{2} X\left(\frac{f}{2}\right)
\end{aligned}
$$

Using shifting property we get

Thus

$$
\begin{aligned}
& x\left(t-t_{0}\right)=e^{-j 2 \pi \pi t_{0}} X(f) \\
& x[2(t+1)] \stackrel{F}{\longleftrightarrow} e^{-j 2 \pi f(-1)} \frac{1}{2} X\left(\frac{f}{2}\right)=\frac{e^{j 2 \pi f}}{2} X\left(\frac{f}{2}\right) \\
&-x[2(t+1)] \stackrel{F}{\longleftrightarrow}-\frac{e^{j 2 \pi f}}{2} X\left(\frac{f}{2}\right)
\end{aligned}
$$

Option (C) is correct.
From the Final value theorem we have

$$
\lim _{t \rightarrow \infty} i(t)=\lim _{s \rightarrow 0} s I(s)=\lim _{s \rightarrow 0} s \frac{2}{s(1+s)}=\lim _{s \rightarrow 0} \frac{2}{(1+s)}=2
$$

Option (D) is correct.

$$
\text { Here } \quad C_{3}=3+j 5
$$

For real periodic signal

$$
C_{-k}=C_{k}^{*}
$$

Thus $\quad C_{-3}=C_{k}=3-j 5$
Option (C) is correct.

$$
y(t)=4 x(t-2)
$$

Taking Fourier transform we get

$$
Y\left(e^{j 2 \pi f}\right)=4 e^{-j 2 \pi / 2} X\left(e^{j 2 \pi f}\right) \quad \text { Time Shifting property }
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
$\begin{array}{llrl} & \text { or } & \frac{Y\left(e^{j 2 \pi f}\right)}{X\left(e^{j 2 \pi f}\right)} & =4 e^{-4 j \pi f} \\ & \text { Thus } & H\left(e^{j 2 \pi f}\right) & =4 e^{-4 j \pi f}\end{array}$
Option (B) is correct.
We have

$$
h(n)=3 \delta(n-3)
$$

or

$$
H(z)=2 z^{-3}
$$

Taking z transform

Now

$$
X(z)=z^{4}+z^{2}-2 z+2-3 z^{-4}
$$

$$
\begin{aligned}
Y(z) & =H(z) X(z) \\
& =2 z^{-3}\left(z^{4}+z^{2}-2 z+2-3 z^{-4}\right) \\
& =2\left(z+z^{-1}-2 z^{-2}+2 z^{-3}-3 z^{-7}\right)
\end{aligned}
$$

Taking inverse z transform we have

$$
y(n)=2[\delta(n+1)+\delta(n-1)-2 \delta(n-2)
$$

$+2 \delta(n-3)-3 \delta(n-7)]$
At $n=4, \quad y(4)=0$
Option (A) is correct.
System is non causal because output depends on future value
For $n \leq 1$

$$
\begin{array}{rlr}
y(-1) & =x(-1+1)=x(0) & \\
y\left(n-n_{0}\right) & =x\left(n-n_{0}+1\right) & \text { Time varying } \\
y(n) & =x(n+1) & \text { Depends on Future } \\
y(1) & =x(2) & \text { None causal }
\end{array}
$$

i.e.

For bounded input, system has bounded output. So it is stable.

$$
\begin{aligned}
y(n) & =x(n) \text { for } n \geq 1 \\
& =0 \text { for } n=0 \\
& =x(x+1) \text { for } n \leq-1
\end{aligned}
$$

So system is linear.
Option (C) is correct.
The frequency response of RC-LPF is

$$
H(f)=\frac{1}{1+j 2 \pi f R C}
$$

$$
\begin{array}{lrl}
\text { Now } & H(0) & =1 \\
& \frac{\left|H\left(f_{1}\right)\right|}{H(0)} & =\frac{1}{\sqrt{1+4 \pi^{2} f_{1}^{2} R^{2} C^{2}}} \geq 0.95 \\
& 1+4 \pi^{2} f_{1}^{2} R^{2} C^{2} \leq 1.108 \\
\text { or } & 4 \pi^{2} f_{1}^{2} R^{2} C^{2} \leq 0.108 \\
\text { or } & 2 \pi f_{1} R C \leq 0.329 \\
\text { or } & f_{1} \leq \frac{0.329}{2 \pi R C} \\
\text { or } & & f_{1} \leq \frac{0.329}{2 \pi R C} \\
\text { or } & & f_{1} \leq \frac{0.329}{2 \pi 1 k \times 1 \mu} \\
\text { or } & f_{1} \leq 52.2 \mathrm{~Hz} \\
\text { or } & f_{\text {max }}=52.2 \mathrm{~Hz}
\end{array}
$$

6.89 Option (A) is correct.

$$
\begin{aligned}
H(\omega) & =\frac{1}{1+j \omega R C} \\
\theta(\omega) & =-\tan ^{-1} \omega R C \\
t_{g} & =-\frac{d \theta(\omega)}{d \omega}=\frac{R C}{1+\omega^{2} R^{2} C^{2}} \\
& =\frac{10^{-3}}{1+4 \pi^{2} \times 10^{4} \times 10^{-6}}=0.717 \mathrm{~ms}
\end{aligned}
$$

6.90 Option (C) is correct.

If $\quad x(t)^{*} h(t)=g(t)$
Then $\quad x\left(t-\tau_{1}\right)^{*} h\left(t-\tau_{2}\right)=y\left(t-\tau_{1}-\tau_{2}\right)$
Thus $\quad x(t+5)^{*} \delta(t-7)=x(t+5-7)=x(t-2)$
6.91 Option (B) is correct.

In option (B) the given function is not periodic and does not satisfy Dirichlet condition. So it cant be expansion in Fourier series.

$$
\begin{aligned}
x(t) & =2 \cos \pi t+7 \cos t \\
T_{1} & =\frac{2 \pi}{\omega}=2 \\
T_{2} & =\frac{2 \pi}{1}=2 \pi \\
\frac{T_{1}}{T_{2}} & =\frac{1}{\pi}=\text { irrational }
\end{aligned}
$$

6.92 Option (C) is correct.

From the duality property of fourier transform we have

$$
\begin{aligned}
& \text { If } \\
& \text { Then } \\
& \text { Th(t) } \stackrel{F T}{\stackrel{F T}{\longleftrightarrow} X(f)} \underset{\longleftrightarrow}{ } x(-f)
\end{aligned}
$$

For more GATE Resources, Mock Test and

 Study material join the community http:/lwww.facebook.com/gateec2014$$
\begin{aligned}
& \text { Therefore if } \\
& \text { Then } \\
& \text { The } \quad e^{-t} u(t) \stackrel{F T}{\longleftrightarrow} \frac{1}{1+j 2 \pi f} \\
& 1+j 2 \pi t
\end{aligned}{ }^{F T} e^{f} u(-f) \text { }
$$

6.93 Option (A) is correct.

$$
\begin{aligned}
\theta(\omega) & =-\omega t_{0} \\
t_{p} & =\frac{-\theta(\omega)}{\omega}=t_{0} \\
t_{g} & =-\frac{d \theta(\omega)}{d \omega}=t_{0} \\
t_{p} & =t_{g}=t_{0}=\text { constant }
\end{aligned}
$$

and

Option (*) is correct.

$$
X(s)=\frac{5-s}{s^{2}-s-2}=\frac{5-s}{(s+1)(s-2)}=\frac{-2}{s+1}+\frac{1}{s-2}
$$

Here three ROC may be possible.

$$
\begin{aligned}
& \operatorname{Re}(s)<-1 \\
& \operatorname{Re}(s)>2 \\
&-1< \operatorname{Re}(s)<2
\end{aligned}
$$

Since its Fourier transform exits, only $-1<\operatorname{Re}(s)<2$ include imaginary axis. so this ROC is possible. For this ROC the inverse Laplace transform is

$$
x(t)=\left[-2 e^{-t} u(t)-2 e^{2 t} u(-t)\right]
$$

Option (B) is correct.
For left sided sequence we have

Thus

$$
\begin{aligned}
& -a^{n} u(-n-1) \stackrel{z}{\longleftrightarrow} \frac{1}{1-a z^{-1}} \\
& -5^{n} u(-n-1) \stackrel{z}{\longleftrightarrow} \frac{1}{1-5 z^{-1}} \\
& -5^{n} u(-n-1) \stackrel{z}{\longleftrightarrow} \frac{z}{z-5}
\end{aligned}
$$

where $|z|<a$ where $|z|<5$
where $|z|<5$
Since ROC is $|z|<5$ and it include unit circle, system is stable.
Alternative :

$$
\begin{aligned}
& h(n)=-5^{n} u(-n-1) \\
& H(z)=\sum_{n=-\infty}^{\infty} h(n) z^{-n}=\sum_{n=-\infty}^{-1}-5^{n} z^{-n}=-\sum_{n=-\infty}^{-1}\left(5 z^{-1}\right)^{n}
\end{aligned}
$$

Let $n=-m$, then

$$
\begin{aligned}
H(z) & =-\sum_{n=-1}^{-\infty}\left(5 z^{-1}\right)^{-m}=1-\sum_{m=0}^{\infty}\left(5^{-1} z\right)^{-m} \\
& =1-\frac{1}{1-5^{-1} z}, \quad\left|5^{-1} z\right|<1 \text { or }|z|<5 \\
& =1-\frac{5}{5-z}=\frac{z}{z-5}
\end{aligned}
$$

Option (B) is correct.

$$
\begin{aligned}
& \frac{1}{s^{2}(s-2)}=\frac{1}{s^{2}} \times \frac{1}{s-2} \\
& \frac{1}{s^{2}} \times \frac{1}{s-2} \stackrel{L}{\longleftrightarrow}\left(t^{*} e^{2 t}\right) u(t)
\end{aligned}
$$

Here we have used property that convolution in time domain is multiplication in s - domain

$$
X_{1}(s) X_{2}(s) \stackrel{L T}{\longleftrightarrow} x_{1}(t)^{*} x_{2}(t)
$$

Option (A) is correct.
We have

$$
\begin{aligned}
& h(n)=u(n) \\
& H(z)=\sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n}=\sum_{n=0}^{\infty} 1 \cdot z^{-n}=\sum_{n=0}^{\infty}\left(z^{-1}\right)^{n}
\end{aligned}
$$

$H(z)$ is convergent if

$$
\sum_{n=0}^{\infty}\left(z^{-1}\right)^{n}<\infty
$$

and this is possible when $\left|z^{-1}\right|<1$. Thus ROC is $\left|z^{-1}\right|<1$ or $|z|>1$
Option (A) is correct.
We know that $\delta(t) x(t)=x(0) \delta(t)$ and $\int_{-\infty}^{\infty} \delta(t)=1$
Let $x(t)=\cos \left(\frac{3}{2} t\right)$, then $x(0)=1$
Now

$$
\int_{-\infty}^{\infty} \delta(t) x(t)=\int_{-\infty}^{\infty} x(0) \delta(t) d t=\int_{-\infty}^{\infty} \delta(t) d t=1
$$

Option (B) is correct.
Let E be the energy of $f(t)$ and E_{1} be the energy of $f(2 t)$, then

$$
\begin{aligned}
& E=\int_{-\infty}^{\infty}[f(t)]^{2} d t \\
& E_{1}=\int_{-\infty}^{\infty}[f(2 t)]^{2} d t
\end{aligned}
$$

Substituting $2 t=p$ we get

$$
E_{1}=\int_{-\infty}^{\infty}[f(p)]^{2} \frac{d p}{2}=\frac{1}{2} \int_{-\infty}^{\infty}[f(p)]^{2} d p=\frac{E}{2}
$$

6.100 Option (B) is correct.

Since $h_{1}(t) \neq 0$ for $t<0$, thus $h_{1}(t)$ is not causal
$h_{2}(t)=u(t)$ which is always time invariant, causal and stable.
$h_{3}(t)=\frac{u(t)}{1+t}$ is time variant.
$h_{4}(t)=e^{-3 t} u(t)$ is time variant.
6.101 Option (B) is correct.

$$
h(t)=f(t)^{*} g(t)
$$

We know that convolution in time domain is multiplication in $s-$ domain.

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Thus

$$
f(t)^{*} g(t)=h(t) \stackrel{L}{\longleftrightarrow} H(s)=F(s) \times G(s)
$$

$$
H(s)=\frac{s+2}{s^{2}+1} \times \frac{s^{2}+1}{(s+2)(s+3)}=\frac{1}{s+3}
$$

Option (B) is correct.
Since normalized Gaussion function have Gaussion FT
Thus $\quad e^{-a t^{2} \stackrel{E T}{\longleftrightarrow}} \sqrt{\frac{\pi}{a}} e^{-\frac{\pi P}{a}}$
6.103 Option (B) is correct.

Let

$$
\begin{aligned}
x(t) & =a x_{1}(t)+b x_{2}(t) \\
a y_{1}(t) & =a t x_{1}(t) \\
b y_{2}(t) & =b t x_{2}(t)
\end{aligned}
$$

Adding above both equation we have

$$
\begin{aligned}
a y_{1}(t)+b y_{2}(t) & =a t x_{1}(t)+b t x_{2}(t) \\
& =t\left[a x_{1}(t)+b x_{2}(t)\right] \\
& =t x(t)
\end{aligned}
$$

or $\quad a y_{1}(t)+b y_{2}(t)=y(t)$
Thus system is linear
If input is delayed then we have

$$
y_{d}(d)=t x\left(t-t_{0}\right)
$$

If output is delayed then we have

$$
y\left(t-t_{0}\right)=\left(t-t_{0}\right) x\left(t-t_{0}\right)
$$

which is not equal. Thus system is time varying.
6.104 Option (A) is correct.

We have $\quad h(t)=e^{2 t} \xrightarrow{L S} H(s)=\frac{1}{s-2}$
and
Now output is

$$
x(t)=e^{3 t} \xrightarrow{L S} X(s)=\frac{1}{s-3}
$$

$$
\begin{aligned}
Y(s) & =H(s) X(s) \\
& =\frac{1}{s-2} \times \frac{1}{s-3}=\frac{1}{s-3}-\frac{1}{s-2}
\end{aligned}
$$

Thus $\quad y(t)=e^{3 t}-e^{2 t}$
6.105 Option (C) is correct.

We know that for a square wave the Fourier series coefficient

$$
\begin{equation*}
C_{n s q}=\frac{A \tau}{T} \frac{\sin \frac{n \omega_{0} \tau}{2}}{\frac{n \omega_{0} \tau}{2}} \tag{i}
\end{equation*}
$$

Thus

$$
C_{n s q} \propto \frac{1}{n}
$$

If we integrate square wave, triangular wave will be obtained,
Hence $\quad C_{n t r i} \propto \frac{1}{n^{2}}$
Option (B) is correct.

$$
\begin{aligned}
u(t)-u(t-1) & =f(t) \stackrel{L}{\longleftrightarrow} F(s)=\frac{1}{s}\left[1-e^{-s}\right] \\
u(t)-u(t-2) & =g(t) \stackrel{L}{\longleftrightarrow} G(s)=\frac{1}{s}\left[1-e^{-2 s}\right] \\
f(t)^{*} g(t) & \stackrel{L}{\longleftrightarrow} F(s) G(s) \\
& =\frac{1}{s^{2}}\left[1-e^{-s}\right]\left[1-e^{-2 s}\right] \\
& =\frac{1}{s^{2}}\left[1-e^{-2 s}-e^{-s}+e^{-3 s}\right]
\end{aligned}
$$

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
or

$$
f(t)^{*} g(t) \stackrel{L}{\longleftrightarrow}=\frac{1}{s^{2}}-\frac{e^{-2 s}}{s^{2}}-\frac{e^{-s}}{s^{2}}+\frac{e^{-3 s}}{s^{2}}
$$

Taking inverse Laplace transform we have

$$
f(t)^{*} g(t)
$$

$$
=t-(t-2) u(t-2)-(t-1) u(t-1)+(t-3) u(t-3)
$$

The graph of option (B) satisfy this equation.
6.107 Option (A) is correct.
6.108 Option (A) is correct.

We have $\quad f(n T)=a^{n T}$
Taking z-transform we get

$$
F(z)=\sum_{n=-\infty}^{\infty} a^{n T} z^{-n}=\sum_{n=-\infty}^{\infty}\left(a^{T}\right)^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{a^{T}}{z}\right)^{n}
$$

$=\frac{z}{z-a^{T}}$
6.109 Option (B) is correct.

If $\quad \mathcal{L}[f(t)]=F(s)$
Applying time shifting property we can write

$$
\mathcal{L}[f(t-T)]=e^{-s T} F(s)
$$

6.110 Option (A) is correct
6.111 Option (A) is correct.
6.112 Option (C) is correct.

Given z transform

$$
C(z)=\frac{z^{-1}\left(1-z^{-4}\right)}{4\left(1-z^{-1}\right)^{2}}
$$

Applying final value theorem

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f(n) & =\lim _{z \rightarrow 1}(z-1) f(z) \\
\lim _{z \rightarrow 1}(z-1) F(z) & =\lim _{z \rightarrow 1}(z-1) \frac{z^{-1}\left(1-z^{-4}\right)}{4\left(1-z^{-1}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{z \rightarrow 1} \frac{z^{-1}\left(1-z^{-4}\right)(z-1)}{4\left(1-z^{-1}\right)^{2}} \\
& =\lim _{z \rightarrow 1} \frac{z^{-1} z^{-4}\left(z^{4}-1\right)(z-1)}{4 z^{-2}(z-1)^{2}} \\
& =\lim _{z \rightarrow 1} \frac{z^{-3}}{4} \frac{(z-1)(z+1)\left(z^{2}+1\right)(z-1)}{(z-1)^{2}} \\
& =\lim _{z \rightarrow 1} \frac{z^{-3}}{4}(z+1)\left(z^{2}+1\right)=1
\end{aligned}
$$

6.113 Option (A) is correct.

We have

$$
F(s)=\frac{\omega}{s^{2}+\omega^{2}}
$$

$\lim _{t \rightarrow \infty} f(t)$ final value theorem states that:

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

It must be noted that final value theorem can be applied only if poles lies in -ve half of s-plane.
Here poles are on imaginary axis $\left(s_{1}, s_{2}= \pm j \omega\right)$ so can not apply final value theorem. so $\lim _{t \rightarrow \infty} f(t)$ cannot be determined.
6.114 Option (D) is correct.

Trigonometric Fourier series of a function $x(t)$ is expressed as :

$$
x(t)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos n \omega t+B_{n} \sin n \omega t\right]
$$

For even function $x(t), B_{n}=0$
So $\quad x(t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos n \omega t$
Series will contain only DC \& cosine terms.
Option (C) is correct.
Given periodic signal

$$
x(t)= \begin{cases}1, & |t|<T_{1} \\ 0, & T_{1}<|t|<\frac{T_{0}}{2}\end{cases}
$$

The figure is as shown below.

For $x(t)$ fourier series expression can be written as

$$
x(t)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos n \omega t+B_{n} \sin n \omega t\right]
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

where dc term

$$
\begin{aligned}
A_{0} & =\frac{1}{T_{0}} \int_{T_{0}} x(t) d t=\frac{1}{T_{0}} \int_{T_{0} / 2}^{T_{0} / 2} x(t) d t \\
& =\frac{1}{T_{0}}\left[\int_{-T_{0} / 2}^{-T_{1}} x(t) d t+\int_{T_{1}}^{T_{1}} x(t) d t+\int_{T_{1}}^{T_{0} / 2} x(t) d t\right] \\
& =\frac{1}{T_{0}}\left[0+2 T_{1}+0\right] \\
A_{0} & =\frac{2 T_{1}}{T_{0}}
\end{aligned}
$$

6.116 Option (B) is correct.

The unit impulse response of a LTI system is $u(t)$

$$
\text { Let } \quad h(t)=u(t)
$$

Taking LT we have $\quad H(s)=\frac{1}{s}$
If the system excited with an input $x(t)=e^{-a t} u(t), a>0$, the response
so

$$
\begin{aligned}
& Y(s)=X(s) H(s) \\
& X(s)=\mathcal{L}[x(t)]=\frac{1}{(s+a)} \\
& Y(s)=\frac{1}{(s+a)^{\frac{1}{s}}}=\frac{1}{a}\left[\frac{1}{s}-\frac{1}{s+a}\right]
\end{aligned}
$$

Taking inverse Laplace, the response will be

$$
y(t)=\frac{1}{a}\left[1-e^{-a t}\right]
$$

Option (B) is correct.
We have $\quad x[n]=\sum_{k=0}^{\infty} \delta(n-k)$

$$
X(z)=\sum_{k=0}^{\infty} x[n] z^{-n}=\sum_{n=-\infty}^{\infty}\left[\sum_{k=0}^{\infty} \delta(n-k) z^{-n}\right]
$$

Since $\delta(n-k)$ defined only for $n=k$ so

$$
X(z)=\sum_{k=0}^{\infty} z^{-k}=\frac{1}{(1-1 / z)}=\frac{z}{(z-1)}
$$

Option (B) is correct.
Option (B) is correct.

$$
x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(f)
$$

by differentiation property;
or

$$
\begin{aligned}
& \mathcal{F}\left[\frac{d x(t)}{d t}\right]=j \omega X(\omega) \\
& \mathcal{F}\left[\frac{d x(t)}{d t}\right]=j 2 \pi f X(f)
\end{aligned}
$$

Option (C) is correct.
We have $\quad f(t) \stackrel{\mathcal{F}}{\longleftrightarrow} g(\omega)$
by duality property of fourier transform we can write

$$
\begin{aligned}
g(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} 2 \pi f(-\omega) \\
\mathcal{F}[g(t)] & =\int_{-\infty}^{\infty} g(t) e^{-j \omega t} d t=2 \pi f(-\omega)
\end{aligned}
$$

Option (B) is correct.
Given function

$$
x(t)=e^{\alpha t} \cos (\alpha t)
$$

Now $\quad \cos (\alpha t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s}{s^{2}+\alpha^{2}}$
If $\quad x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$
then $\quad e^{s_{0} t} x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X\left(s-s_{0}\right) \quad$ shifting in s-domain
so

$$
e^{\alpha t} \cos (\alpha t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{(s-\alpha)}{(s-\alpha)^{2}+\alpha^{2}}
$$

6.122 Option (C) is correct.

For a function $x(t)$, trigonometric fourier series is :

$$
x(t)=A_{0}+\sum_{n=1}^{\infty}[A n \cos n \omega t+B n \sin n \omega t]
$$

where

$$
\begin{aligned}
A_{0} & =\frac{1}{T_{0}} \int_{T_{0}} x(t) d t \\
A_{n} & =\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos n \omega t d t \\
B_{n} & =\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin n \omega t d t
\end{aligned}
$$

For an even function $x(t)$, coefficient $B_{n}=0$
for an odd function $x(t), \quad A_{0}=0$

$$
A_{n}=0
$$

so if $x(t)$ is even function its fourier series will not contain sine terms.

Option (C) is correct.
The conjugation property allows us to show if $x(t)$ is real, then $X(j \omega)$ has conjugate symmetry, that is

$$
\begin{equation*}
X(-j \omega)=X^{*}(j \omega) \tag{t}
\end{equation*}
$$

Proof :

$$
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

replace ω by $-\omega$ then

$$
\begin{aligned}
& \qquad X(-j \omega)=\int_{-\infty}^{\infty} x(t) e^{j \omega t} d t \\
& \qquad X^{*}(j \omega)=\left[\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t\right]^{*}=\int_{-\infty}^{\infty} x^{*}(t) e^{j \omega t} d t \\
& \text { if } x(t) \text { real } x^{*}(t)=x(t) \\
& \text { then } \quad X^{*}(j \omega)=\int_{-\infty}^{\infty} x(t) e^{j \omega t} d t=X(-j \omega)
\end{aligned}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

CONTROL SYSTEMS

2013

ONE MARK
7.1 The Bode plot of a transfer function $G(s)$ is shown in the figure below.

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

The gain $(20 \log |G(s)|)$ is 32 dB and -8 dB at $1 \mathrm{rad} / \mathrm{s}$ and $10 \mathrm{rad} / \mathrm{s}$ respectively. The phase is negative for all ω. Then $G(s)$ is
(A) $\frac{39.8}{s}$
(B) $\frac{39.8}{s^{2}}$
(C) $\frac{32}{s}$
(D) $\frac{32}{s^{2}}$

2013

TWO MARKS
The open-loop transfer function of a dc motor is given as $\frac{\omega(s)}{V_{a}(s)}=\frac{10}{1+10 s}$. When connected in feedback as shown below, the
approximate value of K_{a} that will reduce the time constant of the closed loop system by one hundred times as compared to that of the open-loop system is

(A) 1
(B) 5
(C) 10
(D) 100

The signal flow graph for a system is given below. The transfer function $\frac{Y(s)}{U(s)}$ for this system is

(A) $\frac{s+1}{5 s^{2}+6 s+2}$
(B) $\frac{s+1}{s^{2}+6 s+2}$
(C) $\frac{s+1}{s^{2}+4 s+2}$
(D) $\frac{1}{5 s^{2}+6 s+2}$

Statement for Linked Answer Questions 4 and 5:
The state diagram of a system is shown below. A system is described by the state-variable equations $\dot{\boldsymbol{X}}=\boldsymbol{A} \boldsymbol{X}+\boldsymbol{B} u$; $y=\boldsymbol{C X}+\boldsymbol{D} u$

The state-variable equations of the system shown in the figure above are
(A) $\dot{\boldsymbol{X}}=\left[\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}-1 \\ 1\end{array}\right] u$
(B) $\dot{\boldsymbol{X}}=\left[\begin{array}{cc}-1 & 0 \\ -1 & -1\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}-1 \\ 1\end{array}\right] u$
$y=[1-1] \boldsymbol{X}+u$
$y=\left[\begin{array}{ll}-1 & -1\end{array}\right] \boldsymbol{X}+u$
(C) $\begin{aligned} \dot{\boldsymbol{X}} & =\left[\begin{array}{ll}-1 & 0 \\ -1 & -1\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}-1 \\ 1\end{array}\right] u \\ y & =\left[\begin{array}{ll}-1 & -1\end{array}\right] \boldsymbol{X}-u\end{aligned}$
(D) $\dot{\boldsymbol{X}}=\left[\begin{array}{cc}-1 & -1 \\ 0 & -1\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}-1 \\ 1\end{array}\right] u$
$y=\left[\begin{array}{ll}1 & -1\end{array}\right] \boldsymbol{X}-u$

The state transition matrix $\boldsymbol{e}^{\boldsymbol{A t}}$ of the system shown in the figure

For more GATE Resources, Mock Test and
 Study material join the community http:/lwww.facebook.com/gateec2014

above is

(A) $\left[\begin{array}{cc}e^{-t} & 0 \\ t e^{-t} & e^{-t}\end{array}\right]$
(B) $\left[\begin{array}{cc}e^{-t} & 0 \\ -t e^{-t} & e^{-t}\end{array}\right]$
(C) $\left[\begin{array}{cc}e^{-t} & 0 \\ e^{-t} & e^{-t}\end{array}\right]$
(D) $\left[\begin{array}{cc}e^{-t} & -t e^{-t} \\ 0 & e^{-t}\end{array}\right]$

2012

A system with transfer function $G(s)=\frac{\left(s^{2}+9\right)(s+2)}{(s+1)(s+3)(s+4)}$
is excited by $\sin (\omega t)$. The steady-state output of the system is zero at
(A) $\omega=1 \mathrm{rad} / \mathrm{s}$
(B) $\omega=2 \mathrm{rad} / \mathrm{s}$
(C) $\omega=3 \mathrm{rad} / \mathrm{s}$
(D) $\omega=4 \mathrm{rad} / \mathrm{s}$

2012

TWO MARKS
The feedback system shown below oscillates at $2 \mathrm{rad} / \mathrm{s}$ when

(A) $K=2$ and $a=0.75$
(B) $K=3$ and $a=0.75$
(C) $K=4$ and $a=0.5$
(D) $K=2$ and $a=0.5$

The state variable description of an LTI system is given by

$$
\begin{aligned}
\left(\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right) & =\left(\begin{array}{rrr}
0 & a_{1} & 0 \\
0 & 0 & a_{2} \\
a_{3} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u \\
y & =\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

where y is the output and u is the input. The system is controllable for
(A) $a_{1} \neq 0, a_{2}=0, a_{3} \neq 0$
(B) $a_{1}=0, a_{2} \neq 0, a_{3} \neq 0$
(C) $a_{1}=0, a_{3} \neq 0, a_{3}=0$
(D) $a_{1} \neq 0, a_{2} \neq 0, a_{3}=0$

2011

ONE MARK

The root locus plot for a system is given below. The open loop transfer function corresponding to this plot is given by

(A) $G(s) H(s)=k \frac{s(s+1)}{(s+2)(s+3)}$
(B) $G(s) H(s)=k \frac{(s+1)}{s(s+2)(s+3)^{2}}$
(C) $G(s) H(s)=k \frac{1}{s(s-1)(s+2)(s+3)}$
(D) $G(s) H(s)=k \frac{(s+1)}{s(s+2)(s+3)}$

For the transfer function $G(j \omega)=5+j \omega$, the corresponding Nyquist plot for positive frequency has the form
(A)

(B)

(C)

(D)

7.11 The block diagram of a system with one input u and two outputs y_{1} and y_{2} is given below.

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

A state space model of the above system in terms of the state vector \underline{x} and the output vector $\underline{y}=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{T}$ is
(A) $\overline{\dot{x}}=[2] \underline{x}+[1] u ; \quad \underline{y}=\left[\begin{array}{ll}1 & 2\end{array}\right] \underline{x}$
(B) $\underline{\dot{x}}=[-2] \underline{x}+[1] u ; \quad \underline{y}=\left[\begin{array}{l}1 \\ 2\end{array}\right]^{\underline{x}}$
(C) $\underline{\dot{x}}=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right] \underline{x}+\left[\begin{array}{l}1 \\ 1\end{array}\right] u ; \underline{y}=\left[\begin{array}{ll}1 & 2\end{array}\right] \underline{x}$
(D) $\dot{x}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \underline{x}+\left[\begin{array}{l}1 \\ 1\end{array}\right] u ; \underline{y}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \underline{x}$

Common Data For Q. 7.4 \& 7.5

The input-output transfer function of a plant $H(s)=\frac{100}{s(s+10)^{2}}$. The plant is placed in a unity negative feedback configuration as shown in the figure below.

The gain margin of the system under closed loop unity negative feedback is
(A) 0 dB
(B) 20 dB
(C) 26 dB
(D) 46 dB

The signal flow graph that DOES NOT model the plant transfer function $H(s)$ is

(B)

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(C)

2010

ONE MARK
The transfer function $Y(s) / R(s)$ of the system shown is

(A) 0
(B) $\frac{1}{s+1}$
(C) $\frac{2}{s+1}$
(D) $\frac{2}{s+3}$

A system with transfer function $\frac{Y(s)}{X(s)}=\frac{s}{s+p}$ has an output $y(t)=\cos \left(2 t-\frac{\pi}{3}\right)$
for the input signal $x(t)=p \cos \left(2 t-\frac{\pi}{2}\right)$. Then, the system parameter p is
(A) $\sqrt{3}$
(B) $2 / \sqrt{3}$
(C) 1
(D) $\sqrt{3} / 2$

For the asymptotic Bode magnitude plot shown below, the system transfer function can be

(A) $\frac{10 s+1}{0.1 s+1}$
(B) $\frac{100 s+1}{0.1 s+1}$
(C) $\frac{100 s}{10 s+1}$
(D) $\frac{0.1 s+1}{10 s+1}$

2010

TWO MARKS
A unity negative feedback closed loop system has a plant with the transfer function $G(s)=\frac{1}{s^{2}+2 s+2}$ and a controller $G_{c}(s)$ in the feed forward path. For a unit set input, the transfer function of the controller that gives minimum steady state error is
(A) $G_{c}(s)=\frac{s+1}{s+2}$
(B) $G_{c}(s)=\frac{s+2}{s+1}$
(C) $G_{c}(s)=\frac{(s+1)(s+4)}{(s+2)(s+3)}$
(D) $G_{c}(s)=1+\frac{2}{s}+3 s$

Common Data For Q. 7.10 \& 7.11 :

The signal flow graph of a system is shown below:

7.18 The state variable representation of the system can be
(A) $\dot{x}=\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u$
(B) $\begin{aligned} \dot{x} & =\left[\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u \\ \dot{y} & =\left[\begin{array}{ll}0 & 0.5\end{array}\right] x\end{aligned}$
(C) $\begin{aligned} \dot{x} & =\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u \\ \dot{y} & =\left[\begin{array}{ll}0.5 & 0.5\end{array}\right] x\end{aligned}$
(D) $\dot{x}=\left[\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u$
$\dot{y}=\left[\begin{array}{ll}0.5 & 0.5\end{array}\right] x$

The transfer function of the system is
(A) $\frac{s+1}{s^{2}+1}$
(B) $\frac{s-1}{s^{2}+1}$
(C) $\frac{s+1}{s^{2}+s+1}$
(D) $\frac{s-1}{s^{2}+s+1}$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014 ONE MARK

 2009The magnitude plot of a rational transfer function $G(s)$ with real coefficients is shown below. Which of the following compensators has such a magnitude plot?

(A) Lead compensator
(B) Lag compensator

(C) PID compensator

(D) Lead-lag compensator

Consider the system

$$
\frac{d x}{d t}=A x+B u \text { with } A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{l}
p \\
q
\end{array}\right]
$$

where p and q are arbitrary real numbers. Which of the following
statements about the controllability of the system is true?
(A) The system is completely state controllable for any nonzero values of p and q
(B) Only $p=0$ and $q=0$ result in controllability
(C) The system is uncontrollable for all values of p and q
(D) We cannot conclude about controllability from the given data

2009

TWO MARKS
The feedback configuration and the pole-zero locations of

$$
G(s)=\frac{s^{2}-2 s+2}{s^{2}+2 s+2}
$$

are shown below. The root locus for negative values of k, i.e. for $-\infty<k<0$, has breakaway/break-in points and angle of departure at pole P (with respect to the positive real axis) equal to

(A) $\pm \sqrt{2}$ and 0°
(B) $\pm \sqrt{2}$ and 45°
(C) $\pm \sqrt{3}$ and 0°
(D) $\pm \sqrt{3}$ and 45°

The unit step response of an under-damped second order system has steady state value of -2 . Which one of the following transfer functions has theses properties?
(A) $\frac{-2.24}{s^{2}+2.59 s+1.12}$
(B) $\frac{-3.82}{s^{2}+1.91 s+1.91}$
(C) $\frac{-2.24}{s^{2}-2.59 s+1.12}$
(D) $\frac{-382}{s^{2}-1.91 s+1.91}$

Common Data For Q. 7.16 and 7.17 :

The Nyquist plot of a stable transfer function $G(s)$ is shown in the figure are interested in the stability of the closed loop system in the feedback configuration shown.

7.24 Which of the following statements is true ?
(A) $G(s)$ is an all-pass filter
(B) $G(s)$ has a zero in the right-half plane
(C) $G(s)$ is the impedance of a passive network
(D) $G(s)$ is marginally stable
7.25 The gain and phase margins of $G(s)$ for closed loop stability are
(A) 6 dB and 180°
(B) 3 dB and 180°
(C) 6 dB and 90°
(D) 3 dB and 90°

ONE MARKS
7.26 Step responses of a set of three second-order underdamped systems all have the same percentage overshoot. Which of the following diagrams represents the poles of the three systems ?

 At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store
 Click to Buy
 www.nodia.co.in

7.27 The pole-zero given below correspond to a

(A) Law pass filter
(B) High pass filter
(C) Band filter
(D) Notch filter

Group I lists a set of four transfer functions. Group II gives a list of possible step response $y(t)$. Match the step responses with the corresponding transfer functions.

Group I
$P=\frac{25}{s^{2}+25}$
(1)

$Q=\frac{36}{s^{2}+20 s+36}$
(2)

$R=\frac{36}{s^{2}+12 s+36}$
(3)

$S=\frac{49}{s^{2}+7 s+49}$
(4)

(A) $P-3, Q-1, R-4, S-2$
(B) $P-3, Q-2, R-4, S-1$
(C) $P-2, Q-1, R-4, S-2$
(D) $P-3, Q-4, R-1, S-2$
7.29 A signal flow graph of a system is given below

The set of equalities that corresponds to this signal flow graph is
(A) $\frac{d}{d t}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left[\begin{array}{ccc}\beta & -\gamma & 0 \\ \gamma & \alpha & 0 \\ -\alpha & \beta & 0\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)+\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]\binom{u_{1}}{u_{2}}$
(B) $\frac{d}{d t}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left[\begin{array}{ccc}0 & \alpha & \gamma \\ 0 & -\alpha & -\gamma \\ 0 & \beta & -\beta\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)+\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]\binom{u_{1}}{u_{2}}$
(C) $\frac{d}{d t}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left[\begin{array}{ccc}-\alpha & \beta & 0 \\ -\beta & -\gamma & 0 \\ \alpha & \gamma & 0\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)+\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]\binom{u_{1}}{u_{2}}$
(D) $\frac{d}{d t}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left[\begin{array}{ccc}-\alpha & 0 & \beta \\ \gamma & 0 & \alpha \\ -\beta & 0 & -\alpha\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)+\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]\binom{u_{1}}{u_{2}}$

For more GATE Resources, Mock Test and Study material join the community
 http://www.facebook.com/gateec2014

.30 A certain system has transfer function

$$
G(s)=\frac{s+8}{s^{2}+\alpha s-4}
$$

where α is a parameter. Consider the standard negative unity feedback configuration as shown below

Which of the following statements is true?
(A) The closed loop systems is never stable for any value of α
(B) For some positive value of α, the closed loop system is stable,
but not for all positive values.
(C) For all positive values of α, the closed loop system is stable.
(D) The closed loop system stable for all values of α, both positive and negative.

The number of open right half plane of

$$
G(s)=\frac{10}{s^{5}+2 s^{4}+3 s^{3}+6 s^{2}+5 s+3} \text { is }
$$

(A) 0
(B) 1
(C) 2
(D) 3

The magnitude of frequency responses of an underdamped second order system is 5 at $0 \mathrm{rad} / \mathrm{sec}$ and peaks to $\frac{10}{\sqrt{3}}$ at $5 \sqrt{2} \mathrm{rad} / \mathrm{sec}$. The transfer function of the system is
(A) $\frac{500}{s^{2}+10 s+100}$
(B) $\frac{375}{s^{2}+5 s+75}$
(C) $\frac{720}{s^{2}+12 s+144}$
(D) $\frac{1125}{s^{2}+25 s+225}$

Group I gives two possible choices for the impedance Z in the diagram. The circuit elements in Z satisfy the conditions $R_{2} C_{2}>R_{1} C_{1}$. The transfer functions $\frac{V_{0}}{V_{i}}$ represents a kind of controller.

Match the impedances in Group I with the type of controllers in Group II
Group I

Group I

(A) $Q-1, R-2$
(B) $Q-1, R-3$
(C) $Q-2, R-3$
(D) $Q-3, R-2$

2007

If the closed-loop transfer function of a control system is given as $T(s) \frac{s-5}{(s+2)(s+3)}$, then It is
(A) an unstable system
(B) an uncontrollable system
(C) a minimum phase system
(D) a non-minimum phase sys- tem

2007

TWO MARKS
A control system with PD controller is shown in the figure. If the velocity error constant $K_{V}=1000$ and the damping ratio $\zeta=0.5$, then the value of K_{P} and K_{D} are

(A) $K_{P}=100, K_{D}=0.09$
(B) $K_{P}=100, K_{D}=0.9$
(C) $K_{P}=10, K_{D}=0.09$
(D) $K_{P}=10, K_{D}=0.9$

The transfer function of a plant is

$$
T(s)=\frac{5}{(s+5)\left(s^{2}+s+1\right)}
$$

The second-order approximation of $T(s)$ using dominant pole concept is
(A) $\frac{1}{(s+5)(s+1)}$
(B) $\frac{5}{(s+5)(s+1)}$
(C) $\frac{5}{s^{2}+s+1}$
(D) $\frac{1}{s^{2}+s+1}$
7.37 The open-loop transfer function of a plant is given as $G(s)=\frac{1}{s^{2}-1}$. If the plant is operated in a unity feedback configuration, then the lead compensator that an stabilize this control system is
(A) $\frac{10(s-1)}{s+2}$
(B) $\frac{10(s+4)}{s+2}$
(C) $\frac{10(s+2)}{s+10}$
(D) $\frac{2(s+2)}{s+10}$
7.38 A unity feedback control system has an open-loop transfer function

$$
G(s)=\frac{K}{s\left(s^{2}+7 s+12\right)}
$$

The gain K for which $s=1+j 1$ will lie on the root locus of this

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(A) 4
(B) 5.5
(C) 6.5
(D) 10
7.39 The asymptotic Bode plot of a transfer function is as shown in the figure. The transfer function $G(s)$ corresponding to this Bode plot is

(A) $\frac{1}{(s+1)(s+20)}$
(B) $\frac{1}{s(s+1)(s+20)}$
(C) $\frac{100}{s(s+1)(s+20)}$
(D) $\frac{100}{s(s+1)(1+0.05 s)}$

The state space representation of a separately excited DC servo motor dynamics is given as

$$
\left[\begin{array}{l}
\frac{d \omega}{d t} \\
\frac{d i}{d t}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
-1 & -10
\end{array}\right]\left[\begin{array}{l}
\omega \\
i_{a}
\end{array}\right]+\left[\begin{array}{c}
0 \\
10
\end{array}\right] u
$$

where ω is the speed of the motor, i_{a} is the armature current and u is the armature voltage. The transfer function $\frac{\omega(s)}{U(s)}$ of the motor is
(A) $\frac{10}{s^{2}+11 s+11}$
(B) $\frac{1}{s^{2}+11 s+11}$
(C) $\frac{10 s+10}{s^{2}+11 s+11}$
(D) $\frac{1}{s^{2}+s+11}$

Statement for linked Answer Question $8.33 \& 8.34$:

Consider a linear system whose state space representation is $x(t)=A x(t)$. If the initial state vector of the system is $x(0)=\left[\begin{array}{r}1 \\ -2\end{array}\right]$, $\left.\begin{array}{l}\text { then the system response is } x(t)=\left[\begin{array}{c}e^{-2 x} \\ -2 \\ -1 \\ \text { of the system changes to } x(0)\end{array}\right] \text {. If the itial state vector } \\ -2\end{array}\right]$, then the system response of the system changes to $x(0)=\left[\begin{array}{l}{[-1} \\ -2\end{array}\right]$, then the system response becomes $x(t)=\left[\begin{array}{c}e^{-t} \\ -e^{-t}\end{array}\right]$

The eigenvalue and eigenvector pairs $\left(\lambda_{i} v_{i}\right)$ for the system are
(A) $\left(-1\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)$ and $\left(-2\left[\begin{array}{r}1 \\ -2\end{array}\right]\right)$
(B) $\left(-1,\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)$ and $\left(2,\left[\begin{array}{r}1 \\ -2\end{array}\right]\right)$
(C) $\left(-1,\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)$ and $\left(-2,\left[\begin{array}{r}1 \\ -2\end{array}\right]\right)$
(D) $\left(-2\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)$ and $\left(1,\left[\begin{array}{r}1 \\ -2\end{array}\right]\right)$

The system matrix A is
(A) $\left[\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right]$
(B) $\left[\begin{array}{rr}1 & 1 \\ -1 & -2\end{array}\right]$
(C) $\left[\begin{array}{rr}2 & 1 \\ -1 & -1\end{array}\right]$
(D) $\left[\begin{array}{rr}0 & 1 \\ -2 & -3\end{array}\right]$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

2006

ONE MARK
The open-loop function of a unity-gain feedback control system is given by

$$
G(s)=\frac{K}{(s+1)(s+2)}
$$

The gain margin of the system in dB is given by
(A) 0
(B) 1
(C) 20
(D) ∞

2006

TWO MARKS
Consider two transfer functions $\quad G_{1}(s)=\frac{1}{s^{2}+a s+b} \quad$ and $G_{2}(s)=\frac{s}{s^{2}+a s+b}$.
The $3-\mathrm{dB}$ bandwidths of their frequency responses are, respectively
(A) $\sqrt{a^{2}-4 b}, \sqrt{a^{2}+4 b}$
(B) $\sqrt{a^{2}+4 b}, \sqrt{a^{2}-4 b}$
(C) $\sqrt{a^{2}-4 b}, \sqrt{a^{2}-4 b}$
(D) $\sqrt{a^{2}+4 b}, \sqrt{a^{2}+4 b}$

The Nyquist plot of $G(j \omega) H(j \omega)$ for a closed loop control system, passes through $(-1, j 0)$ point in the $G H$ plane. The gain margin of the system in dB is equal to
(A) infinite
(B) greater than zero
(C) less than zero
(D) zero

The positive values of K and a so that the system shown in the figures below oscillates at a frequency of $2 \mathrm{rad} / \mathrm{sec}$ respectively are

(A) $1,0.75$
(B) $2,0.75$
(C) 1,1
(D) 2,2

The transfer function of a phase lead compensator is given by $G_{c}(s)=\frac{1+3 T s}{1+T s}$ where $T>0$ The maximum phase shift provide by such a compensator is
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{6}$
7.48 A linear system is described by the following state equation

$$
\dot{X}(t)=A X(t)+B U(t), A=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

The state transition matrix of the system is
(A) $\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$
(B) $\left[\begin{array}{cc}-\cos t & \sin t \\ -\sin t & -\cos t\end{array}\right]$
(C) $\left[\begin{array}{cc}-\cos t & -\sin t \\ -\sin t & \cos t\end{array}\right]$
(D) $\left[\begin{array}{cc}\cos t & -\sin t \\ \cos t & \sin t\end{array}\right]$

Statement for Linked Answer Questions $7.41 \& 7.42$:

Consider a unity - gain feedback control system whose open - loop transfer function is : $G(s)=\frac{a s+1}{s^{2}}$
7.49 The value of a so that the system has a phase - margin equal to $\frac{\pi}{4}$ is approximately equal to
(A) 2.40
(B) 1.40
(C) 0.84
(D) 0.74

With the value of a set for a phase - margin of $\frac{\pi}{4}$, the value of unit - impulse response of the open - loop system at $t=1$ second is equal to
(A) 3.40
(B) 2.40
(C) 1.84
(D) 1.74

2005

ONE MARK
7.51 A linear system is equivalently represented by two sets of state equations:

$$
\dot{X}=A X+B U \text { and } \dot{W}=C W+D U
$$

The eigenvalues of the representations are also computed as [λ] and $[\mu]$. Which one of the following statements is true?
(A) $[\lambda]=[\mu]$ and $X=W$
(B) $[\lambda]=[\mu]$ and $X \neq W$
(C) $[\lambda] \neq[\mu]$ and $X=W$
(D) $[\lambda]=[\mu]$ and $X \neq W$

Which one of the following polar diagrams corresponds to a lag

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

network ?
(A)

(B)

(C)

(D)

7.53 Despite the presence of negative feedback, control systems still have problems of instability because the
(A) Components used have non- linearities
(B) Dynamic equations of the subsystem are not known exactly.
(C) Mathematical analysis involves approximations.
(D) System has large negative phase angle at high frequencies.

2005

TWO MARKS

The polar diagram of a conditionally stable system for open loop gain $K=1$ is shown in the figure. The open loop transfer function of the system is known to be stable. The closed loop system is stable for

(A) $K<5$ and $\frac{1}{2}<K<\frac{1}{8}$
(B) $K<\frac{1}{8}$ and $\frac{1}{2}<K<5$
(C) $K<\frac{1}{8}$ and $5<K$
(D) $K>\frac{1}{8}$ and $5>K$

In the derivation of expression for peak percent overshoot

$$
M_{p}=\exp \left(\frac{-\pi \xi}{\sqrt{1-\xi^{2}}}\right) \times 100 \%
$$

Which one of the following conditions is NOT required?
(A) System is linear and time invariant
(B) The system transfer function has a pair of complex conjugate poles and no zeroes.
(C) There is no transportation delay in the system.
(D) The system has zero initial conditions.
7.56 A ramp input applied to an unity feedback system results in 5% steady state error. The type number and zero frequency gain of the system are respectively
(A) 1 and 20
(B) 0 and 20
(C) 0 and $\frac{1}{20}$
(D) 1 and $\frac{1}{20}$
7.57 A double integrator plant $G(s)=K / s^{2}, H(s)=1$ is to be compensated to achieve the damping ratio $\zeta=0.5$ and an undamped natural frequency, $\omega_{n}=5 \mathrm{rad} / \mathrm{sec}$ which one of the following compensator $G_{e}(s)$ will be suitable ?
(A) $\frac{s+3}{s+99}$
(B) $\frac{s+99}{s+3}$
(C) $\frac{s-6}{s+8.33}$
(D) $\frac{s-6}{s}$

An unity feedback system is given as $G(s)=\frac{K(1-s)}{s(s+3)}$. Indicate the correct root locus diagram.
(A)

(B)

(C)

(D)

Statement for Linked Answer Question 40 and 41 :

The open loop transfer function of a unity feedback system is given by

$$
G(s)=\frac{3 e^{-2 s}}{s(s+2)}
$$

7.59 The gain and phase crossover frequencies in $\mathrm{rad} / \mathrm{sec}$ are, respectively

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(A) 0.632 and 1.26
(B) 0.632 and 0.485
(C) 0.485 and 0.632
(D) 1.26 and 0.632
7.60 Based on the above results, the gain and phase margins of the system will be
(A) -7.09 dB and 87.5°
(B) 7.09 dB and 87.5°
(C) 7.09 dB and -87.5°
(D) -7.09 and -87.5°
7.61 The gain margin for the system with open-loop transfer function

$$
G(s) H(s)=\frac{2(1+s)}{s^{2}}, \text { is }
$$

(A) ∞
(B) 0
(C) 1
(D) $-\infty$
7.62 Given $G(s) H(s)=\frac{K}{s(s+1)(s+3)}$. The point of intersection of the asymptotes of the root loci with the real axis is
(A) -4
(B) 1.33
(C) -1.33
(D) 4

2004

TWO MARKS
7.63 Consider the Bode magnitude plot shown in the fig. The transfer function $H(s)$ is

(A) $\frac{(s+10)}{(s+1)(s+100)}$
(B) $\frac{10(s+1)}{(s+10)(s+100)}$
(C) $\frac{10^{2}(s+1)}{(s+10)(s+100)}$
(D) $\frac{10^{3}(s+100)}{(s+1)(s+10)}$
7.64 A causal system having the transfer function $H(s)=1 /(s+2)$ is excited with $10 u(t)$. The time at which the output reaches 99% of its steady state value is
(A) 2.7 sec
(B) 2.5 sec
(C) 2.3 sec
(D) 2.1 sec
7.65 A system has poles at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}$ and 80 Hz ; zeros at $5 \mathrm{~Hz}, 100$ Hz and 200 Hz . The approximate phase of the system response at 20 Hz is
(A) -90°
(B) 0°
(C) 90°
(D) -180°
7.66 Consider the signal flow graph shown in Fig. The gain $\frac{x_{5}}{x_{1}}$ is

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(A) $\frac{1-(b e+c f+d g)}{a b c d}$
(B) $\frac{b e d g}{1-(b e+c f+d g)}$
(C) $\frac{a b c d}{1-(b e+c f+d g)+b e d g}$
(D) $\frac{1-(b e+c f+d g)+b e d g}{a b c d}$

If $A=\left[\begin{array}{rr}-2 & 2 \\ 1 & -3\end{array}\right]$, then $\sin A t$ is
(A) $\frac{1}{3}\left[\begin{array}{cc}\sin (-4 t)+2 \sin (-t) & -2 \sin (-4 t)+2 \sin (-t) \\ -\sin (-4 t)+\sin (-t) & 2 \sin (-4 t)+\sin (-t)\end{array}\right]$
(B) $\left[\begin{array}{cc}\sin (-2 t) & \sin (2 t) \\ \sin (t) & \sin (-3 t)\end{array}\right]$
(C) $\frac{1}{3}\left[\begin{array}{cc}\sin (4 t)+2 \sin (t) & 2 \sin (-4 t)-2 \sin (-t) \\ -\sin (-4 t)+\sin (t) & 2 \sin (4 t)+\sin (t)\end{array}\right]$
(D) $\frac{1}{3}\left[\begin{array}{cc}\cos (-t)+2 \cos (t) & 2 \cos (-4 t)+2 \cos (-t) \\ -\cos (-4 t)+\cos (-t) & -2 \cos (-4 t)+\cos (t)\end{array}\right]$

The open-loop transfer function of a unity feedback system is

$$
G(s)=\frac{K}{s\left(s^{2}+s+2\right)(s+3)}
$$

The range of K for which the system is stable is
(A) $\frac{21}{4}>K>0$
(B) $13>K>0$
(C) $\frac{21}{4}<K<\infty$
(D) $-6<K<\infty$

For the polynomial $P(s)=s^{2}+s^{4}+2 s^{3}+2 s^{2}+3 s+15$ the number of roots which lie in the right half of the s-plane is
(A) 4
(B) 2
(C) 3
(D) 1
7.70 Thestatevariableequationsofasystemare: $\dot{x}_{1}=-3 x_{1}-x_{2}=u, \dot{x}_{2}=2 x_{1}$ and $y=x_{1}+u$. The system is
(A) controllable but not observable
(B) observable but not controllable
(C) neither controllable nor observable
(D) controllable and observable

Given $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, the state transition matrix $e^{A t}$ is given by
(A) $\left[\begin{array}{cc}0 & e^{-t} \\ e^{-t} & 0\end{array}\right]$
(C) $\left[\begin{array}{cc}e^{-t} & 0 \\ 0 & e^{-t}\end{array}\right]$
(B) $\left[\begin{array}{cc}e^{t} & 0 \\ 0 & e^{t}\end{array}\right]$
(D) $\left[\begin{array}{ll}0 & e^{t} \\ e^{t} & 0\end{array}\right]$
7.72 Fig. shows the Nyquist plot of the open-loop transfer function $G(s) H(s)$ of a system. If $G(s) H(s)$ has one right-hand pole, the closed-loop system is

(A) always stable
(B) unstable with one closed-loop right hand pole
(C) unstable with two closed-loop right hand poles
(D) unstable with three closed-loop right hand poles
7.73 A PD controller is used to compensate a system. Compared to the uncompensated system, the compensated system has
(A) a higher type number
(B) reduced damping
(C) higher noise amplification
(D) larger transient overshoot
7.74 The signal flow graph of a system is shown in Fig. below. The transfer function $C(s) / R(s)$ of the system is

(A) $\frac{6}{s^{2}+29 s+6}$
(B) $\frac{6 s}{s^{2}+29 s+6}$
(C) $\frac{s(s+2)}{s^{2}+29 s+6}$
(D) $\frac{s(s+27)}{s^{2}+29 s+6}$
7.75 The root locus of system $G(s) H(s)=\frac{K}{s(s+2)(s+3)}$ has the break-

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

away point located at
(A) $(-0.5,0)$
(B) $(-2.548,0)$
(C) $(-4,0)$
(D) $(-0.784,0)$
7.76 The approximate Bode magnitude plot of a minimum phase system is shown in Fig. below. The transfer function of the system is

(A) $10^{8} \frac{(s+0.1)^{3}}{(s+10)^{2}(s+100)}$
(B) $10^{7} \frac{(s+0.1)^{3}}{(s+10)(s+100)}$
(C) $\frac{(s+0.1)^{2}}{(s+10)^{2}(s+100)}$
(D) $\frac{(s+0.1)^{3}}{(s+10)(s+100)^{2}}$

A second-order system has the transfer function

$$
\frac{C(s)}{R(s)}=\frac{4}{s^{2}+4 s+4}
$$

With $r(t)$ as the unit-step function, the response $c(t)$ of the system is represented by
(A)

(B)

(C)

(D)

The gain margin and the phase margin of feedback system with

$$
G(s) H(s)=\frac{8}{(s+100)^{3}} \text { are }
$$

(A) $\mathrm{dB}, 0^{\circ}$
(B) ∞, ∞
(C) $\infty, 0^{\circ}$
(D) $88.5 \mathrm{~dB}, \infty$

The zero-input response of a system given by the state-space equation $\left[\begin{array}{l}\dot{x_{1}} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is
(A) $\left[\begin{array}{c}t e^{t} \\ t\end{array}\right]$
(B) $\left[\begin{array}{c}e^{t} \\ t\end{array}\right]$
(C) $\left[\begin{array}{c}e^{t} \\ t e^{t}\end{array}\right]$
(D) $\left[\begin{array}{c}t \\ t e^{t}\end{array}\right]$

2002

ONE MARK

Consider a system with transfer function $G(s)=\frac{s+6}{k s^{2}+s+6}$. Its $\quad 7.88$ damping ratio will be 0.5 when the value of k is
(A) $\frac{2}{6}$
(B) 3
(C) $\frac{1}{6}$
(D) 6

Which of the following points is NOT on the root locus of a system with the open-loop transfer function $G(s) H(s)=\frac{k}{s(s+1)(s+3)}$
$\begin{array}{ll}\text { (A) } s=-j \sqrt{3} & \text { (B) } s=-1.5\end{array}$
(B) $s=-1.5$
(C) $s=-3$
(D) $s=-\infty$
7.82 The phase margin of a system with the open - loop transfer function

$$
G(s) H(s)=\frac{(1-s)}{(1+s)(2+s)}
$$

(A) 0°
(B) 63.4°
(C) 90°
(D) ∞
7.83 The transfer function $Y(s) / U(s)$ of system described by the state equation $\dot{x}(t)=-2 x(t)+2 u(t)$ and $y(t)=0.5 x(t)$ is
(A) $\frac{0.5}{(s-2)}$
(B) $\frac{1}{(s-2)}$
(C) $\frac{0.5}{(s+2)}$
(D) $\frac{1}{(s+2)}$

2002
TWO MARKS
7.84 The system shown in the figure remains stable when
(A) $k<-1$
(B) $-1<k<3$
(C) $1<k<3$
(D) $k>3$
7.85 The transfer function of a system is $G(s)=\frac{100}{(s+1)(s+100)}$. For a
At market Book is available in 3 volume i.e. in 3 book binding
form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding.
Available Only at NODIA Online Store
Click to Buy
WWW.nodia.co.in
unit - step input to the system the approximate settling time for 2% criterion is

(A) 100 sec
(B) 4 sec
(C) 1 sec
(D) 0.01 sec
7.86 The characteristic polynomial of a system is

$$
q(s)=2 s^{5}+s^{4}+4 s^{3}+2 s^{2}+2 s+1
$$

The system is
(A) stable
(B) marginally stable
(C) unstable
(D) oscillatory
7.87 The system with the open loop transfer function $G(s) H(s)=\frac{1}{s\left(s^{2}+s+1\right)}$ has a gain margin of
(A) -6 db
(B) 0 db
(C) 35 db
(D) 6 db

The Nyquist plot for the open-loop transfer function $G(s)$ of a unity negative feedback system is shown in the figure, if $G(s)$ has no pole in the right-half of s-plane, the number of roots of the system characteristic equation in the right-half of s-plane is
(A) 0
(B) 1
(C) 2
(D) 3
7.89 The equivalent of the block diagram in the figure is given is

(A)

(C)

(B)

(D)

If the characteristic equation of a closed - loop system is $s^{2}+2 s+2=0$, then the system is
(A) overdamped
(B) critically damped
(C) underdamped
(D) undamped

The root-locus diagram for a closed-loop feedback system is shown in the figure. The system is overdamped.

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(A) only if $0 \leq k \leq 1$
(B) only if $1<k<5$
(C) only if $k>5$
(D) if $0 \leq k<1$ or $k>5$

2001

TWO MARK
An electrical system and its signal-flow graph representations are shown the figure (A) and (B) respectively. The values of G_{2} and H , respectively are

(A) $\frac{Z_{3}(s)}{Z_{1}(s)+Z_{3}(s)+Z_{4}(s)}, \frac{-Z_{3}(s)}{Z_{1}(s)+Z_{3}(s)}$
(B) $\frac{-Z_{3}(s)}{Z_{2}(s)-Z_{3}(s)+Z_{4}(s)}, \frac{-Z_{3}(s)}{Z_{1}(s)+Z_{3}(s)}$
(C) $\frac{Z_{3}(s)}{Z_{2}(s)+Z_{3}(s)+Z_{4}(s)}, \frac{Z_{3}(s)}{Z_{1}(s)+Z_{3}(s)}$
(D) $\frac{-Z_{3}(s)}{Z_{2}(s)-Z_{3}(s)+Z_{4}(s)}, \frac{Z_{3}(s)}{Z_{1}(s)+Z_{3}(s)}$
7.93 The open-loop DC gain of a unity negative feedback system with closed-loop transfer function $\frac{s+4}{s^{2}+7 s+13}$ is
(A) $\frac{4}{13}$
(B) $\frac{4}{9}$
(C) 4
(D) 13
7.94 The feedback control system in the figure is stable

(A) for all $K \geq 0$
(B) only if $K \geq 0$
(C) only if $0 \leq K<1$
(D) only if $0 \leq K \leq 1$

2000

ONE MARK
7.95 An amplifier with resistive negative feedback has tow left half plane poles in its open-loop transfer function. The amplifier
(A) will always be unstable at high frequency
(B) will be stable for all frequency
(C) may be unstable, depending on the feedback factor
(D) will oscillate at low frequency.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

A system described by the transfer function $H(s)=\frac{1}{s^{3}+\alpha s^{2}+k s+3}$
is stable. The constraints on α and k are.
(A) $\alpha>0, \alpha k<3$
(B) $\alpha>0, \alpha k>3$
(C) $\alpha<0, \alpha k>3$
(D) $\alpha>0, \alpha k<3$
7.97 For a second order system with the closed-loop transfer function

$$
T(s)=\frac{9}{s^{2}+4 s+9}
$$

the settling time for 2 -percent band, in seconds, is
(A) 1.5
(B) 2.0
(C) 3.0
(D) 4.0

The gain margin (in dB) of a system a having the loop transfer function

$$
G(s) H(s)=\frac{\sqrt{2}}{s(s+1)} \text { is }
$$

(A) 0
(B) 3
(C) 6
(D) ∞

The system modeled described by the state equations is

$$
\begin{aligned}
& X=\left[\begin{array}{cc}
0 & 1 \\
2 & -3
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& Y=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x
\end{aligned}
$$

(A) controllable and observable
(B) controllable, but not observable
(C) observable, but not controllable
(D) neither controllable nor observable
${ }^{7.100}$ The phase margin (in degrees) of a system having the loop transfer function $G(s) H(s)=\frac{2 \sqrt{3}}{s(s+1)}$ is
(A) 45°
(B) -30°
(C) 60°
(D) 30°

1999

TWO MARKS
7.101 An amplifier is assumed to have a single-pole high-frequency transfer function. The rise time of its output response to a step function input is 35 nsec . The upper 3 dB frequency (in MHz) for the amplifier to as sinusoidal input is approximately at
(A) 4.55
(B) 10
(C) 20
(D) 28.6
7.102 If the closed - loop transfer function $T(s)$ of a unity negative feedback system is given by

$$
T(s)=\frac{a_{n-1} s+a_{n}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}
$$

then the steady state error for a unit ramp input is
(A) $\frac{a_{n}}{a_{n-1}}$
(B) $\frac{a_{n}}{a_{n-2}}$
(C) $\frac{a_{n-2}}{a_{n-2}}$
(D) zero
7.103 Consider the points $s_{1}=-3+j 4$ and $s_{2}=-3-j 2$ in the s-plane. Then, for a system with the open-loop transfer function

$$
G(s) H(s)=\frac{K}{(s+1)^{4}}
$$

(A) s_{1} is on the root locus, but not s_{2}
(B) s_{2} is on the root locus, but not s_{1}
(C) both s_{1} and s_{2} are on the root locus
(D) neither s_{1} nor s_{2} is on the root locus
7.104 For the system described by the state equation

$$
\dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0.5 & 1 & 2
\end{array}\right] x+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u
$$

If the control signal u is given by $u=[-0.5-3-5] x+v$, then
the eigen values of the closed-loop system will be
(A) $0,-1,-2$
(B) $0,-1,-3$
(C) $-1,-1,-2$
(D) $0,-1,-1$
7.105 The number of roots of $s^{3}+5 s^{2}+7 s+3=0$ in the left half of the s -plane is
(A) zero
(B) one
(C) two
(D) three
7.106 The transfer function of a tachometer is of the form
(A) $K s$
(B) $\frac{K}{s}$
(C) $\frac{K}{(s+1)}$
(D) $\frac{K}{s(s+1)}$

* 2 ำ

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

7.107 Consider a unity feedback control system with open-loop transfer function $G(s)=\frac{K}{s(s+1)}$.
The steady state error of the system due to unit step input is
(A) zero
(B) K
(C) $1 / K$
(D) infinite
7.108 The transfer function of a zero-order-hold system is
(A) $(1 / s)\left(1+e^{-s T}\right)$
(B) $(1 / s)\left(1-e^{-s T}\right)$
(C) $1-(1 / s) e^{-s T}$
(D) $1+(1 / s) e^{-s T}$
7.109 In the Bode-plot of a unity feedback control system, the value of phase of $G(j \omega)$ at the gain cross over frequency is -125°. The phase margin of the system is
(A) -125°
(B) -55°
(C) 55°
(D) 125°
7.110 Consider a feedback control system with loop transfer function

$$
G(s) H(s)=\frac{K(1+0.5 s)}{s(1+s)(1+2 s)}
$$

The type of the closed loop system is
(A) zero
(B) one
(C) two
(D) three
7.111 The transfer function of a phase lead controller is $\frac{1+3 T s}{1+T s}$. The
maximum value of phase provided by this controller is
(A) 90°
(B) 60°
(C) 45°
(D) 30°
7.112 The Nyquist plot of a phase transfer function $g(j \omega) H(j \omega)$ of a system encloses the $(-1,0)$ point. The gain margin of the system is
(A) less than zero
(B) zero
(C) greater than zero
(D) infinity
7.113 The transfer function of a system is $\frac{2 s^{2}+6 s+5}{(s+1)^{2}(s+2)}$

The characteristic equation of the system is
(A) $2 s^{2}+6 s+5=0$
(B) $(s+1)^{2}(s+2)=0$
(C) $2 s^{2}+6 s+5+(s+1)^{2}(s+2)=0$

GATE Electronics \& Communication
 by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(D) $2 s^{2}+6 s+5-(s+1)^{2}(s+2)=0$

In a synchro error detector, the output voltage is proportional to $[\omega(t)]^{n}$, where $\omega(t)$ is the rotor velocity and n equals
(A) -2
(B) -1
(C) 1
(D) 2

1997 ONE MARK

In the signal flow graph of the figure is y / x equals

(A) 3
(B) $\frac{5}{2}$
(C) 2
(D) None of the above
7.116 A certain linear time invariant system has the state and the output equations given below

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{X}_{1} \\
\dot{X}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\frac{X_{1}}{X_{2}}\right]
\end{aligned}
$$

If $X_{1}(0)=1, X_{2}(0)=-1, u(0)=0$, then $\left.\frac{d y}{d t}\right|_{t=0}$ is
(A) 1
(B) -1
(C) 0
(D) None of the above

SOLUTIONS

Option (B) is correct.
From the given plot, we obtain the slope as

$$
\text { Slope }=\frac{20 \log G_{2}-20 \log G_{1}}{\log w_{2}-\log w_{1}}
$$

From the figure

$$
\begin{aligned}
20 \log G_{2} & =-8 \mathrm{~dB} \\
20 \log G_{1} & =32 \mathrm{~dB}
\end{aligned}
$$

and

$$
\begin{aligned}
& \omega_{1}=1 \mathrm{rad} / \mathrm{s} \\
& \omega_{2}=10 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

So, the slope is

$$
\begin{aligned}
\text { Slope } & =\frac{-8-32}{\log _{10}-\log _{1}} \\
& =-40 \mathrm{~dB} / \text { decade }
\end{aligned}
$$

Therefore, the transfer function can be given as

$$
G(s)=\frac{k}{S^{2}}
$$

at $\omega=1$

$$
|G(j \omega)|=\frac{k}{|w|^{2}}=k
$$

In decibel,

$$
20 \log |G(j \omega)|=20 \log k=32
$$

or, $\quad k=10^{3 / 20}=39.8$
Hence, the Transfer function is

$$
G(s)=\frac{k}{s^{2}}=\frac{39.8}{s^{2}}
$$

Option (C) is correct.
Given, open loop transfer function

$$
G(s)=\frac{10 K_{a}}{1+10 s}=\frac{K_{a}}{s+\frac{1}{10}}
$$

By taking inverse Laplace transform, we have

$$
g(t)=e^{-\frac{1}{10} t}
$$

Comparing with standard form of transfer function, $A e^{-t / \tau}$, we get the open loop time constant,

$$
\tau_{o l}=10
$$

Now, we obtain the closed loop transfer function for the given system as

$$
\begin{aligned}
H(s) & =\frac{G(s)}{1+G(s)}=\frac{10 K_{a}}{1+10 s+10 K_{a}} \\
& =\frac{K_{a}}{s+\left(K_{a}+\frac{1}{10}\right)}
\end{aligned}
$$

By taking inverse Laplace transform, we get

$$
h(t)=k_{a} \cdot e^{-\left(\frac{k}{k_{a}}+\frac{1}{10}\right) t}
$$

So, the time constant of closed loop system is obtained as
or,

$$
\tau_{c l}=\frac{1}{k_{a}+\frac{1}{10}}
$$

(approximately)
Now, given that k_{a} reduces open loop time constant by a factor of 100. i.e.,

$$
\begin{array}{ll}
& \tau_{c l}=\frac{\tau_{o l}}{100} \\
\text { or, } & \frac{1}{k_{a}}=\frac{10}{100} \\
\text { Hence, } & k_{a}=10
\end{array}
$$

Option (A) is correct.
For the given SFG, we have two forward paths

$$
P_{k 1}=(1)\left(s^{-1}\right)\left(s^{-1}\right)(1)=s^{-2}
$$

$$
P_{k 2}=(1)\left(s^{-1}\right)(1)(1)=s^{-1}
$$

since, all the loops are touching to the paths $P_{k 1}$ and $P_{k 2}$ so,

$$
\Delta k_{1}=\Delta k_{2}=1
$$

Now, we have

$$
\begin{aligned}
\Delta=1- & \text { (sum of individual loops) } \\
& + \text { (sum of product of nontouching }
\end{aligned}
$$

loops)
Here, the loops are

$$
\begin{aligned}
& L_{1}=(-4)(1)=-4 \\
& L_{2}=(-4)\left(s^{-1}\right)=4 s^{-1} \\
& L_{3}=(-2)\left(s^{-1}\right)\left(s^{-1}\right)=-2 s^{-2} \\
& L_{4}=(-2)\left(s^{-1}\right)(1)=-2 s^{-1}
\end{aligned}
$$

As all the loop L_{1}, L_{2}, L_{3} and L_{4} are touching to each other so,

$$
\begin{aligned}
\Delta & =1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right) \\
& =1-\left(-4-4 s^{-1}-2 s^{-2}-2 s^{-1}\right) \\
& =5+6 s^{1}+2 s^{2}
\end{aligned}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

From Mason's gain formulae

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =\frac{\Sigma P_{k} \Delta_{k}}{\Delta} \\
& =\frac{s^{-2}+s^{-1}}{5+6 s^{-1}+2 s^{-2}} \\
& =\frac{s+1}{5 s^{2}+6 s+2}
\end{aligned}
$$

Option (A) is correct.
For the shown state diagram we can denote the states x_{1}, x_{2} as below

So, from the state diagram, we obtain

$$
\text { and } \quad y
$$

Hence, in matrix form we can write the state variable equations

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] u
$$

and

$$
y=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+u
$$

which can be written in more general form as

$$
\begin{aligned}
\dot{X} & =\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right] X+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
y & =\left[\begin{array}{ll}
1 & -1
\end{array}\right] X+u
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}-u \\
& \dot{x}_{2}=-x_{2}+(1)(-1)(1)(-1) u+(-1)(1)(-1) x_{1} \\
& \dot{x}_{2}=-x_{2}+x_{1}+u \\
& =x_{1}-x_{2}+u
\end{aligned}
$$

Option (A) is correct.
From the obtained state-variable equations
We have

So,

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right] \\
S I-A & =\left[\begin{array}{cc}
S+1 & 0 \\
-1 & S+1
\end{array}\right] \\
(S I-A)^{-1} & =\frac{1}{(S+1)^{2}}\left[\begin{array}{cc}
S+1 & 0 \\
1 & S+1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{S+1} & 0 \\
\frac{1}{(S+1)^{2}} & \frac{1}{S+1}
\end{array}\right]
\end{aligned}
$$

Hence, the state transition matrix is obtained as

$$
\begin{aligned}
e^{A t} & =L^{-1}(S I-A)^{-1} \\
& =L^{-1}\left\{\left[\begin{array}{cc}
\frac{1}{S+1} & 0 \\
\frac{1}{(S+1)^{2}} & \frac{1}{S+1}
\end{array}\right]\right\}
\end{aligned}
$$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (C) is correct.

$$
=\left[\begin{array}{cc}
e^{-1} & 0 \\
t e^{-t} & e^{-t}
\end{array}\right]
$$

$$
\begin{aligned}
G(s) & =\frac{\left(s^{2}+9\right)(s+2)}{(s+1)(s+3)(s+4)} \\
& =\frac{\left(-\omega^{2}+9\right)(j \omega+2)}{(j \omega+1)(j \omega+3)(j \omega+4)}
\end{aligned}
$$

The steady state output will be zero if

$$
\begin{aligned}
|G(j \omega)| & =0 \\
-\omega^{2}+9 & =0 \quad \Rightarrow \quad \omega=3 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Option (A) is correct.

$$
\begin{aligned}
& Y(s)=\frac{K(s+1)}{s^{3}+a s^{2}+2 s+1}[R(s)-Y(s)] \\
& Y(s)\left[1+\frac{K(s+1)}{s^{3}+a s^{2}+2 s+1}\right]=\frac{K(s+1)}{s^{3}+a s^{2}+2 s+1} R(s) \\
& Y(s)\left[s^{3}+a s^{2}+s(2+k)+(1+k)\right]=K(s+1) R(s) \\
& \text { Transfer Function, } \quad H(s)=\frac{Y(s)}{R(s)} \\
& =\frac{K(s+1)}{s^{3}+a s^{2}+s(2+k)+(1+k)}
\end{aligned}
$$

Routh Table :

s^{3}	1	$2+K$
s^{2}	a	$1+K$
s^{1}	$\frac{a(2+K)-(1+K)}{a}$	0

$$
\begin{gathered}
\text { For oscillation, } \quad \frac{a(2+K)-(1+K)}{a}=0 \\
a=\frac{K+1}{K+2}
\end{gathered}
$$

Auxiliary equation $\quad A(s)=a s^{2}+(k+1)=0$

$$
\begin{aligned}
s^{2} & =-\frac{k+1}{a}=\frac{-k+1}{(k+1)}(k+2)=-(k+2) \\
s & =j \sqrt{k+2} \\
j \omega & =j \sqrt{k+2} \\
\omega & =\sqrt{k+2}=2 \quad \text { (Oscillation frequency) } \\
k & =2 \\
a & =\frac{2+1}{2+2}=\frac{3}{4}=0.75
\end{aligned}
$$

and
Option (D) is correct.
General form of state equations are given as

$$
\begin{aligned}
& \dot{x}=\boldsymbol{A} x+\boldsymbol{B} u \\
& \dot{y}=\boldsymbol{C} x+\boldsymbol{D} u
\end{aligned}
$$

For the given problem

$$
\left.\begin{array}{rl}
\boldsymbol{A} & =\left[\begin{array}{rrr}
0 & a_{1} & 0 \\
0 & 0 & a_{2} \\
a_{3} & 0 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\boldsymbol{A B} & =\left[\begin{array}{rrr}
0 & a_{1} & 0 \\
0 & 0 & a_{2} \\
a_{3} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
a_{2} \\
0
\end{array}\right] \\
\boldsymbol{A}^{2} \boldsymbol{B} & 0 \\
a_{2} a_{3} & 0 \\
a_{1} a_{2} \\
0 & a_{3} a_{1}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
a_{1} a_{2} \\
0 \\
0
\end{array}\right],
$$

For controllability it is necessary that following matrix has a tank of $n=3$.

So,

$$
\begin{aligned}
\boldsymbol{U} & =\left[\boldsymbol{B}: \boldsymbol{A} \boldsymbol{B}: \boldsymbol{A}^{2} \boldsymbol{B}\right]=\left[\begin{array}{rrr}
0 & 0 & a_{1} a_{2} \\
0 & a_{2} & 0 \\
1 & 0 & 0
\end{array}\right] \\
a_{2} & \neq 0 \\
a_{1} a_{2} & \neq 0 \Rightarrow a_{1} \neq 0
\end{aligned}
$$

7.9 Option (B) is correct.

For given plot root locus exists from -3 to ∞, So there must be odd number of poles and zeros. There is a double pole at $s=-3$
Now

$$
\begin{aligned}
& \text { poles }=0,-2,-3,-3 \\
& \text { zeros }=-1
\end{aligned}
$$

Thus transfer function

$$
G(s) H(s)=\frac{k(s+1)}{s(s+2)(s+3)^{2}}
$$

7.10 Option (A) is correct.

We have $\quad G(j \omega)=5+j \omega$
Here $\sigma=5$. Thus $G(j \omega)$ is a straight line parallel to $j \omega$ axis.
Option (B) is correct.

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

Here

$$
\begin{aligned}
x & =y_{1} \text { and } \dot{x}=\frac{d y_{1}}{d x} \\
\underline{y} & =\left[\begin{array}{c}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \underline{x} \\
y_{1} & =\frac{1}{s+2} u \\
y_{1}(s+2) & =u \\
\dot{y}_{1}+2 y_{1} & =u \\
\dot{x}+2 x & =u \\
\dot{x} & =-2 x+u \\
\dot{x} & =[-2] \underline{x}+[1] u
\end{aligned}
$$

Now

Drawing SFG as shown below

Thus

$$
\begin{aligned}
& \dot{x}_{1}=[-2] \underline{x_{1}}+[1] u \\
& y_{1}=\underline{x_{1}} ; y_{2}=2 \underline{x_{1}} \\
& \underline{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \underline{x_{1}} \\
& \underline{x_{1}}=\underline{x}
\end{aligned}
$$

Here

Option (C) is correct.
We have

$$
G(s) H(s)=\frac{100}{s(s+10)^{2}}
$$

Now

$$
G(j \omega) H(j \omega)=\frac{100}{j \omega(j \omega+10)^{2}}
$$

If ω_{p} is phase cross over frequency $\angle G(j \omega) H(j \omega)=180^{\circ}$
Thus

$$
\begin{aligned}
-180^{\circ} & =100 \tan ^{-1} 0-\tan ^{-1} \infty-2 \tan ^{-1}\left(\frac{\omega_{p}}{10}\right) \\
-180^{\circ} & =-90-2 \tan ^{-1}\left(0.1 \omega_{p}\right) \\
45^{\circ} & =\tan ^{-1}\left(0.1 \omega_{p}\right) \\
\tan 45^{\circ} & 0.1 \omega_{p}=1 \\
\omega_{p} & =10 \mathrm{rad} / \mathrm{se} \\
|G(j \omega) H(j \omega)| & =\frac{100}{\omega\left(\omega^{2}+100\right)}
\end{aligned}
$$

Now
At $\omega=\omega_{p}$

$$
\begin{aligned}
|G(j \omega) H(j \omega)| & =\frac{100}{10(100+100)}=\frac{1}{20} \\
\text { Gain Margin } & =-20 \log _{10}|G(j \omega) H(j \omega)| \\
& =-20 \log _{10}\left(\frac{1}{20}\right) \\
& =26 \mathrm{~dB}
\end{aligned}
$$

Option (D) is correct.
From option (D)

$$
\begin{aligned}
T F & =H(s) \\
& =\frac{100}{s\left(s^{2}+100\right)} \neq \frac{100}{s(s+10)^{2}}
\end{aligned}
$$

Option (B) is correct.
From the given block diagram

$$
\begin{align*}
H(s) & =Y(s)-E(s) \cdot \frac{1}{s+1} \\
E(s) & =R(s)-H(s) \\
& =R(s)-Y(s)+\frac{E(s)}{(s+1)} \\
E(s)\left[1-\frac{1}{s+1}\right] & =R(s)-Y(s) \\
\frac{s E(s)}{(s+1)} & =R(s)-Y(s) \tag{1}\\
Y(s) & =\frac{E(s)}{s+1} \tag{2}
\end{align*}
$$

From (1) and (2)

$$
s Y(s)=R(s)-Y(s)
$$

$$
(s+1) Y(s)=R(s)
$$

$$
\frac{Y(s)}{R(s)}=\frac{1}{s+1}
$$

7.15 Option (B) is correct.

Transfer function is given as

$$
\begin{aligned}
H(s) & =\frac{Y(s)}{X(s)}=\frac{s}{s+p} \\
H(j \omega) & =\frac{j \omega}{j \omega+p}
\end{aligned}
$$

Amplitude Response

Phase Response $\quad \theta_{h}(\omega)=90^{\circ}-\tan ^{-1}\left(\frac{\omega}{p}\right)$
Input

$$
x(t)=p \cos \left(2 t-\frac{\pi}{2}\right)
$$

Output $\quad y(t)=|H(j \omega)| x\left(t-\theta_{h}\right)=\cos \left(2 t-\frac{\pi}{3}\right)$

$$
|H(j \omega)|=p=\frac{\omega}{\sqrt{\omega^{2}+p^{2}}}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
\begin{aligned}
\frac{1}{p} & =\frac{2}{\sqrt{4+p^{2}}}, \quad(\omega=2 \mathrm{rad} / \mathrm{sec}) \\
4 p^{2} & =4+p^{2} \Rightarrow 3 p^{2}=4 \\
p & =2 / \sqrt{3}
\end{aligned}
$$

$$
\text { or } \quad 4 p^{2}=4+p^{2} \Rightarrow 3 p^{2}=4
$$

or
Alternative :

$$
\begin{aligned}
\theta_{h} & =\left[-\frac{\pi}{3}-\left(-\frac{\pi}{2}\right)\right]=\frac{\pi}{6} \\
\frac{\pi}{6} & =\frac{\pi}{2}-\tan ^{-1}\left(\frac{\omega}{p}\right) \\
\tan ^{-1}\left(\frac{\omega}{p}\right) & =\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3} \\
\frac{\omega}{p} & =\tan \left(\frac{\pi}{3}\right)=\sqrt{3} \\
\frac{2}{p} & =\sqrt{3}, \quad(\omega=2 \mathrm{rad} / \mathrm{sec}) \\
p & =2 / \sqrt{3}
\end{aligned}
$$

So,
or
7.16 Option (A) is correct.

Initial slope is zero, so $K=1$
At corner frequency $\omega_{1}=0.5 \mathrm{rad} / \mathrm{sec}$, slope increases by $+20 \mathrm{~dB} /$ decade, so there is a zero in the transfer function at ω_{1}
At corner frequency $\omega_{2}=10 \mathrm{rad} / \mathrm{sec}$, slope decreases by $-20 \mathrm{~dB} /$ decade and becomes zero, so there is a pole in transfer function at ω_{2}

Transfer function

$$
\begin{aligned}
H(s) & =\frac{K\left(1+\frac{s}{\omega_{1}}\right)}{\left(1+\frac{s}{\omega_{2}}\right)} \\
& =\frac{1\left(1+\frac{s}{0.1}\right)}{\left(1+\frac{s}{0.1}\right)}=\frac{(1+10 s)}{(1+0.1 s)}
\end{aligned}
$$

Option (D) is correct.
Steady state error is given as

$$
e_{S S}=\lim _{s \rightarrow 0} \frac{s R(s)}{1+G(s) G_{C}(s)}
$$

$$
\begin{aligned}
R(s) & =\frac{1}{s} \\
e_{S S} & =\lim _{s \rightarrow 0} \frac{1}{1+G(s) G_{C}(s)} \\
& =\lim _{s \rightarrow 0} \frac{1}{1+\frac{G_{C}(s)}{s^{2}+2 s+2}}
\end{aligned}
$$

$e_{S S}$ will be minimum if $\lim _{s \rightarrow 0} G_{C}(s)$ is maximum
In option (D)

$$
\begin{array}{rlrl}
& & \lim _{s \rightarrow 0} G_{C}(s) & =\lim _{s \rightarrow 0} 1+\frac{2}{s}+3 s=\infty \\
\text { So, } & e_{S S} & =\lim _{s \rightarrow 0} \frac{1}{\infty}=0 \text { (minimum) }
\end{array}
$$

Option (D) is correct.
Assign output of each integrator by a state variable

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+x_{2} \\
\dot{x}_{2} & =-x_{1}+2 u \\
y & =0.5 x_{1}+0.5 x_{2}
\end{aligned}
$$

State variable representation

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
2
\end{array}\right] u \\
\dot{y} & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] x
\end{aligned}
$$

Option (C) is correct.
By masson's gain formula

Transfer function

$$
H(s)=\frac{Y(s)}{U(s)}=\frac{\sum P_{K} \Delta_{K}}{\Delta}
$$

Forward path given

$$
\begin{aligned}
& P_{1}(a b c d e f)=2 \times \frac{1}{s} \times \frac{1}{s} \times 0.5=\frac{1}{s^{2}} \\
& P_{2}(a b c d e f)=2 \times \frac{1}{3} \times 1 \times 0.5 \\
& \text { Loop gain } \\
& L_{1}(c d c)=-\frac{1}{s} \\
& L_{2}(b c d b)=\frac{1}{s} \times \frac{1}{s} \times-1=\frac{-1}{s^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \Delta=1-\left[L_{1}+L_{2}\right]=1-\left[-\frac{1}{s}-\frac{1}{s^{2}}\right]=1+\frac{1}{s}+\frac{1}{s^{2}} \\
& \Delta_{1}=1, \Delta_{2}=2 \\
& H(s)=\frac{Y(s)}{U(s)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} \\
& \text { So, } \quad \frac{\frac{1}{s^{2}} \cdot 1+\frac{1}{s} \cdot 1}{1+\frac{1}{s}+\frac{1}{s^{2}}}=\frac{(1+s)}{\left(s^{2}+s+1\right)}
\end{aligned}
$$

7.20 Option (C) is correct.

This compensator is roughly equivalent to combining lead and lad compensators in the same design and it is referred also as PID compensator.
7.21 Option (C) is correct.

Here

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{l}
p \\
q
\end{array}\right] \\
A B & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
p \\
q
\end{array}\right]=\left[\begin{array}{l}
p \\
q
\end{array}\right] \\
S & =\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{ll}
p & q \\
q & p
\end{array}\right] \\
S & =p q-p q=0
\end{aligned}
$$

Since S is singular, system is completely uncontrollable for all values of p and q.
7.22 Option (B) is correct.

The characteristic equation is

$$
\begin{array}{lc}
& 1+G(s) H(s)=0 \\
\text { or } & 1+\frac{K\left(s^{2}-2 s+2\right)}{s^{2}+2 s+2}=0 \\
\text { or } & s^{2}+2 s+2+K\left(s^{2}-2 s+2\right)=0 \\
\text { or } & K=-\frac{s^{2}+2 s+2}{s^{2}-2 s+2}
\end{array}
$$

For break away \& break in point differentiating above w.r.t. s we have

$$
\frac{d K}{d s}=-\frac{\left(s^{2}-2 s+2\right)(2 s+2)-\left(s^{2}+2 s+2\right)(2 s-2)}{\left(s^{2}-2 s+2\right)^{2}}=0
$$

Thus $\left(s^{2}-2 s+2\right)(2 s+2)-\left(s^{2}+2 s+2\right)(2 s-2)=0$
or $\quad s= \pm \sqrt{2}$
Let θ_{d} be the angle of departure at pole P, then

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$
\begin{aligned}
& -\theta_{d}-\theta_{p 1}+\theta_{z 1}+\theta_{z 2}=180^{\circ} \\
& \quad-\theta_{d}=180^{\circ}-\left(-\theta_{p 1}+\theta_{z 1}+\theta_{2}\right)
\end{aligned}
$$

$$
=180^{\circ}-\left(90^{\circ}+180-45^{\circ}\right)=-45^{\circ}
$$

Option (B) is correct.
For under-damped second order response

$$
T(s)=\frac{k \omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}
$$

where $\xi<1$
Thus (A) or (B) may be correct
For option $(\mathrm{A}) \quad \omega_{n}=1.12$ and $2 \xi \omega_{n}=2.59 \rightarrow \xi=1.12$
For option $(\mathrm{B}) \quad \omega_{n}=1.91$ and $2 \xi \omega_{n}=1.51 \rightarrow \xi=0.69$
Option (B) is correct.
The plot has one encirclement of origin in clockwise direction. Thus $G(s)$ has a zero is in RHP.
Option (C) is correct.
The Nyzuist plot intersect the real axis ate - 0.5. Thus

$$
\text { G. M. }=-20 \log x=-20 \log 0.5=6.020 \mathrm{~dB}
$$

And its phase margin is 90°.
Option (C) is correct.
Transfer function for the given pole zero plot is:

$$
\frac{\left(s+Z_{1}\right)\left(s+Z_{2}\right)}{\left(s+P_{1}\right)\left(s+P_{2}\right)}
$$

From the plot Re $\left(P_{1}\right.$ and $\left.P_{2}\right)>\left(Z_{1}\right.$ and $\left.Z_{2}\right)$
So, these are two lead compensator.
Hence both high pass filters and the system is high pass filter.
Option (C) is correct.
Percent overshoot depends only on damping ratio, ξ.

$$
M_{p}=e^{-\xi \pi \sqrt{1-\xi^{2}}}
$$

If M_{p} is same then ξ is also same and we get

$$
\xi=\cos \theta
$$

$$
\theta=\text { constant }
$$

Thus

Graph 3
Option (D) is correct.
$P=\frac{25}{s^{2}+25}$
$2 \xi \omega_{n}=0, \xi=0 \rightarrow$ Undamped
$Q=\frac{6^{2}}{s^{2}+20 s+6^{2}} \quad 2 \xi \omega_{n}=20, \xi>1 \rightarrow$ Overdamped \quad Graph 4
$R=\frac{6^{2}}{s^{2}+12 s+6^{2}} \quad 2 \xi \omega_{n}=12, \xi=1 \rightarrow$ Critically \quad Graph 1
$S=\frac{7^{2}}{s^{2}+7 s+7^{2}} \quad 2 \xi \omega_{n}=7, \xi<1 \rightarrow$ underdamped \quad Graph 2
Option (C) is correct.
We labeled the given SFG as below :

From this SFG we have

$$
\begin{aligned}
& \dot{x}_{1}=-\gamma x_{1}+\beta x_{3}+\mu_{1} \\
& \dot{x}_{2}=\gamma x_{1}+\alpha x_{3} \\
& \dot{x_{3}}=-\beta x_{1}-\alpha x_{3}+u_{2}
\end{aligned}
$$

Thus

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-\gamma & 0 & \beta \\
\gamma & 0 & \alpha \\
-\beta & 0 & -\alpha
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
1 & 0
\end{array}\right]\binom{u_{1}}{u_{2}}
$$

Option (C) is correct.
The characteristic equation of closed lop transfer function is

$$
\begin{aligned}
1+G(s) H(s) & =0 \\
1+\frac{s+8}{s^{2}+\alpha s-4} & =0 \\
s^{2}+\alpha s-4+s+8 & =0 \\
s^{2}+(\alpha+1) s+4 & =0
\end{aligned}
$$

or

This will be stable if $(\alpha+1)>0 \rightarrow \alpha>-1$. Thus system is stable for all positive value of α.

Option (C) is correct.
The characteristic equation is

$$
\begin{gathered}
1+G(s)=0 \\
s^{5}+2 s^{4}+3 s^{3}+6 s^{2}+5 s+3=0
\end{gathered}
$$

or
Substituting $s=\frac{1}{z}$ we have

$$
3 z^{5}+5 z^{4}+6 z^{3}+3 z^{2}+2 z+1=0
$$

The routh table is shown below. As there are tow sign change in first column, there are two RHS poles.

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
www.nodia.co.in

z^{5}	3	6	2
z^{4}	5	3	1
z^{3}	$\frac{21}{5}$	$\frac{7}{5}$	
z^{2}	$\frac{4}{3}$	3	
z^{1}	$-\frac{7}{4}$		
z^{0}	1		

Option (C) is correct.
For underdamped second order system the transfer function is

$$
T(s)=\frac{K \omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}
$$

It peaks at resonant frequency. Therefore
Resonant frequency $\quad \omega_{r}=\omega_{n} \sqrt{1-2 \xi^{2}}$
and peak at this frequency

$$
\mu_{r}=\frac{5}{2 \xi \sqrt{1-\xi^{2}}}
$$

We have $\omega_{r}=5 \sqrt{2}$, and $\mu_{r}=\frac{10}{\sqrt{3}}$. Only options (A) satisfy these values.

$$
\begin{aligned}
& \omega_{n}=10, \xi=\frac{1}{2} \\
& \omega_{r}=10 \sqrt{1-2\left(\frac{1}{4}\right)}=5 \sqrt{2}
\end{aligned}
$$

where
and

$$
\mu_{r}=\frac{5}{2 \frac{1}{2} \sqrt{1-\frac{1}{4}}}=\frac{10}{\sqrt{3}}
$$

Hence satisfied
7.33 Option (B) is correct.

The given circuit is a inverting amplifier and transfer function is

$$
\frac{V_{o}}{V_{i}}=\frac{-Z}{\frac{R_{1}}{s C_{1} R_{1}+1}}=\frac{-Z\left(s C_{1} R_{1}+1\right)}{R_{1}}
$$

For Q,

$$
\begin{aligned}
Z & =\frac{\left(s C_{2} R_{2}+1\right)}{s C_{2}} \\
\frac{V_{o}}{V_{i}} & =-\frac{\left(s C_{2} R_{2}+1\right)}{s C_{2}} \times \frac{\left(s C_{1} R_{1}+1\right)}{R_{1}} \text { PID Controller }
\end{aligned}
$$

For R,

$$
Z=\frac{R_{2}}{\left(s C_{2} R_{2}+1\right)}
$$

$$
\frac{V_{o}}{V_{i}}=-\frac{R_{2}}{\left(s C_{2} R_{2}+1\right)} \times \frac{\left(s C_{1} R_{1}+1\right)}{R_{1}}
$$

Since $R_{2} C_{2}>R_{1} C_{1}$, it is lag compensator.
Option (D) is correct.
In a minimum phase system, all the poles as well as zeros are on the left half of the s-plane. In given system as there is right half zero $(s=5)$, the system is a non-minimum phase system.
Option (B) is correct.

$$
\begin{aligned}
& \text { We have } \begin{aligned}
K_{v} & =\lim _{s \rightarrow 0} s G(s) H(s) \\
\text { or } & 1000
\end{aligned}=\lim _{s \rightarrow 0} s \frac{\left(K_{p}+K_{D} s\right) 100}{s(s+100)}=K_{p}
\end{aligned}
$$

Now characteristics equations is

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{aligned}
1+G(s) H(s) & =0 \\
1000 & =\lim _{s \rightarrow 0} s \frac{\left(K_{p}+K_{D} s\right) 100}{s(s+100)}=K_{p}
\end{aligned}
$$

Now characteristics equation is

$$
\begin{aligned}
1+G(s) H(s) & =0 \\
\text { or } & 1+\frac{\left(100+K_{D} s\right) 100}{s(s+10)}
\end{aligned}=0
$$

Comparing with $s^{2}+2 \xi \omega_{n}+\omega_{n}^{2}=0$ we get

$$
2 \xi \omega_{n}=10+100 K_{D}
$$

or

$$
K_{D}=0.9
$$

Option (D) is correct.

$$
\text { We have } \quad \begin{aligned}
T(s) & =\frac{5}{(s+5)\left(s^{2}+s+1\right)} \\
& =\frac{5}{5\left(1+\frac{s}{5}\right)\left(s^{2}+s+1\right)}=\frac{1}{s^{2}+s+1}
\end{aligned}
$$

In given transfer function denominator is $(s+5)\left[(s+0.5)^{2}+\frac{3}{4}\right]$
. We can see easily that pole at $s=-0.5 \pm j \frac{\sqrt{3}}{2}$ is dominant then pole at $s=-5$. Thus we have approximated it.
Option (A) is correct.

$$
G(s)=\frac{1}{s^{2}-1}=\frac{1}{(s+1)(s-1)}
$$

The lead compensator $C(s)$ should first stabilize the plant i.e. remove $\frac{1}{(s-1)}$ term. From only options (A), $C(s)$ can remove this term

Thus

$$
\begin{aligned}
G(s) C(s) & =\frac{1}{(s+1)(s-1)} \times \frac{10(s-1)}{(s+2)} \\
& =\frac{10}{(s+1)(s+2)} \quad \text { Only option (A) }
\end{aligned}
$$

satisfies.

Option (D) is correct.
For ufb system the characteristics equation is

$$
\begin{array}{lr}
1+G(s) & =0 \\
\text { or } & 1+\frac{K}{s\left(s^{2}+7 s+12\right)}
\end{array}=0
$$

Point $s=-1+j$ lie on root locus if it satisfy above equation i.e
$\left.(-1+j)\left[(-1+j)^{2}+7(-1+j)+12\right)+K\right]=0$
or $\quad K=+10$
7.39

Option (D) is correct.
At every corner frequency there is change of $-20 \mathrm{db} /$ decade in slope which indicate pole at every corner frequency. Thus

$$
G(s)=\frac{K}{s(1+s)\left(1+\frac{s}{20}\right)}
$$

Bode plot is in $(1+s T)$ form

$$
\begin{array}{lrl}
& \left.20 \log \frac{K}{\omega}\right|_{\omega=0.1} & =60 \mathrm{~dB}=1000 \\
& \text { Thus } & \text { Hence } \\
& =5 \\
G(s) & =\frac{100}{s(s+1)(1+.05 s)}
\end{array}
$$

Option (A) is correct.

$$
\begin{array}{llrl}
\text { We have } & {\left[\begin{array}{c}
\frac{d \omega}{d t} \\
\frac{d i_{a}}{d t}
\end{array}\right.} & =\left[\begin{array}{cc}
-1 & 1 \\
-1 & -10
\end{array}\right]\left[\begin{array}{c}
\omega \\
i_{n}
\end{array}\right]+\left[\begin{array}{c}
0 \\
10
\end{array}\right] u \\
\text { or } & \frac{d \omega}{d t} & =-\omega+i_{n} \\
\text { and } & \frac{d i_{a}}{d t} & =-\omega-10 i_{a}+10 u
\end{array}
$$

Taking Laplace transform (i) we get

$$
\begin{align*}
s \omega(s) & =-\omega(s)=I_{a}(s) \\
\text { or } \quad(s+1) \omega(s) & =I_{a}(s) \tag{3}
\end{align*}
$$

Taking Laplace transform (ii) we get

$$
\begin{array}{rlrl}
& s I_{a}(s) & =-\omega(s)-10 I_{a}(s)+10 U(s) \\
& \text { or } & \omega(s) & =(-10-s) I_{a}(s)+10 U(s) \\
& =(-10-s)(s+1) \omega(s)+10 U(s) \quad \text { From (3) } \\
& \text { or } & \omega(s) & =-\left[s^{2}+11 s+10\right] \omega(s)+10 U(s) \\
\text { or } & \left(s^{2}+11 s+11\right) & \omega(s)=10 U(s) \\
\text { or } & \frac{\omega(s)}{U(s)} & =\frac{10}{\left(s^{2}+11 s+11\right)} &
\end{array}
$$

7.41 Option (A) is correct.

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

We have

$$
\dot{x}(t)=A x(t)
$$

Let

$$
A=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]
$$

For initial state vector $x(0)=\left[\begin{array}{r}1 \\ -2\end{array}\right]$ the system response is $x(t)=\left[\begin{array}{c}e^{-2 t} \\ -2 e^{-2 t}\end{array}\right]$

Thus

$$
\left[\begin{array}{c}
\frac{d}{d t} e^{-2 t} \\
\frac{d}{d t}\left(-2 e^{-2 t}\right)
\end{array}\right]_{t=0}=\left[\begin{array}{cc}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

or

$$
\left[\begin{array}{c}
-2 e^{-2(0)} \\
4 e^{-2(0)}
\end{array}\right]=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

$$
\left[\begin{array}{r}
-2 \tag{i}\\
4
\end{array}\right]=\left[\begin{array}{l}
p-2 q \\
r-2 s
\end{array}\right]
$$

We get $\quad p-2 q=-2$ and $r-2 s=4$
For initial state vector $x(0)=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ the system response is
$\left[e^{-t}\right]$ $x(t)=\left[\begin{array}{c}e^{-t} \\ -e^{-t}\end{array}\right]$

Thus

$$
\left[\begin{array}{c}
\frac{d}{d t} e^{-t} \\
\frac{d}{d t}\left(-e^{-t}\right)
\end{array}\right]_{t=0}=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

$$
\begin{align*}
{\left[\begin{array}{r}
-e^{-(0)} \\
e^{-(0)}
\end{array}\right] } & =\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \tag{2}\\
{\left[\begin{array}{r}
-1 \\
1
\end{array}\right] } & =\left[\begin{array}{l}
p-q \\
r-s
\end{array}\right]
\end{align*}
$$

We get $\quad p-q=-1$ and $r-s=1$
Solving (1) and (2) set of equations we get

$$
\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right]
$$

The characteristic equation

$$
\begin{aligned}
\left\lvert\, \begin{aligned}
|\lambda-A| & =0 \\
\left|\begin{array}{cc}
\lambda & -1 \\
2 & \lambda+3
\end{array}\right| & =0 \\
\text { or } & \\
\text { or } & \lambda(\lambda+3)+2
\end{aligned}=0\right.
\end{aligned}
$$

Thus Eigen values are -1 and -2
Eigen vectors for $\lambda_{1}=-1$

$$
\left(\lambda_{1} I-A\right) X_{1}=0
$$

or

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\lambda_{1} & -1 \\
2 & \lambda_{1}+3
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{21}
\end{array}\right]=0} \\
& {\left[\begin{array}{rr}
-1 & -1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{21}
\end{array}\right]=0}
\end{aligned}
$$

or

$$
\begin{array}{r}
-x_{11}-x_{21}=0 \\
x_{11}+x_{21}=0
\end{array}
$$

We have only one independent equation $x_{11}=-x_{21}$.
Let $x_{11}=K$, then $x_{21}=-K$, the Eigen vector will be

$$
\left[\begin{array}{l}
x_{11} \\
x_{21}
\end{array}\right]=\left[\begin{array}{r}
K \\
-K
\end{array}\right]=K\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Now Eigen vector for $\lambda_{2}=-2$

$$
\begin{aligned}
\left(\lambda_{2} I-A\right) X_{2} & =0 \\
{\left[\begin{array}{cc}
\lambda_{2} & -1 \\
2 & \lambda_{2}+3
\end{array}\right]\left[\begin{array}{l}
x_{12} \\
x_{22}
\end{array}\right] } & =0 \\
{\left[\begin{array}{rr}
-2 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{21}
\end{array}\right] } & =0 \\
-x_{11}-x_{21} & =0 \\
x_{11}+x_{21} & =0
\end{aligned}
$$

We have only one independent equation $x_{11}=-x_{21}$.
Let $x_{11}=K$, then $x_{21}=-K$, the Eigen vector will be

$$
\left[\begin{array}{l}
x_{12} \\
x_{22}
\end{array}\right]=\left[\begin{array}{c}
K \\
-2 K
\end{array}\right]=K\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

Option (D) is correct.
As shown in previous solution the system matrix is

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right]
$$

7.43 Option (D) is correct.

Given system is 2 nd order and for 2 nd order system G.M. is infinite.
Option (D) is correct.
7.45 Option (D) is correct.

If the Nyquist polt of $G(j \omega) H(j \omega)$ for a closed loop system pass through $(-1, j 0)$ point, the gain margin is 1 and in dB

$$
\begin{aligned}
G M & =-20 \log 1 \\
& =0 \mathrm{~dB}
\end{aligned}
$$

7.46 Option (B) is correct.

The characteristics equation is

$$
\begin{gathered}
1+G(s) H(s)=0 \\
1+\frac{K(s+1)}{s^{3}+a s^{2}+2 s+1}=0 \\
s^{3}+a s^{2}+(2+K) s+K+1=0
\end{gathered}
$$

The Routh Table is shown below. For system to be oscillatory stable

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
or

$$
\begin{align*}
\frac{a(2+K)-(K+1)}{a} & =0 \\
a & =\frac{K+1}{K+2} \tag{1}
\end{align*}
$$

Then we have

$$
a s^{2}+K+1=0
$$

At $2 \mathrm{rad} / \mathrm{sec}$ we have

$$
\begin{equation*}
s=j \omega \rightarrow s^{2}=-\omega^{2}=-4 \tag{2}
\end{equation*}
$$

Thus $\quad-4 a+K+1=0$
Solving (i) and (ii) we get $K=2$ and $a=0.75$.

s^{3}	1	$2+K$
s^{2}	a	$1+K$
s^{1}	$\frac{(1+K) a-(1+K)}{a}$	
s^{0}	$1+K$	

Option (D) is correct.
The transfer function of given compensator is

$$
G_{c}(s)=\frac{1+3 T s}{1+T s}
$$

Comparing with

$$
G_{c}(s)=\frac{1+a T s}{1+T s} \text { we get } a=3
$$

The maximum phase sift is

$$
\begin{aligned}
\phi_{\max } & =\tan ^{-1} \frac{a-1}{2 \sqrt{a}} \\
& =\tan ^{-1} \frac{3-1}{2 \sqrt{3}}=\tan ^{-1} \frac{1}{\sqrt{3}} \\
\text { or } \quad \phi_{\max } & =\frac{\pi}{6}
\end{aligned}
$$

7.48 Option (A) is correct.

$$
\begin{aligned}
(s I-A) & =\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
s & -1 \\
1 & s
\end{array}\right] \\
(s I-A)^{-1} & =\frac{1}{s^{2}+1}\left[\begin{array}{lr}
s & -1 \\
1 & s
\end{array}\right]=\left[\begin{array}{cc}
\frac{s}{s^{2}+1} & \frac{1}{s^{2}+1} \\
s^{2}+1 & \frac{s}{s^{s}+1}
\end{array}\right] \\
\phi(t) & =e^{A t}=L^{-1}[(s I-A)]^{-1}=\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]
\end{aligned}
$$

Option (C) is correct.

$$
\begin{aligned}
& \text { We have } \begin{aligned}
G(s) & =\frac{a s+1}{s^{2}} \\
\angle G(j \omega) & =\tan ^{-1}(\omega a)-\pi
\end{aligned} \\
& \text { Since PM is } \frac{\pi}{4} \text { i.e. } 45^{\circ} \text {, thus } \\
& \text { cy } \\
& \text { cy } \\
& \text { or } \\
& \text { or } \\
& \text { or }
\end{aligned}
$$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\text { or } \quad a \omega_{g}=1
$$

At gain crossover frequency $\left|G\left(j \omega_{g}\right)\right|=1$

Option (C) is correct.
For $a=0.84$ we have

$$
G(s)=\frac{0.84 s+1}{s^{2}}
$$

Due to ufb system $H(s)=1$ and due to unit impulse response $R(s)=1$, thus

$$
\begin{aligned}
C(s) & =G(s) R(s)=G(s) \\
& =\frac{0.84 s+1}{s^{2}}=\frac{1}{s^{2}}+\frac{0.84}{s}
\end{aligned}
$$

Taking inverse Laplace transform

$$
\begin{aligned}
c(t) & =(t+0.84) u(t) \\
\text { At } t=1, & c(1 \mathrm{sec})
\end{aligned}=1+0.84=1.84
$$

Option (C) is correct.

We have	\dot{X}	$=A X+B U$	
where λ is set of Eigen values			
and	$\dot{W}=C W+D U$		where μ is set of Eigen values

If a liner system is equivalently represented by two sets of state equations, then for both sets, states will be same but their sets of Eigne values will not be same i.e.

$$
X=W \text { but } \lambda \neq \mu
$$

Option (D) is correct.
The transfer function of a lag network is

$$
\begin{array}{rlr}
T(s) & =\frac{1+s T}{1+s \beta T} & \beta>1 ; T>0 \\
|T(j \omega)| & =\frac{\sqrt{1+\omega^{2} T^{2}}}{\sqrt{1+\omega^{2} \beta^{2} T^{2}}} \\
\angle T(j \omega) & =\tan ^{-1}(\omega T)-\tan ^{-1}(\omega \beta T) & \\
|T(j \omega)|=1 & \\
\angle T(j \omega)=-\tan ^{-1} 0=0 \\
|T(j \omega)|=\frac{1}{\beta}
\end{array}
$$

and
At $\omega=0$,
At $\omega=0$,
At $\omega=\infty$,
At $\omega=\infty$,
7.53 Option (A) is correct.

Despite the presence of negative feedback, control systems still have problems of instability because components used have nonlinearity. There are always some variation as compared to ideal characteristics.
7.54 Option (B) is correct.
7.55 Option (C) is correct.

The peak percent overshoot is determined for LTI second order closed loop system with zero initial condition. It's transfer function is

$$
T(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}
$$

Transfer function has a pair of complex conjugate poles and zeroes.
7.56 Option (A) is correct.

For ramp input we have $R(s)=\frac{1}{s^{2}}$
Now

$$
\begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} s E(s) \\
& =\lim _{s \rightarrow 0} s \frac{R(s)}{1+G(s)}=\lim _{s \rightarrow 0} \frac{1}{s+s G(s)} \\
e_{s s} & =\lim _{s \rightarrow 0} \frac{1}{s G(s)}=5 \%=\frac{1}{20} \\
k_{v}=\frac{1}{e_{s s}} & =\lim _{s \rightarrow 0} s G(s)=20
\end{aligned}
$$

or
Finite
But
k_{v} is finite for type 1 system having ramp input.
7.57 Option (A) is correct.
7.58 Option (C) is correct.

Any point on real axis of s - is part of root locus if number of OL poles and zeros to right of that point is even. Thus (B) and (C) are possible option.
The characteristics equation is

$$
1+G(s) H(s)=0
$$

For more GATE Resources, Mock Test and

 Study material join the community http://www.facebook.com/gateec2014$$
\begin{array}{lr}
\text { or } & 1+\frac{K(1-s)}{s(s+3)}=0 \\
\text { or } & K=\frac{s^{2}+3 s}{1-s}
\end{array}
$$

For break away \& break in point

$$
\begin{array}{ll}
& \qquad \frac{d K}{d s}=(1-s)(2 s+3)+s^{2}+3 s=0 \\
\text { or } & -s^{2}+2 s+3=0
\end{array}
$$

which gives $s=3,-1$
Here -1 must be the break away point and 3 must be the break in point.

Option (D) is correct
or

$$
\begin{aligned}
G(s) & =\frac{3 e^{-2 s}}{s(s+2)} \\
G(j \omega) & =\frac{3 e^{-2 j \omega}}{j \omega(j \omega+2)} \\
|G(j \omega)| & =\frac{3}{\omega \sqrt{\omega^{2}+4}}
\end{aligned}
$$

Let at frequency ω_{g} the gain is 1 . Thus

Let at frequency ω_{ϕ} we have $\angle G H=-180^{\circ}$

$$
-\pi=-2 \omega_{\phi}-\frac{\pi}{2}-\tan ^{-1} \frac{\omega_{\phi}}{2}
$$

or $\quad 2 \omega_{\phi}+\tan ^{-1} \frac{\omega_{\phi}}{2}=\frac{\pi}{2}$
or $\quad 2 \omega_{\phi}+\left(\frac{\omega_{\phi}}{2}-\frac{1}{3}\left(\frac{\omega_{\phi}}{2}\right)^{3}\right)=\frac{\pi}{2}$
or $\quad \frac{5 \omega_{\phi}}{2}-\frac{\omega_{\phi}^{3}}{24}=\frac{\pi}{2}$

$$
\frac{5 \omega_{\phi}}{2} \approx \frac{\pi}{2}
$$

or

$$
\omega_{\phi}=0.63 \mathrm{rad}
$$

Option (D) is correct.
The gain at phase crossover frequency ω_{ϕ} is

$$
\begin{aligned}
\left|G\left(j \omega_{g}\right)\right| & =\frac{3}{\omega_{\phi} \sqrt{\left(\omega_{\phi}^{2}+4\right)}}=\frac{3}{0.63\left(0.63^{2}+4\right)^{\frac{1}{2}}} \\
\left|G\left(j \omega_{g}\right)\right| & =2.27 \\
\text { G.M. } & =-20 \log \left|G\left(j \omega_{g}\right)\right| \\
-20 \log 2.26 & =-7.08 \mathrm{~dB}
\end{aligned}
$$

or

Since G.M. is negative system is unstable.
The phase at gain cross over frequency is
or

$$
\begin{aligned}
\angle G\left(j \omega_{g}\right) & =-2 \omega_{g}-\frac{\pi}{2}-\tan ^{-1} \frac{\omega_{g}}{2} \\
& =-2 \times 1.26-\frac{\pi}{2}-\tan ^{-1} \frac{1.26}{2}
\end{aligned}
$$

$$
=-4.65 \mathrm{rad} \text { or }-266.5^{\circ}
$$

$$
\mathrm{PM}=180^{\circ}+\angle G\left(j \omega_{g}\right)=180^{\circ}-266.5^{\circ}=-86.5^{\circ}
$$

Option (D) is correct.
The open loop transfer function is

$$
G(s) H(s)=\frac{2(1+s)}{s^{2}}
$$

Substituting $s=j \omega$ we have

$$
\begin{align*}
G(j \omega) H(j \omega) & =\frac{2(1+j \omega)}{-\omega^{2}} \tag{1}\\
\angle G(j \omega) H(j \omega) & =-180^{\circ}+\tan ^{-1} \omega
\end{align*}
$$

The frequency at which phase becomes -180°, is called phase crossover frequency
Thus

$$
\begin{aligned}
-180 & =-180^{\circ}+\tan ^{-1} \omega_{\phi} \\
\tan ^{-1} \omega_{\phi} & =0 \\
\omega_{\phi} & =0
\end{aligned}
$$

The gain at $\omega_{\phi}=0$ is

$$
\begin{aligned}
& \frac{3}{\omega_{g} \sqrt{\left(\omega_{g}^{2}+4\right)}}=1 \\
& \text { or } \quad \omega_{g}=1.26 \mathrm{rad} / \mathrm{sec} \\
& \text { Now } \quad \angle G(j \omega)=-2 \omega-\frac{\pi}{2}-\tan ^{-1} \frac{\omega}{2}
\end{aligned}
$$

$$
|G(j \omega) H(j \omega)|=\frac{2 \sqrt{1+\omega^{2}}}{\omega^{2}}=\infty
$$

Thus gain margin is $=\frac{1}{\infty}=0$ and in dB this is $-\infty$.
7.62 Option (C) is correct.

Centroid is the point where all asymptotes intersects.
$\sigma=\frac{\Sigma \text { Real of Open Loop Pole }-\Sigma \text { Real Part of Open Loop Pole }}{\Sigma \text { No.of Open Loop Pole }-\Sigma \text { No.of Open Loop zero }}$

$$
=\frac{-1-3}{3}=-1.33
$$

7.63 Option (C) is correct.

The given bode plot is shown below

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
At $\omega=1$ change in slope is $+20 \mathrm{~dB} \rightarrow 1$ zero at $\omega=1$
At $\omega=10$ change in slope is $-20 \mathrm{~dB} \rightarrow 1$ poles at $\omega=10$
At $\omega=100$ change in slope is $-20 \mathrm{~dB} \rightarrow 1$ poles at $\omega=100$
Thus

$$
T(s)=\frac{K(s+1)}{\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)}
$$

Now $\quad 20 \log _{10} K=-20 \rightarrow K=0.1$
Thus

$$
T(s)=\frac{0.1(s+1)}{\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)}=\frac{100(s+1)}{(s+10)(s+100)}
$$

7.64 Option (C) is correct.

We have

$$
r(t)=10 u(t)
$$

or

$$
R(s)=\frac{10}{s}
$$

Now

$$
H(s)=\frac{1}{s+2}
$$

$$
C(s)=H(s) \cdot R(s)=\frac{1}{s+2} \cdot \frac{10}{s} \frac{10}{s(s+2)}
$$

or

$$
\begin{aligned}
C(s) & =\frac{5}{s}-\frac{5}{s+2} \\
c(t) & =5\left[1-e^{-2 t}\right]
\end{aligned}
$$

The steady state value of $c(t)$ is 5 . It will reach 99% of steady state value reaches at t, where
or $\quad 1-e^{-2 t}=0.99$

$$
e^{-2 t}=0.1
$$

or

$$
-2 t=\ln 0.1
$$

or $\quad t=2.3 \mathrm{sec}$
7.65 Option (A) is correct.

Approximate (comparable to 90°) phase shift are
Due to pole at $0.01 \mathrm{~Hz} \rightarrow-90^{\circ}$
Due to pole at $80 \mathrm{~Hz} \rightarrow-90^{\circ}$
Due to pole at $80 \mathrm{~Hz} \rightarrow 0$
Due to zero at $5 \mathrm{~Hz} \rightarrow 90^{\circ}$

Due to zero at $100 \mathrm{~Hz} \rightarrow 0$
Due to zero at $200 \mathrm{~Hz} \rightarrow 0$
Thus approximate total -90° phase shift is provided.
Option (C) is correct.
Mason Gain Formula

$$
T(s)=\frac{\Sigma p_{k} \Delta_{k}}{\Delta}
$$

In given SFG there is only one forward path and 3 possible loop.

$$
\begin{aligned}
p_{1} & =a b c d \\
\Delta_{1} & =1
\end{aligned}
$$

$\Delta=1-$ (sum of indivudual loops) - (Sum of two non touching loops)

$$
=1-\left(L_{1}+L_{2}+L_{3}\right)+\left(L_{1} L_{3}\right)
$$

Non touching loop are L_{1} and L_{3} where

$$
L_{1} L_{2}=b e d g
$$

Thus $\quad \frac{C(s)}{R(s)}=\frac{p_{1} \triangle_{1}}{1-(b e+c f+d g)+b e d g}$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
=\frac{a b c d}{1-(b e+c f+d g)+b e d g}
$$

Option (A) is correct.
We have

$$
A=\left[\begin{array}{rr}
-2 & 2 \\
1 & -3
\end{array}\right]
$$

Characteristic equation is

$$
[\lambda I-A]=0
$$

or

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda+2 & -2 \\
-1 & \lambda+3
\end{array}\right| & =0 \\
(\lambda+2)(\lambda+3)-2 & =0 \\
\lambda^{2}+5 \lambda+4 & =0 \\
\lambda_{1} & =-4 \text { and } \lambda_{2}=-1
\end{aligned}
$$

Thus
Eigen values are -4 and -1 .
Eigen vectors for $\lambda_{1}=-4$

$$
\begin{aligned}
\left(\lambda_{1} I-A\right) X_{1} & =0 \\
{\left[\begin{array}{cc}
\lambda_{1}+2 & -2 \\
1 & \lambda_{1}+3
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{21}
\end{array}\right] } & =0 \\
{\left[\begin{array}{ll}
-2 & -2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{21}
\end{array}\right] } & =0 \\
-2 x_{11}-2 x_{21} & =0 \\
x_{11}+x_{21} & =0
\end{aligned}
$$

or
or
We have only one independent equation $x_{11}=-x_{21}$.
Let $x_{21}=K$, then $x_{11}=-K$, the Eigen vector will be

$$
\left[\begin{array}{l}
x_{11} \\
x_{21}
\end{array}\right]=\left[\begin{array}{r}
-K \\
K
\end{array}\right]=K\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Now Eigen vector for $\lambda_{2}=-1$

$$
\begin{aligned}
\left(\lambda_{2} I-A\right) X_{2} & =0 \\
\text { or } \quad\left[\begin{array}{cc}
\lambda_{2}+2 & -2 \\
-1 & \lambda_{2}+3
\end{array}\right]\left[\begin{array}{l}
x_{12} \\
x_{22}
\end{array}\right] & =0
\end{aligned}
$$

or

$$
\left[\begin{array}{rr}
1 & -2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{12} \\
x_{22}
\end{array}\right]=0
$$

We have only one independent equation $x_{12}=2 x_{22}$
Let $x_{22}=K$, then $x_{12}=2 K$. Thus Eigen vector will be

$$
\left[\begin{array}{l}
x_{12} \\
x_{22}
\end{array}\right]=\left[\begin{array}{c}
2 K \\
K
\end{array}\right]=K\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Digonalizing matrix

$$
\begin{aligned}
M & =\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]=\left[\begin{array}{rr}
-1 & 2 \\
1 & 1
\end{array}\right] \\
M^{-1} & =\left(\frac{-1}{3}\right)\left[\begin{array}{rr}
1 & -2 \\
-1 & -1
\end{array}\right]
\end{aligned}
$$

Now
Now Diagonal matrix of $\sin A t$ is D where

$$
\begin{aligned}
& \qquad D=\left[\begin{array}{cc}
\sin \left(\lambda_{1} t\right) & 0 \\
0 & \sin \left(\lambda_{2} t\right)
\end{array}\right]=\left[\begin{array}{cc}
\sin (-4 t) & 0 \\
0 & \sin \left(\lambda_{2} t\right)
\end{array}\right] \\
& \text { Now matrix } \quad B=\sin A t=M D M^{-1} \\
& =-\left(\frac{1}{3}\right)\left[\begin{array}{rr}
-1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\sin (-4 t) & 0 \\
0 & \sin (-t)
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & -1
\end{array}\right] \\
& =-\left(\frac{1}{3}\right)\left[\begin{array}{cc}
-\sin (-4 t)-2 \sin (-t) & 2 \sin (-4 t)-2 \sin (-t) \\
\sin (-4 t)+2 \sin (t) & -2 \sin (-4 t)-\sin (-t)
\end{array}\right] \\
& =-\left(\frac{1}{3}\right)\left[\begin{array}{cc}
-\sin (-4 t)-2 \sin (-t) & 2 \sin (-4 t)-2 \sin (-t) \\
\sin (-4 t)-\sin (-t) & -2 \sin (-4 t)+2 \sin (-t)
\end{array}\right] \\
& =\left(\frac{1}{3}\right)\left[\begin{array}{cc}
\sin (-4 t)+2 \sin (-t)-2 \sin (-4 t)+2 \sin (-t) \\
-\sin (-4 t+\sin (-t) & 2 \sin (-4 t)+\sin (-t)
\end{array}\right] s
\end{aligned}
$$

7.68 Option (A) is correct.

For ufb system the characteristic equation is

$$
\begin{aligned}
1+G(s) & =0 \\
1+\frac{K^{1+G(s)}}{s\left(s^{2}+2 s+2\right)(s+3)} & =0 \\
s^{4}+4 s^{3}+5 s^{2}+6 s+K & =0
\end{aligned}
$$

The routh table is shown below. For system to be stable,

$$
0<K \text { and } 0<\frac{(21-4 K)}{2 / 7}
$$

This gives $\quad 0<K<\frac{21}{4}$

s^{4}	1	5	K

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

s^{3}	4	6	0
s^{2}	$\frac{7}{2}$	K	
s^{1}	$\frac{21-4 K}{7 / 2}$	0	
s^{0}	K		

Option (B) is correct.
We have $\quad P(s)=s^{5}+s^{4}+2 s^{3}+3 s+15$
The routh table is shown below.
If $\varepsilon \rightarrow 0^{+}$then $\frac{2 \varepsilon+12}{\varepsilon}$ is positive and $\frac{-15 \varepsilon^{2}-24 \varepsilon-144}{2 \varepsilon+12}$ is negative. Thus there are two sign change in first column. Hence system has 2 root
on RHS of plane.

s^{5}	1	2	3
s^{4}	1	2	15
s^{3}	ε	-12	0
s^{2}	$\frac{2 \varepsilon+12}{\varepsilon}$	15	0
s^{1}	$\frac{-15 \varepsilon^{2}-24 \varepsilon-144}{2 \varepsilon+12}$		
s^{0}	0		

Option (D) is correct.
We have

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{rr}
-3 & -1 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u
$$

and
$Y=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}1 \\ 2\end{array}\right] u$
Here

$$
A=\left[\begin{array}{rr}
-3 & -1 \\
2 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } C=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

The controllability matrix is

$$
Q_{C}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{rr}
1 & -3 \\
0 & 2
\end{array}\right]
$$

$$
\operatorname{det} Q_{C} \neq 0
$$

Thus controllable
The observability matrix is

$$
\begin{aligned}
Q_{0} & =\left[\begin{array}{lr}
C^{T} & A^{T} C^{T}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & -3 \\
0 & -1
\end{array}\right] \neq 0 \\
\operatorname{det} Q_{0} & \neq 0
\end{aligned}
$$

Thus observable
Option (B) is correct.

$$
\begin{aligned}
(s I-A) & =\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
s-1 & 0 \\
0 & s-1
\end{array}\right] \\
(s I-A)^{-1} & =\frac{1}{(s-1)^{2}}\left[\begin{array}{cc}
(s-1) & 0 \\
0 & (s-1)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{s-1} & 0 \\
0 & \frac{1}{s-1}
\end{array}\right] \\
e^{A t} & =L^{-1}[(s I-A)]^{-1}=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{t}
\end{array}\right]
\end{aligned}
$$

Option (A) is correct.

$$
Z=P-N
$$

$N \rightarrow$ Net encirclement of $(-1+j 0)$ by Nyquist plot,
$P \rightarrow$ Number of open loop poles in right hand side of s - plane
$Z \rightarrow$ Number of closed loop poles in right hand side of s - plane
Here $N=1$ and $P=1$
Thus

$$
Z=0
$$

Hence there are no roots on RH of s-plane and system is always stable.
Option (C) is correct.
PD Controller may accentuate noise at higher frequency. It does not effect the type of system and it increases the damping. It also reduce the maximum overshoot.
Option (D) is correct.
Mason Gain Formula

$$
T(s)=\frac{\Sigma p_{k} \triangle_{k}}{\triangle}
$$

In given SFG there is only forward path and 3 possible loop.

$$
\begin{aligned}
p_{1} & =1 \\
\triangle_{1} & =1+\frac{3}{s}+\frac{24}{s}=\frac{s+27}{s} \\
L_{1} & =\frac{-2}{s}, L_{2}=\frac{-24}{s} \text { and } L_{3}=\frac{-3}{s}
\end{aligned}
$$

where L_{1} and L_{3} are non-touching

$$
\begin{aligned}
& \begin{array}{l}
\text { This } \\
=\frac{\frac{C(s)}{R(s)}}{1-\text { (loop gain) }+ \text { pair of non - touching loops }}
\end{array} \\
& =\frac{\left(\frac{s+27}{s}\right)}{1-\left(\frac{-3}{s}-\frac{24}{s}-\frac{2}{s}\right)+\frac{-2}{s} \cdot \frac{-3}{s}}=\frac{\left(\frac{s+27}{2}\right)}{1+\frac{2 s}{s}+\frac{6}{s^{2}}} \\
& =\frac{s(s+27)}{s^{2}+29 s+6}
\end{aligned}
$$

Option (D) is correct.
We have
or

$$
\begin{gathered}
1+G(s) H(s)=0 \\
1+\frac{K}{s(s+2)(s+3)}=0 \\
K=-s\left(s^{2}+5 s^{2}+6 s\right) \\
\frac{d K}{d s}=-\left(3 s^{2}+10 s+6\right)=0 \\
s=\frac{-10 \pm \sqrt{100-72}}{6}=-0.784,-2.548
\end{gathered}
$$

or
which gives

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

The location of poles on s - plane is

Since breakpoint must lie on root locus so $s=-0.748$ is possible.
Option (A) is correct.
The given bode plot is shown below

At $\omega=0.1$ change in slope is $+60 \mathrm{~dB} \rightarrow 3$ zeroes at $\omega=0.1$
At $\omega=10$ change in slope is $-40 \mathrm{~dB} \rightarrow 2$ poles at $\omega=10$
At $\omega=100$ change in slope is $-20 \mathrm{~dB} \rightarrow 1$ poles at $\omega=100$
Thus

$$
T(s)=\frac{K\left(\frac{s}{0.1}+1\right)^{3}}{\left(\frac{s}{10}+1\right)^{2}\left(\frac{s}{100}+1\right)}
$$

Now

$$
20 \log _{10} K=20
$$

or

$$
K=10
$$

Thus

$$
T(s)=\frac{10\left(\frac{s}{0.1}+1\right)^{3}}{\left(\frac{s}{10}+1\right)^{2}\left(\frac{s}{100}+1\right)}=\frac{10^{8}(s+0.1)^{3}}{(s+10)^{2}(s+100)}
$$

7.77 Option (B) is correct.

The characteristics equation is

$$
s^{2}+4 s+4=0
$$

Comparing with

$$
s^{2}+2 \xi \omega_{n}+\omega_{n}^{2}=0
$$

we get

$$
2 \xi \omega_{n}=4 \text { and } \omega_{n}^{2}=4
$$

Thus

$$
\begin{aligned}
\xi & =1 \\
t_{s} & =\frac{4}{\xi \omega_{n}}=\frac{4}{1 \times 2}=2
\end{aligned}
$$

Critically damped

Option (B) is correct.
Option (C) is correct.
We have

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { and }\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
A & =\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \\
(s I-A) & =\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
s-1 & 0 \\
-1 & s-1
\end{array}\right] \\
(s I-A)^{-1} & =\frac{1}{(s-1)^{2}}\left[\begin{array}{cc}
(s-1) & 0 \\
+1 & (s-1)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{s-1} & 0 \\
\frac{+1}{(s-1)^{2}} & \frac{1}{s-1}
\end{array}\right] \\
L^{-1}\left[(s I-A)^{-1}\right] & =e^{A t}=\left[\begin{array}{cc}
e^{t} & 0 \\
t e^{t} & e^{t}
\end{array}\right]
\end{aligned}
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

Option (C) is correct.
The characteristics equation is

$$
k s^{2}+s+6=0
$$

$$
\text { or } \quad s^{2}+\frac{1}{K} s+\frac{6}{K}=0
$$

Comparing with $s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$ we have
we get $\quad 2 \xi \omega_{n}=\frac{1}{K}$ and $\omega_{n}^{2}=\frac{6}{K}$
or

$$
\begin{aligned}
2 \times 0.5 \times \sqrt{6} K \omega & =\frac{1}{K} \\
\frac{6}{K}=\frac{1}{K^{2}} & \Rightarrow K=\frac{1}{6}
\end{aligned}
$$

Given $\xi=0.5 \quad$ 7.8
7.81 Option (B) is correct.

Any point on real axis lies on the root locus if total number of poles and zeros to the right of that point is odd. Here $s=-1.5$ does not lie on real axis because there are total two poles and zeros (0 and -1) to the right of $s=-1.5$.

Option (D) is correct.
From the expression of OLTF it may be easily see that the maximum magnitude is 0.5 and does not become 1 at any frequency. Thus gain cross over frequency does not exist. When gain cross over frequency does not exist, the phase margin is infinite.
Option (D) is correct.
We have $\quad \dot{x}(t)=-2 x(t)+2 u(t)$
Taking Laplace transform we get

$$
s X(s)=-2 X(s)+2 U(s)
$$

or

$$
\begin{aligned}
(s+2) X(s) & =2 U(s) \\
X(s) & =\frac{2 U(s)}{(s+2)}
\end{aligned}
$$

Now

$$
y(t)=0.5 x(t)
$$

$$
\begin{aligned}
Y(s) & =0.5 X(s) \\
Y(s) & =\frac{0.5 \times 2 U(s)}{s+2} \\
\frac{Y(s)}{U(s)} & =\frac{1}{(s+2)}
\end{aligned}
$$

Option (D) is correct.
From Mason gain formula we can write transfer function as

$$
\frac{Y(s)}{R(s)}=\frac{\frac{K}{s}}{1-\left(\frac{3}{s}+\frac{-K}{s}\right)}=\frac{K}{s-3(3-K)}
$$

For system to be stable $(3-K)<0$ i.e. $K>3$
7.85 Option (B) is correct.

The characteristics equation is

$$
\begin{aligned}
(s+1)(s+100) & =0 \\
s^{2}+101 s+100 & =0
\end{aligned}
$$

Comparing with $s^{2}+2 \xi \omega_{n}+\omega_{n}^{2}=0$ we get

$$
\begin{aligned}
2 \xi \omega_{n} & =101 \text { and } \omega_{n}^{2}=100 \\
\xi & =\frac{101}{20}
\end{aligned}
$$

Thus
Overdamped
For overdamped system settling time can be determined by the dominant pole of the closed loop system. In given system dominant pole consideration is at $s=-1$. Thus

$$
\frac{1}{T}=1 \quad \text { and } \quad T_{s}=\frac{4}{T}=4 \mathrm{sec}
$$

7.86 Option (B) is correct.

Routh table is shown below. Here all element in 3rd row are zero, so system is marginal stable.

s^{5}	2	4	2
s^{4}	1	2	1
s^{3}	0	0	0
s^{2}			
s^{1}			
s^{0}			

Option (B) is correct.
The open loop transfer function is

$$
G(s) H(s)=\frac{1}{s\left(s^{2}+s+1\right)}
$$

Substituting $s=j \omega$ we have

$$
G(j \omega) H(j \omega)=\frac{1}{j \omega\left(-\omega^{2}+j \omega+1\right)}
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

$$
\angle G(j \omega) H(j \omega)=-\frac{\pi}{2}-\tan ^{-1} \frac{\omega}{\left(1-\omega^{2}\right)}
$$

The frequency at which phase becomes -180°, is called phase crossover frequency.

Thus

$$
\begin{aligned}
-180 & =-90-\tan ^{-1} \frac{\omega_{\phi}}{1-\omega_{\phi}^{2}} \\
-90 & =-\tan ^{-1} \frac{\omega_{\phi}}{1-\omega_{\phi}^{2}} \\
1-\omega_{\phi}^{2} & =0 \\
\omega_{\phi} & =1 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

The gain margin at this frequency $\omega_{\phi}=1$ is

$$
\begin{aligned}
\mathrm{GM} & =-20 \log _{10}\left|G\left(j \omega_{\phi}\right) H\left(j \omega_{\phi}\right)\right| \\
& =20 \log _{10}\left(\omega_{\phi} \sqrt{\left(1-\omega_{\phi}^{2}\right)^{2}+\omega_{\phi}^{2}}\right. \\
& =-20 \log 1=0
\end{aligned}
$$

Option (A) is correct.

$$
Z=P-N
$$

$N \rightarrow$ Net encirclement of $(-1+j 0)$ by Nyquist plot,
$P \rightarrow$ Number of open loop poles in right had side of $s-$ plane
$Z \rightarrow$ Number of closed loop poles in right hand side of s - plane
Here $N=0$ (1 encirclement in CW direction and other in CCW)
and $P=0$
Thus $Z=0$
Hence there are no roots on RH of s - plane.

Option (D) is correct.
Take off point is moved after G_{2} as shown below

Option (C) is correct.
The characteristics equation is

$$
s^{2}+2 s+2=0
$$

Comparing with $s^{2}+2 \xi \omega_{n}+\omega_{n}^{2}=0$ we get

$$
\begin{aligned}
2 \xi \omega_{n} & =2 \text { and } \omega_{n}^{2}=2 \\
\omega_{n} & =\sqrt{2} \\
\xi & =\frac{1}{\sqrt{2}}
\end{aligned}
$$

and
Since $\xi<1$ thus system is under damped
Option (D) is correct.
If roots of characteristics equation lie on negative axis at different positions (i.e. unequal), then system response is over damped.
From the root locus diagram we see that for $0<K<1$, the roots are on imaginary axis and for $1<K<5$ roots are on complex plain. For $K>5$ roots are again on imaginary axis.
Thus system is over damped for $0 \leq K<1$ and $K>5$.
Option (C) is correct.
From SFG we have

$$
\begin{align*}
I_{1}(s) & =G_{1} V_{i}(s)+H I_{2}(s) \tag{1}\\
I_{2}(s) & =G_{2} I_{1}(s) \tag{2}\\
V_{0}(s) & =G_{3} I_{2}(s) \tag{3}
\end{align*}
$$

Now applying KVL in given block diagram we have

$$
\begin{align*}
V_{i}(s) & =I_{1}(s) Z_{1}(s)+\left[I_{1}(s)-I_{2}(s)\right] Z_{3}(s) \tag{4}\\
0 & =\left[I_{2}(s)-I_{1}(s)\right] Z_{3}(s)+I_{2}(s) Z_{2}(s)+I_{2}(s) Z_{4}(s) \tag{5}
\end{align*}
$$

From (4) we have

$$
\begin{equation*}
\text { or } \quad V_{i}(s)=I_{1}(s)\left[Z_{1}(s)+Z_{3}(S)\right]-I_{2}(s) Z_{3}(S) \tag{6}
\end{equation*}
$$

or $\quad I_{1}(s)=V_{i} \frac{1}{Z_{1}(s)+Z_{3}(s)}+I_{2} \frac{Z_{3}(s)}{Z_{1}(s)+Z_{3}(s)}$
From (5) we have

$$
\begin{equation*}
I_{1}(s) Z_{3}(S)=I_{2}(s)\left[Z_{2}(s)+Z_{3}(s)+Z_{4}(s)\right] \tag{7}
\end{equation*}
$$

or $\quad I_{s}(s)=\frac{I_{1}(s) Z_{3}(s)}{Z_{3}(s)+Z_{2}(s)+Z_{4}(s)}$
Comparing (2) and (7) we have

$$
G_{2}=\frac{Z_{3}(s)}{Z_{3}(s)+Z_{2}(s)+Z_{4}(s)}
$$

Comparing (1) and (6) we have

$$
H=\frac{Z_{3}(s)}{Z_{1}(s)+Z_{3}(s)}
$$

Option (B) is correct.
For unity negative feedback system the closed loop transfer function is

$$
\text { CLTF }=\frac{G(s)}{1+G(s)}=\frac{s+4}{s^{2}+7 s+13}, \quad G(s) \rightarrow O L \text { Gain }
$$

or

$$
\frac{1+G(s)}{G(s)}=\frac{s^{2}+7 s+13}{s+4}
$$

or $\quad \frac{1}{G(s)}=\frac{s^{2}+7 s+13}{s+4}-1=\frac{s^{2}+6 s+9}{s+4}$
or $\quad G(s)=\frac{s+4}{s^{2}+6 s+9}$
For DC gain $s=0$, thus
Thus

$$
G(0)=\frac{4}{9}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
7.94 Option (C) is correct.

From the Block diagram transfer function is

Where

$$
T(s)=\frac{G(s)}{1+G(s) H(s)}
$$

and

$$
G(s)=\frac{K(s-2)}{(s+2)}
$$

The Characteristic equation is

$$
\begin{aligned}
1+G(s) H(s) & =0 \\
1+\frac{K(s-2)}{(s+2)^{2}}(s-2) & =0 \\
& =0 \\
& \text { or } \quad(s+2)^{2}+K(s-2)^{2}
\end{aligned}=0
$$

Routh Table is shown below. For System to be stable $1+k>0$, and $4+4 k>0$ and $4-4 k>0$. This gives $-1<K<1$
As per question for $0 \leq K<1$

s^{2}	$1+k$	$4+4 k$
s^{1}	$4-4 k$	0
s^{0}	$4+4 k$	

7.95 Option (B) is correct.

It is stable at all frequencies because for resistive network feedback factor is always less than unity. Hence overall gain decreases.
7.96 Option (B) is correct.

The characteristics equation is $s^{2}+\alpha s^{2}+k s+3=0$
The Routh Table is shown below
For system to be stable $\alpha>0$ and $\frac{\alpha K-3}{\alpha}>0$
Thus $\alpha>0$ and $\alpha K>3$

s^{3}	1	K
s^{2}	α	3
s^{1}	$\frac{\alpha K-3}{\alpha}$	0
s^{0}	3	

Option (B) is correct.
Closed loop transfer function is given as

$$
T(s)=\frac{9}{s^{2}+4 s+9}
$$

by comparing with standard form we get natural freq.

$$
\begin{aligned}
\omega_{A}^{2} & =9 \\
\omega_{n} & =3 \\
2 \xi \omega_{n} & =4
\end{aligned}
$$

damping factor

$$
\xi=\frac{4}{2 \times 3}=2 / 3
$$

for second order system the setting time for 2-percent band is given by

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
t_{s}=\frac{4}{\xi \omega_{n}}=\frac{4}{3 \times 2 / 3}=\frac{4}{2}=2
$$

Option (D) is correct.
Given loop transfer function is

$$
\begin{aligned}
G(s) H(s) & =\frac{\sqrt{2}}{s(s+1)} \\
G(j \omega) H(j \omega) & =\frac{\sqrt{2}}{j \omega(j \omega+1)}
\end{aligned}
$$

Phase cross over frequency can be calculated as

$$
\begin{aligned}
\left.\phi(\omega)\right|_{\left.\right|_{\text {at } \omega=\omega_{p}}} & =-180^{\circ} \\
\phi(\omega) & =-90^{\circ}-\tan ^{-1}(\omega) \\
-90^{\circ}-\tan ^{-1}\left(\omega_{p}\right) & =-180^{\circ} \\
\tan ^{-1}\left(\omega_{p}\right) & =90^{\circ} \\
\omega_{p} & =\infty
\end{aligned}
$$

So here

Gain margin

$$
\begin{aligned}
20 \log _{10}\left[\frac{1}{|G(j \omega) H(j \omega)|}\right] \text { at } \omega & =\omega_{p} \\
G \cdot M . & =20 \log _{10}\left(\frac{1}{\left|G(j \omega) H\left(j \omega_{p}\right)\right|}\right) \\
\left|G\left(j \omega_{p}\right) H\left(j \omega_{p}\right)\right| & =\frac{\sqrt{2}}{\omega_{p} \sqrt{\omega_{p}^{2}+1}}=0 \\
G . M . & =20 \log _{10}\left(\frac{1}{0}\right)=\infty
\end{aligned}
$$

Option (A) is correct.
Here $\quad A=\left[\begin{array}{rr}0 & 1 \\ 2 & -3\end{array}\right], \quad B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 1\end{array}\right]$
The controllability matrix is

$$
Q_{C}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
1 & -3
\end{array}\right]
$$

$\operatorname{det} Q_{C} \neq 0$
Thus controllable

The observability matrix is

$$
\left.\begin{array}{rl}
Q_{0} & =\left[\begin{array}{ll}
C^{T} & A^{T}
\end{array} C^{T}\right.
\end{array}\right]=\left[\begin{array}{rr}
1 & 2 \\
1 & -2
\end{array}\right] \neq 0
$$

Thus observable
Option (D) is correct.
we have

$$
\begin{aligned}
G(s) H(s) & =\frac{2 \sqrt{3}}{s(s+1)} \\
G(j \omega) H(j \omega) & =\frac{2 \sqrt{3}}{j \omega(j \omega+1)}
\end{aligned}
$$

or
Gain cross over frequency

$$
|G(j \omega) H(j \omega)|_{a t \omega=\omega_{s}}=1
$$

or

$$
\frac{2 \sqrt{3}}{\omega \sqrt{\omega^{2}+1}}=1
$$

$$
12=\omega^{2}\left(\omega^{2}+1\right)
$$

$$
\omega^{4}+\omega^{2}-12=0
$$

$$
\left(\omega^{2}+4\right)\left(\omega^{2}-3\right)=0
$$

$$
\omega^{2}=3 \text { and } \omega^{2}=-4
$$

which gives $\quad \omega_{1}, \omega_{2}= \pm \sqrt{3}$

$$
\begin{aligned}
& \quad \omega_{g}=\sqrt{3} \\
& \qquad \begin{aligned}
&\left.\phi(\omega)\right|_{a t \omega=\omega_{g}}=-90-\tan ^{-1}\left(\omega_{g}\right) \\
&=-90-\tan ^{-1} \sqrt{3}=-90-60=-150 \\
& \text { Phase margin }=180+\left.\phi(\omega)\right|_{a t \omega=\omega_{g}} \\
&=180-150=30^{\circ}
\end{aligned}
\end{aligned}
$$

Option (B) is correct.
7.102 Option (C) is correct.

Closed-loop transfer function is given by

$$
\begin{aligned}
T(s) & =\frac{a_{n-1} s+a_{n}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}} \\
& =\frac{\frac{a_{n-1} s+a_{n}}{s^{n}+a_{1} s^{n-1}+\ldots a_{n-2} s^{2}}}{1+\frac{a_{n-1} s+a_{n}}{s^{n}+a_{1} s^{n-1}+\ldots a_{n-2} s^{2}}}
\end{aligned}
$$

Thus

$$
G(s) H(s)=\frac{a_{n-1} s+a_{n}}{s^{n}+a_{1} s^{n-1}+\ldots . a_{n-2} s^{2}}
$$

For unity feed back $H(s)=1$
Thus

$$
G(s)=\frac{a_{n-1} s+a_{n}}{s^{n}+a_{1} s^{n-1}+\ldots . a_{n-2} s^{2}}
$$

Steady state error is given by

$$
E(s)=\lim _{s \rightarrow 0} R(s) \frac{1}{1+G(s) H(s)}
$$

for unity feed back $H(s)=1$

For more GATE Resources, Mock Test and

Study material join the community http://www.facebook.com/gateec2014

Here input $\quad R(s)=\frac{1}{s^{2}}$ (unit Ramp)

$$
\begin{aligned}
& \text { so } \begin{aligned}
& E(s)=\lim _{s \rightarrow 0} \frac{1}{s^{2}} \frac{1}{1+} G(s) \\
&=\lim _{s \rightarrow 0} \frac{1}{s^{2}} \frac{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-2} s^{2}}{s^{n}+a_{1} s^{n-1}+\ldots .+a_{n}} \\
&=\frac{a_{n-2}}{a_{n}}
\end{aligned}
\end{aligned}
$$

7.103 Option (B) is correct.
7.105 Option (A) is correct.
7.106 Option (A) is correct.

By applying Routh's criteria

$$
s^{3}+5 s^{2}+7 s+3=0
$$

s^{3}	1	7
s^{2}	5	3
s^{1}	$\frac{7 \times 5-3}{5}=\frac{32}{5}$	0
s^{0}	3	

There is no sign change in the first column. Thus there is no root lying in the left-half plane.

Option (A) is correct
Techometer acts like a differentiator so its transfer function is of the form $k s$.

Option (A) is correct.
Open loop transfer function is

$$
G(s)=\frac{K}{s(s+1)}
$$

Steady state error

$$
E(s)=\lim _{s \rightarrow 0} \frac{s R(s)}{1+G(s) H(s)}
$$

Where $\quad R(s)=$ input $\quad H(s)=1$ (unity feedback)

$$
R(s)=\frac{1}{s}
$$

$$
E(s)=\lim _{s \rightarrow 0} \frac{s \frac{1}{s}}{1+\frac{K}{s(s+1)}}=\lim _{s \rightarrow 0} \frac{s(s+1)}{s^{2}+s+K}=0
$$

Option (B) is correct.
Fig given below shows a unit impulse input given to a zero-order hold circuit which holds the input signal for a duration $T \&$ therefore, the output is a unit step function till duration T.

$$
h(t)=u(t)-u(t-T)
$$

Taking Laplace transform we have

$$
H(s)=\frac{1}{s}-\frac{1}{s} e^{-s T}=\frac{1}{s}\left[1-e^{-s T}\right]
$$

Option (C) is correct.
Phase margin $=180^{\circ}+\theta_{g}$ where $\theta_{g}=$ value of phase at gain crossover frequency.

$$
\begin{array}{lrl}
\text { Here } & \theta_{g} & =-125^{\circ} \\
\text { so } & \text { P.M } & =180^{\circ}-125^{\circ}=55^{\circ}
\end{array}
$$

7.111 Option (B) is correct.

Open loop transfer function is given by

$$
G(s) H(s)=\frac{K(1+0.5 s)}{s(1+s)(1+2 s)}
$$

Close looped system is of type 1 .
It must be noted that type of the system is defined as no. of poles $\frac{\text { lies }}{\text { lying }}$ at origin in OLTF.
Option (D) is correct.
Transfer function of the phase lead controller is

$$
T . F=\frac{1+3 T s}{1+s}=\frac{1+(3 T \omega) j}{1+(T \omega) j}
$$

Phase is

$$
\begin{aligned}
\phi(\omega) & =\tan ^{-1}(3 T \omega)-\tan ^{-1}(T \omega) \\
\phi(\omega) & =\tan ^{-1}\left[\frac{3 T \omega-T \omega}{1+3 T^{2} \omega^{2}}\right] \\
\phi(\omega) & =\tan ^{-1}\left[\frac{2 T \omega}{1+3 T^{2} \omega^{2}}\right]
\end{aligned}
$$

For maximum value of phase
or

$$
\begin{aligned}
\frac{d \phi(\omega)}{d \omega} & =0 \\
1 & =3 T^{2} \omega^{2} \\
T \omega & =\frac{1}{\sqrt{3}}
\end{aligned}
$$

So maximum phase is

$$
\begin{aligned}
\phi_{\max } & =\tan ^{-1}\left[\frac{2 T \omega}{1+3 T^{2} \omega^{2}}\right] \text { at } T \omega=\frac{1}{\sqrt{3}} \\
& =\tan ^{-1}\left[\frac{2 \frac{1}{\sqrt{3}}}{1+3 \times \frac{1}{3}}\right]=\tan ^{-1}\left[\frac{1}{\sqrt{3}}\right]=30^{\circ}
\end{aligned}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
7.113 Option (A) is correct.
$G(j \omega) H(j \omega)$ enclose the $(-1,0)$ point so here $\left|G\left(j \omega_{p}\right) H\left(j \omega_{p}\right)\right|>1$

$$
\omega_{p}=\text { Phase cross over frequency }
$$

$$
\text { Gain Margin }=20 \log _{10} \frac{1}{\left|G\left(j \omega_{p}\right) H\left(j \omega_{p}\right)\right|}
$$

so gain margin will be less than zero.
7.114 Option (B) is correct.

The denominator of Transfer function is called the characteristic equation of the system. so here characteristic equation is

$$
(s+1)^{2}(s+2)=0
$$

7.115 Option (C) is correct.

In synchro error detector, output voltage is proportional to $[\omega(t)]$, where $\omega(t)$ is the rotor velocity so here $n=1$
7.116 Option (C) is correct.

By masson's gain formulae

$$
\frac{y}{x}=\frac{\sum \Delta_{k} P_{k}}{\Delta}
$$

Forward path gain

$$
P_{1}=5 \times 2 \times 1=10
$$

$$
\Delta=1-(2 \times-2)=1+4=5
$$

$$
\Delta_{1}=1
$$

so gain

$$
\frac{y}{x}=\frac{10 \times 1}{5}=2
$$

7.117 Option (C) is correct.

By given matrix equations we can have

$$
\begin{aligned}
\dot{X}_{1} & =\frac{d x_{1}}{d t}=x_{1}-x_{2}+0 \\
\dot{X}_{2} & =\frac{d x_{2}}{d t}=0+x_{2}+\mu \\
y & =\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}+x_{2} \\
\frac{d y}{d t} & =\frac{d x_{1}}{d t}+\frac{d x_{2}}{d t}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d t} & =x_{1}+\mu \\
\left.\frac{d y}{d t}\right|_{t=0} & =x_{1}(0)+\mu(0) \\
& =1+0=0
\end{aligned}
$$

GATE Electronics \& Communication
by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

UNIT 8

COMMUNICATION SYSTEMS

2013

ONE MARK
The bit rate of a digital communication system is $R \mathrm{kbits} / \mathrm{s}$. The modulation used is 32-QAM. The minimum bandwidth required for ISI free transmission is
(A) $R / 10 \mathrm{~Hz}$
(B) $R / 10 \mathrm{kHz}$
(C) $R / 5 \mathrm{~Hz}$
(D) $R / 5 \mathrm{kHz}$

2013

TWO MARKS
Let U and V be two independent zero mean Gaussain random variables of variances $\frac{1}{4}$ and $\frac{1}{9}$ respectively. The probability

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
$P(3 V \geqq 2 U)$ is
(A) $4 / 9$
(B) $1 / 2$
(C) $2 / 3$
(D) $5 / 9$

Consider two identically distributed zero-mean random variables U and V. Let the cumulative distribution functions of U and $2 V$ be $F(x)$ and $G(x)$ respectively. Then, for all values of x
(A) $F(x)-G(x) \leq 0$
(B) $F(x)-G(x) \geq 0$
(C) $(F(x)-G(x)) \cdot x \leq 0$
(D) $(F(x)-G(x)) \cdot x \geq 0$

Let U and V be two independent and identically distributed random variables such that $P(U=+1)=P(U=-1)=\frac{1}{2}$. The entropy $H(U+V)$ in bits is
(A) $3 / 4$
(B) 1
(C) $3 / 2$
(D) $\log _{2} 3$

Common Data for Questions 5 and 6:

Bits 1 and 0 are transmitted with equal probability. At the receiver, the pdf of the respective received signals for both bits are as shown below.

If the detection threshold is 1 , the BER will be
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{8}$
(D) $\frac{1}{16}$
8.6 The optimum threshold to achieve minimum bit error rate (BER) is
(A) $\frac{1}{2}$
(B) $\frac{4}{5}$
(C) 1
(D) $\frac{3}{2}$

The power spectral density of a real process $X(t)$ for positive frequencies is shown below. The values of $E\left[X^{2}(t)\right]$ and $|E[X(t)]|$, respectively, are

(A) $6000 / \pi, 0$
(B) $6400 / \pi, 0$
(C) $6400 / \pi, 20 /(\pi \sqrt{2})$
(D) $6000 / \pi, 20 /(\pi \sqrt{2})$
8.8 In a baseband communications link, frequencies upto 3500 Hz are used for signaling. Using a raised cosine pulse with 75% excess bandwidth and for no inter-symbol interference, the maxi mum possible signaling rate in symbols per second is
(A) 1750
(B) 2625
(C) 4000
(D) 5250
8.9 A source alphabet consists of N symbols with the probability of the first two symbols being the same. A source encoder increases the probability of the first symbol by a small amount ε and decreases that of the second by ε. After encoding, the entropy of the source
(A) increases
(B) remains the same
(C) increases only if $N=2$
(D) decreases
8.10 Two independent random variables X and Y are uniformly distributed in the interval $[-1,1]$. The probability that $\max [X, Y]$ is less than $1 / 2$ is
(A) $3 / 4$
(B) $9 / 16$
(C) $1 / 4$
(D) $2 / 3$

2012
TWO MARKS

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec 2014

8.11 A BPSK scheme operating over an AWGN channel with noise power spectral density of $N_{0} / 2$, uses equiprobable signals $s_{1}(t)=\sqrt{\frac{2 E}{T}} \sin \left(\omega_{c} t\right)$ and $s_{2}(t)=-\sqrt{\frac{2 E}{T}} \sin \left(\omega_{c} t\right)$ over the symbol interval $(0, T)$. If the local oscillator in a coherent receiver is ahead in phase by 45° with respect to the received signal, the probability of error in the resulting system is
(A) $Q\left(\sqrt{\frac{2 E}{N_{0}}}\right)$
(B) $Q\left(\sqrt{\frac{E}{N_{0}}}\right)$
(C) $Q\left(\sqrt{\frac{E}{2 N_{0}}}\right)$
(D) $Q\left(\sqrt{\frac{E}{4 N_{0}}}\right)$
8.12 A binary symmetric channel (BSC) has a transition probability of $1 / 8$. If the binary symbol X is such that $P(X=0)=9 / 10$, then the
probability of error for an optimum receiver will be
(A) $7 / 80$
(B) $63 / 80$
(C) $9 / 10$
(D) $1 / 10$

The signal $m(t)$ as shown is applied to both a phase modulator (with k_{p} as the phase constant) and a frequency modulator (with k_{f} as the frequency constant) having the same carrier frequency.

The ratio k_{p} / k_{f} (in rad/Hz) for the same maximum phase deviation is
(A) 8π
(B) 4π
(C) 2π
(D) π

Statement for Linked Answer Question 14 and 15 :

The transfer function of a compensator is given as

$$
G_{c}(s)=\frac{s+a}{s+b}
$$

$G_{c}(s)$ is a lead compensator if
(A) $a=1, b=2$
(B) $a=3, b=2$
(C) $a=-3, b=-1$
(D) $a=3, b=1$
8.15 The phase of the above lead compensator is maximum at
(A) $\sqrt{2} \mathrm{rad} / \mathrm{s}$
(B) $\sqrt{3} \mathrm{rad} / \mathrm{s}$
(C) $\sqrt{6} \mathrm{rad} / \mathrm{s}$
(D) $1 / \sqrt{3} \mathrm{rad} / \mathrm{s}$

2011

An analog signal is band-limited to 4 kHz , sampled at the Nyquist rate and the samples are quantized into 4 levels. The quantized levels are assumed to be independent and equally probable. If we transmit two quantized samples per second, the information rate is
(A) $1 \mathrm{bit} / \mathrm{sec}$
(B) $2 \mathrm{bits} / \mathrm{sec}$
(C) 3 bits $/ \mathrm{sec}$
(D) $4 \mathrm{bits} / \mathrm{sec}$

The Column -1 lists the attributes and the Column -2 lists the modulation systems. Match the attribute to the modulation system that best meets it.

Column -1

P. Power efficient transmission of 1. Conventional signals
Q. Most bandwidth efficient 2. FM transmission of voice signals
R. Simplest receiver structure
3. VSB
S. Bandwidth efficient transmission
4. SSB-SC of signals with significant dc component
(A) P-4, Q-2, R-1, S-3
(B) P-2, Q-4, R-1, S-3
(C) P-3, Q-2, R-1, S-4
(D) P-2, Q-4, R-3, S-1

2011
TWO MARKS
${ }_{8.18} X(t)$ is a stationary random process with auto-correlation function $R_{X}(\tau)=\exp \left(-\pi \tau^{2}\right)$. This process is passed through the system shown below. The power spectral density of the output process $Y(t)$ is

(A) $\left(4 \pi^{2} f^{2}+1\right) \exp \left(-\pi f^{2}\right)$
(B) $\left(4 \pi^{2} f^{2}-1\right) \exp \left(-\pi f^{2}\right)$
(C) $\left(4 \pi^{2} f^{2}+1\right) \exp (-\pi f)$
(D) $\left(4 \pi^{2} f^{2}-1\right) \exp (-\pi f)$
8.19 A message signal $m(t)=\cos 2000 \pi t+4 \cos 4000 \pi t$ modulates the

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
carrier $c(t)=\cos 2 \pi f_{c} t$ where $f_{c}=1 \mathrm{MHz}$ to produce an AM signal. For demodulating the generated AM signal using an envelope detector, the time constant RC of the detector circuit should satisfy
(A) $0.5 \mathrm{~ms}<\mathrm{RC}<1 \mathrm{~ms}$
(B) $1 \mu \mathrm{~s} \ll \mathrm{RC}<0.5 \mathrm{~ms}$
(C) $\mathrm{RC} \ll 1 \mu \mathrm{~s}$
(D) $\mathrm{RC} \gg 0.5 \mathrm{~ms}$

Common Data For Q. 8.5 \& 8.6

A four-phase and an eight-phase signal constellation are shown in the figure below.

8.20 For the constraint that the minimum distance between pairs of signal points be d for both constellations, the radii r_{1}, and r_{2} of the circles are
(A) $r_{1}=0.707 d, r_{2}=2.782 d$
(B) $r_{1}=0.707 d, r_{2}=1.932 d$
(C) $r_{1}=0.707 d, r_{2}=1.545 d$
(D) $r_{1}=0.707 d, r_{2}=1.307 d$
${ }_{8.21}$ Assuming high SNR and that all signals are equally probable, the additional average transmitted signal energy required by the 8-PSK signal to achieve the same error probability as the 4 -PSK signal is
(A) 11.90 dB
(B) 8.73 dB
(C) 6.79 dB
(D) 5.33 dB
carrier signal is $x_{C}(t)=A_{C} \cos \left(2 \pi f_{c} t\right)$, which one of the following is a conventional AM signal without over-modulation
(A) $x(t)=A_{C} m(t) \cos \left(2 \pi f_{C} t\right)$
(B) $x(t)=A_{C}[1+m(t)] \cos \left(2 \pi f_{C} t\right)$
(C) $x(t)=A_{C} \cos \left(2 \pi f_{C} t\right)+\frac{A_{C}}{4} m(t) \cos \left(2 \pi f_{C} t\right)$
(D) $x(t)=A_{C} \cos \left(2 \pi f_{m} t\right) \cos \left(2 \pi f_{C} t\right)+A_{C} \sin \left(2 \pi f_{m} t\right) \sin \left(2 \pi f_{C} t\right)$

Consider an angle modulated signal

$$
x(t)=6 \cos \left[2 \pi \times 10^{6} t+2 \sin (800 \pi t)\right]+4 \cos (800 \pi t)
$$

The average power of $x(t)$ is
(A) 10 W
(B) 18 W
(C) 20 W
(D) 28 W
${ }_{8.24}$ Consider the pulse shape $s(t)$ as shown below. The impulse response $h(t)$ of the filter matched to this pulse is

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(A)

(B)

(C)

(D)

2010

TWO MARKS

Statement for linked Answer Question : 8.10 \& 8.11 :

Consider a baseband binary PAM receiver shown below. The additive channel noise $n(t)$ is with power spectral density $S_{n}(f)=N_{0} / 2=10^{-20} \mathrm{~W} / \mathrm{Hz}$. The low-pass filter is ideal with unity
gain and cut-off frequency 1 MHz . Let Y_{k} represent the random variable $y\left(t_{k}\right)$.

$$
\begin{aligned}
& Y_{k}=N_{k}, \text { if transmitted bit } b_{k}=0 \\
& Y_{k}=a+N_{k} \text { if transmitted bit } b_{k}=1
\end{aligned}
$$

Where N_{k} represents the noise sample value. The noise sample has a probability density function, $P_{N k}(n)=0.5 \alpha e^{-\alpha|n|}$ (This has mean zero and variance $2 / \alpha^{2}$). Assume transmitted bits to be equiprobable and threshold z is set to $a / 2=10^{-6} \mathrm{~V}$.

8.25 The value of the parameter α (in V^{-1}) is
(A) 10^{10}
(B) 10^{7}
(C) 1.414×10^{-10}
(D) 2×10^{-20}
8.26 The probability of bit error is
(A) $0.5 \times e^{-3.5}$
(B) $0.5 \times e^{-5}$
(C) $0.5 \times e^{-7}$
(D) $0.5 \times e^{-10}$
8.27 The Nyquist sampling rate for the signal $s(t)=\frac{\sin (500 \pi t)}{\pi t} \times \frac{\sin (700) \pi t}{\pi t}$ is given by
(A) 400 Hz
(B) 600 Hz
(C) 1200 Hz
(D) 1400 Hz
${ }_{8.28} X(t)$ is a stationary process with the power spectral density $S_{x}(f)>0$, for all f. The process is passed through a system shown below

Let $S_{y}(f)$ be the power spectral density of $Y(t)$. Which one of the following statements is correct
(A) $S_{y}(f)>0$ for all f
(B) $S_{y}(f)=0$ for $|f|>1 \mathrm{kHz}$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(C) $S_{y}(f)=0$ for $f=n f_{0}, f_{0}=2 \mathrm{kHz} \mathrm{kHz}, n$ any integer
(D) $S_{y}(f)=0$ for $f=(2 n+1) f_{0}=1 \mathrm{kHz}, n$ any integer

2009

ONE MARK
For a message siganl $m(t)=\cos \left(2 \pi f_{m} t\right)$ and carrier of frequency f_{c}, which of the following represents a single side-band (SSB) signal ?
(A) $\cos \left(2 \pi f_{m} t\right) \cos \left(2 \pi f_{c} t\right)$
(B) $\cos \left(2 \pi f_{t} t\right)$
(C) $\cos \left[2 \pi\left(f_{c}+f_{m}\right) t\right]$
(D) $\left[1+\cos \left(2 \pi f_{n} t\right) \cos \left(2 \pi f_{c} t\right)\right.$

Consider two independent random variables X and Y with identical distributions. The variables X and Y take values 0,1 and 2 with probabilities $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{4}$ respectively. What is the conditional probability $P(X+Y=2 \mid X-Y=0)$?
(A) 0
(B) $1 / 16$
(C) $1 / 6$
(D) 1
8.31 A discrete random variable X takes values from 1 to 5 with probabilities as shown in the table. A student calculates the mean X as 3.5 and her teacher calculates the variance of X as 1.5. Which of the following statements is true ?

k	1	2	3	4	5
$P(X=k)$	0.1	0.2	0.3	0.4	0.5

(A) Both the student and the teacher are right
(B) Both the student and the teacher are wrong
(C) The student is wrong but the teacher is right
(D) The student is right but the teacher is wrong
8.32 A message signal given by $m(t)=\left(\frac{1}{2}\right) \cos \omega_{1} t-\left(\frac{1}{2}\right) \sin \omega_{2} t$ amplitude - modulated with a carrier of frequency ω_{C} to generator $s(t)[1+m(t)] \cos \omega_{c} t$. What is the power efficiency achieved by this modulation scheme?
(A) 8.33%
(B) 11.11%
(C) 20%
(D) 25%
8.33 A communication channel with AWGN operating at a signal to noise ration $S N R \gg 1$ and bandwidth B has capacity C_{1}. If the $S N R$ is doubled keeping constant, the resulting capacity C_{2} is given by
(A) $C_{2} \approx 2 C_{1}$
(B) $C_{2} \approx C_{1}+B$
(C) $C_{2} \approx C_{1}+2 B$
(D) $C_{2} \approx C_{1}+0.3 B$

Common Data For Q. 8.19 \& 8.20 :

The amplitude of a random signal is uniformly distributed between -5 V and 5 V .
8.34 If the signal to quantization noise ratio required in uniformly quantizing the signal is 43.5 dB , the step of the quantization is approximately
(A) 0.033 V
(B) 0.05 V
(C) 0.0667 V
(D) 0.10 V

If the positive values of the signal are uniformly quantized with a step size of 0.05 V , and the negative values are uniformly quantized with a step size of 0.1 V , the resulting signal to quantization noise ration is approximately
(A) 46 dB
(B) 43.8 dB
(C) 42 dB
(D) 40 dB

2008

ONE MARK
Consider the amplitude modulated (AM) signal $A_{c} \cos \omega_{c} t+2 \cos \omega_{m} t \cos \omega_{c} t$. For demodulating the signal using envelope detector, the minimum value of A_{c} should be
(A) 2
(B) 1
(C) 0.5
(D) 0

The probability density function (pdf) of random variable is as shown below

The corresponding commutative distribution function CDF has the form

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(A)

(B)

(C)

(D)

8.38 A memory less source emits n symbols each with a probability p. The entropy of the source as a function of n
(A) increases as $\log n$
(B) decreases as $\log \left(\frac{1}{n}\right)$
(C) increases as n
(D) increases as $n \log n$
8.39 Noise with double-sided power spectral density on K over all frequencies is passed through a $R C$ low pass filter with 3 dB cut-off frequency of f_{c}. The noise power at the filter output is
(A) K
(B) $K f_{c}$
(C) $k \pi f_{c}$
(D) ∞
8.40 Consider a Binary Symmetric Channel (BSC) with probability of error being p. To transmit a bit, say 1 , we transmit a sequence of three 1s. The receiver will interpret the received sequence to represent 1 if at least two bits are 1. The probability that the transmitted bit will be received in error is
(A) $p^{3}+3 p^{2}(1-p)$
(B) p^{3}
(C) $\left(1-p^{3}\right)$
(D) $p^{3}+p^{2}(1-p)$
8.41 Four messages band limited to $W, W, 2 W$ and $3 W$ respectively are to be multiplexed using Time Division Multiplexing (TDM). The minimum bandwidth required for transmission of this TDM signal is
(A) W
(B) $3 W$
(C) $6 W$
(D) $7 W$
8.42 Consider the frequency modulated signal
$10 \cos \left[2 \pi \times 10^{5} t+5 \sin (2 \pi \times 1500 t)+7.5 \sin (2 \pi \times 1000 t)\right]$
with carrier frequency of $10^{5} \mathrm{~Hz}$. The modulation index is
(A) 12.5
(B) 10
(C) 7.5
(D) 5
8.43 The signal $\cos \omega_{c} t+0.5 \cos \omega_{m} t \sin \omega_{c} t$ is
(A) FM only
(B) AM only
(C) both AM and FM
(D) neither AM nor FM

Common Data For Q. 8.29, 8.30 and 8.31 :

A speed signal, band limited to 4 kHz and peak voltage varying between +5 V and -5 V , is sampled at the Nyquist rate. Each

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
sample is quantized and represented by 8 bits.
If the bits 0 and 1 are transmitted using bipolar pulses, the minimum bandwidth required for distortion free transmission is
(A) 64 kHz
(B) 32 kHz
(C) 8 kHz
(D) 4 kHz
8.45 Assuming the signal to be uniformly distributed between its peak to peak value, the signal to noise ratio at the quantizer output is
(A) 16 dB
(B) 32 dB
(C) 48 dB
(D) 4 kHz
8.46 Assuming the signal to be uniformly distributed between its peak to peak value, the signal to noise ratio at the quantizer output is
(A) 1024
(B) 512
(C) 256
(D) 64

2007

ONE MARK
If $R(\tau)$ is the auto correlation function of a real, wide-sense stationary random process, then which of the following is NOT true
(A) $R(\tau)=R(-\tau)$
(B) $|R(\tau)| \leq R(0)$
(C) $R(\tau)=-R(-\tau)$
(D) The mean square value of the process is $R(0)$
8.48 If $S(f)$ is the power spectral density of a real, wide-sense stationary random process, then which of the following is ALWAYS true?
(A) $S(0) \leq S(f)$
(B) $S(f) \geq 0$
(C) $S(-f)=-S(f)$
(D) $\int_{-\infty}^{\infty} S(f) d f=0$
8.49 If E denotes expectation, the variance of a random variable X is given by

TWO MARKS
(A) $E\left[X^{2}\right]-E^{2}[X]$
(B) $E\left[X^{2}\right]+E^{2}[X]$
(C) $E\left[X^{2}\right]$
(D) $E^{2}[X]$
8.50 A Hilbert transformer is a
(A) non-linear system
(B) non-causal system
(C) time-varying system
(D) low-pass system
8.51 In delta modulation, the slope overload distortion can be reduced by
(A) decreasing the step size
(B) decreasing the granular noise
(C) decreasing the sampling rate
(D) increasing the step size
8.52 The raised cosine pulse $p(t)$ is used for zero ISI in digital communications. The expression for $p(t)$ with unity roll-off factor is given by

$$
p(t)=\frac{\sin 4 \pi W t}{4 \pi W t\left(1-16 W^{2} t^{2}\right)}
$$

The value of $p(t)$ at $t=\frac{1}{4 W}$ is
(A) -0.5
(B) 0
(C) 0.5
(D) ∞
8.53 In the following scheme, if the spectrum $M(f)$ of $m(t)$ is as shown, then the spectrum $Y(f)$ of $y(t)$ will be

(A)

(B)

(C)

(D)

8.54 During transmission over a certain binary communication channel,

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec 2014

bit errors occur independently with probability p. The probability of $A T$ MOST one bit in error in a block of n bits is given by
(A) p^{n}
(B) $1-p^{n}$
(C) $n p(1-p)^{n-1}+(1+p)^{n}$
(D) $1-(1-p)^{n}$

In a GSM system, 8 channels can co-exist in 200 kHz bandwidth using TDMA. A GSM based cellular operator is allocated 5 MHz bandwidth. Assuming a frequency reuse factor of $\frac{1}{5}$, i.e. a five-cell repeat pattern, the maximum number of simultaneous channels that can exist in one cell is
(A) 200
(B) 40
(C) 25
(D) 5
8.56 In a Direct Sequence CDMA system the chip rate is 1.2288×10^{6} chips per second. If the processing gain is desired to be AT LEAST 100 , the data rate
(A) must be less than or equal to 12.288×10^{3} bits per sec
(B) must be greater than 12.288×10^{3} bits per sec
(C) must be exactly equal to 12.288×10^{3} bits per sec
(D) can take any value less than 122.88×10^{3} bits per sec

Common Data For Q. 8.41 \& 8.42 :

Two 4 -array signal constellations are shown. It is given that ϕ_{1} and ϕ_{2} constitute an orthonormal basis for the two constellation. Assume that the four symbols in both the constellations are equiprobable. Let $\frac{N_{0}}{2}$ denote the power spectral density of white Gaussian noise.

Constellation 1

Constellation 2

The if ratio or the average energy of Constellation 1 to the average energy of Constellation 2 is
(A) $4 a^{2}$
(B) 4
(C) 2
(D) 8
8.58 If these constellations are used for digital communications over an AWGN channel, then which of the following statements is true ?
(A) Probability of symbol error for Constellation 1 is lower
(B) Probability of symbol error for Constellation 1 is higher
(C) Probability of symbol error is equal for both the constellations
(D) The value of N_{0} will determine which of the constellations has a lower probability of symbol error

Statement for Linked Answer Question 8.44 \& 8.45 :

An input to a 6 -level quantizer has the probability density function $f(x)$ as shown in the figure. Decision boundaries of the quantizer are chosen so as to maximize the entropy of the quantizer output. It is given that 3 consecutive decision boundaries are' $-1^{\prime} . .^{\prime} 0^{\prime}$ and '1'.

The values of a and b are
(A) $a=\frac{1}{6}$ and $b=\frac{1}{12}$
(B) $a=\frac{1}{5}$ and $b=\frac{3}{40}$
(C) $a=\frac{1}{4}$ and $b=\frac{1}{16}$
(D) $a=\frac{1}{3}$ and $b=\frac{1}{24}$

Assuming that the reconstruction levels of the quantizer are the mid-points of the decision boundaries, the ratio of signal power to quantization noise power is
(A) $\frac{152}{9}$
(B) $\frac{64}{3}$
(C) $\frac{76}{3}$
(D) 28
${ }_{8.61}$ A low-pass filter having a frequency response $H(j \omega)=A(\omega) e^{j \phi(\omega)}$ does not produce any phase distortions if
(A) $A(\omega)=C \omega^{3}, \phi(\omega)=k \omega^{3}$
(B) $A(\omega)=C \omega^{2}, \phi(\omega)=k w$
(C) $A(\omega)=C \omega, \phi(\omega)=k \omega^{2}$
(D) $A(\omega)=C, \phi(\omega)=k \omega^{-1}$
8.62 A signal with bandwidth 500 Hz is first multiplied by a signal $g(t)$ where

$$
g(t)=\sum_{R=-\infty}^{\infty}(-1)^{k} \delta\left(t-0.5 \times 10^{-4} k\right)
$$

The resulting signal is then passed through an ideal lowpass filter with bandwidth 1 kHz . The output of the lowpass filter would be
(A) $\delta(t)$
(B) $m(t)$
(C) 0
(D) $m(t) \delta(t)$
8.63 The minimum sampling frequency (in samples/sec) required to *
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
reconstruct the following signal from its samples without distortion

$$
x(t)=5\left(\frac{\sin 2 \pi 100 t}{\pi t}\right)^{3}+7\left(\frac{\sin 2 \pi 100 t}{\pi t}\right)^{2} \text { would be }
$$

(A) 2×10^{3}
(B) 4×10^{3}
(C) 6×10^{3}
(D) 8×10^{3}
8.64 The minimum step-size required for a Delta-Modulator operating at 32 k samples/sec to track the signal (here $u(t)$ is the unit-step function)

$$
x(t)=125[u(t)-u(t-1)+(250 t)[u(t-1)-u(t-2)]
$$

so that slope-overload is avoided, would be
(A) 2^{-10}
(B) 2^{-8}
(C) 2^{-6}
(D) 2^{-4}
8.65 A zero-mean white Gaussian noise is passes through an ideal lowpass filter of bandwidth 10 kHz . The output is then uniformly sampled with sampling period $t_{s}=0.03 \mathrm{msec}$. The samples so obtained would be
(A) correlated
(B) statistically independent
(C) uncorrelated
(D) orthogonal
${ }_{8.66}$ A source generates three symbols with probabilities $0.25,0.25$, 0.50 at a rate of 3000 symbols per second. Assuming independent generation of symbols, the most efficient source encoder would have average bit rate is
(A) $6000 \mathrm{bits} / \mathrm{sec}$
(B) $4500 \mathrm{bits} / \mathrm{sec}$
(C) $3000 \mathrm{bits} / \mathrm{sec}$
(D) $1500 \mathrm{bits} / \mathrm{sec}$
8.67 The diagonal clipping in Amplitude Demodulation (using envelop detector) can be avoided it RC time-constant of the envelope detector satisfies the following condition, (here W is message bandwidth and ω is carrier frequency both in $\mathrm{rad} / \mathrm{sec}$)
(A) $R C<\frac{1}{W}$
(B) $R C>\frac{1}{W}$
(C) $R C<\frac{1}{\omega}$
(D) $R C>\frac{1}{\omega}$
8.68 A uniformly distributed random variable X with probability density function

$$
\left.f_{x}(x)=\frac{1}{10} p u(x+5)-u(x-5)\right]
$$

where $u($.$) is the unit step function is passed through a transfor-$ mation given in the figure below. The probability density function of the transformed random variable Y would be

(A) $f_{y}(y)=\frac{1}{5}[u(y+2.5)-u(y-2.25)]$
(B) $f_{y}(y)=0.5 \delta(y)+0.5 \delta(y-1)$
(C) $f_{y}(y)=0.25 \delta(y+2.5)+0.25 \delta(y-2.5)+5 \delta(y)$
(D) $f_{y}(y)=0.25 \delta(y+2.5)+0.25 \delta(y-2.5)+\frac{1}{10}[u(y+2.5)-u(y-2.5)]$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
8.69 In the following figure the minimum value of the constant " $C^{\prime \prime}$, which is to be added to $y_{1}(t)$ such that $y_{1}(t)$ and $y_{2}(t)$ are different, is

(A) \triangle
(B) $\frac{\Delta}{2}$
(C) $\frac{\Delta^{2}}{12}$
(D) $\frac{\Delta}{L}$

A message signal with bandwidth 10 kHz is Lower-Side Band SSB modulated with carrier frequency $f_{c l}=10^{6} \mathrm{~Hz}$. The resulting signal is then passed through a Narrow-Band Frequency Modulator with carrier frequency $f_{c 2}=10^{9} \mathrm{~Hz}$.
The bandwidth of the output would be
(A) $4 \times 10^{4} \mathrm{~Hz}$
(B) $2 \times 10^{6} \mathrm{~Hz}$
(C) $2 \times 10^{9} \mathrm{~Hz}$
(D) $2 \times 10^{10} \mathrm{~Hz}$

Common Data For Q. 8.56 \& 8.57 :

Let $g(t)=p(t)^{*}(p t)$, where * denotes convolution \& $p(t)=u(t)-u(t-1) \lim _{z \rightarrow \infty}$ with $u(t)$ being the unit step function
${ }_{3.71}$ The impulse response of filter matched to the signal $s(t)=g(t)-\delta(1-2)^{*} g(t)$ is given as :
(A) $s(1-t)$
(B) $-s(1-t)$
(C) $-s(t)$
(D) $s(t)$

An Amplitude Modulated signal is given as

$$
x_{A M}(t)=100[p(t)+0.5 g(t)] \cos \omega_{c} t
$$

in the interval $0 \leq t \leq 1$. One set of possible values of modulating
signal and modulation index would be
(A) $t, 0.5$
(B) $t, 1.0$
(C) $t, 2.0$
(D) $t^{2}, 0.5$

Common Data For Q. 8.58 \& 8.59 :

The following two question refer to wide sense stationary stochastic process
8.73 It is desired to generate a stochastic process (as voltage process) with power spectral density $S(\omega)=16 /\left(16+\omega^{2}\right)$ by driving a Linear-Time-Invariant system by zero mean white noise (As voltage process) with power spectral density being constant equal to 1 . The system which can perform the desired task could be
(A) first order lowpass R-L filter
(B) first order highpass R-C filter
(C) tuned L-C filter
(D) series R-L-C filter

The parameters of the system obtained in previous Q would be
(A) first order R-L lowpass filter would have $R=4 \Omega L=1 H$
(B) first order R-C highpass filter would have $R=4 \Omega C=0.25 F$
(C) tuned L-C filter would have $L=4 H \quad C=4 F$
(D) series R-L-C lowpass filter would have $R=1 \Omega, L=4 H$, $C=4 F$

Common Data For Q. 8.60 \& 8.61 :

Consider the following Amplitude Modulated (AM) signal, where $f_{m}<B$

$$
X_{A M}(t)=10\left(1+0.5 \sin 2 \pi f_{m} t\right) \cos 2 \pi f_{c} t
$$

8.75 The average side-band power for the AM signal given above is
(A) 25
(B) 12.5
(C) 6.25
(D) 3.125
8.76 The AM signal gets added to a noise with Power Spectral Density $S_{n}(f)$ given in the figure below. The ratio of average sideband power to mean noise power would be :

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) $\frac{25}{8 N_{0} B}$
(B) $\frac{25}{4 N_{0} B}$
(C) $\frac{25}{2 N_{0} B}$
(D) $\frac{25}{N_{0} B}$

2005

ONE MARK
Find the correct match between group 1 and group 2 .
Group 1
Group 2
P. $\left\{1+k m(t) A \sin \left(\omega_{c} t\right)\right\}$
Q. $k m(t) A \sin \left(\omega_{c} t\right)$
W. Phase modulation
X. Frequency modulation
R. $A \sin \left\{\omega_{c} t+k m(t)\right\}$
Y. Amplitude modulation
S. $A \sin \left[\omega_{c} t+k \int_{-\infty}^{t} m(t) d t\right]$
Z. DSB-SC modulation
(A) $\mathrm{P}-\mathrm{Z}, \mathrm{Q}-\mathrm{Y}, \mathrm{R}-\mathrm{X}, \mathrm{S}-\mathrm{W}$
(B) $\mathrm{P}-\mathrm{W}, \mathrm{Q}-\mathrm{X}, \mathrm{R}-\mathrm{Y}, \mathrm{S}-\mathrm{Z}$
(C) $\mathrm{P}-\mathrm{X}, \mathrm{Q}-\mathrm{W}, \mathrm{R}-\mathrm{Z}, \mathrm{S}-\mathrm{Y}$
(D) $\mathrm{P}-\mathrm{Y}, \mathrm{Q}-\mathrm{Z}, \mathrm{R}-\mathrm{W}, \mathrm{S}-\mathrm{X}$

Which of the following analog modulation scheme requires the minimum transmitted power and minimum channel bandwidth ?
(A) VSB
(B) DSB-SC
(C) SSB
(D) AM

2005

TWO MARKS
8.79 A device with input $X(t)$ and output $y(t)$ is characterized by: $Y(t)=x^{2}(t)$. An FM signal with frequency deviation of 90 kHz and modulating signal bandwidth of 5 kHz is applied to this device. The bandwidth of the output signal is
(A) 370 kHz
(B) 190 kHz
(C) 380 kHz
(D) 95 kHz
8.80 A signal as shown in the figure is applied to a matched filter. Which of the following does represent the output of this matched filter ?

(A)

(C)

(B)

(D)

8.81 Noise with uniform power spectral density of $N_{0} \mathrm{~W} / \mathrm{Hz}$ is passed though a filter $H(\omega)=2 \exp \left(-j \omega t_{d}\right)$ followed by an ideal pass filter of bandwidth B Hz. The output noise power in Watts is
(A) $2 N_{0} B$
(B) $4 N_{0} B$
(C) $8 N_{0} B$
(D) $16 N_{0} B$
the probability density function as shown in the figure. The mean square value of v is

(A) 4
(B) 6
(C) 8
(D) 9
${ }_{8.83}$ A carrier is phase modulated (PM) with frequency deviation of 10 kHz by a single tone frequency of 1 kHz . If the single tone frequency is increased to 2 kHz , assuming that phase deviation remains unchanged, the bandwidth of the PM signal is
(A) 21 kHz
(B) 22 kHz
(C) 42 kHz
(D) 44 kHz

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Common Data For Q. 8.69 and 8.70 :

Asymmetric three-level midtread quantizer is to be designed assuming equiprobable occurrence of all quantization levels.

8.84 If the probability density function is divide into three regions as shown in the figure, the value of a in the figure is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
8.85 The quantization noise power for the quantization region between $-a$ and $+a$ in the figure is
(A) $\frac{4}{81}$
(B) $\frac{1}{9}$
(C) $\frac{5}{81}$
(D) $\frac{2}{81}$

2004

ONE MARK
8.86 In a PCM system, if the code word length is increased from 6 to 8 bits, the signal to quantization noise ratio improves by the factor
(A) $\frac{8}{6}$
(B) 12
(C) 16
(D) 8
8.87 An AM signal is detected using an envelop detector. The carrier frequency and modulating signal frequency are 1 MHz and 2 kHz respectively. An appropriate value for the time constant of the envelop detector is
(A) $500 \mu \mathrm{sec}$
(B) $20 \mu \mathrm{sec}$
(C) $0.2 \mu \mathrm{sec}$
(D) $1 \mu \mathrm{sec}$
8.88 An AM signal and a narrow-band FM signal with identical carriers, modulating signals and modulation indices of 0.1 are added together. The resultant signal can be closely approximated by
(A) broadband FM
(B) SSB with carrier
(C) DSB-SC
(D) SSB without carrier

In the output of a DM speech encoder, the consecutive pulses are of opposite polarity during time interval $t_{1} \leq t \leq t_{2}$. This indicates that during this interval
(A) the input to the modulator is essentially constant
(B) the modulator is going through slope overload
(C) the accumulator is in saturation
(D) the speech signal is being sampled at the Nyquist rate

The distribution function $F_{x}(x)$ of a random variable x is shown in the figure. The probability that $X=1$ is

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(A) zero
(B) 0.25
(C) 0.55
(D) 0.30

2004

8.91 A 1 mW video signal having a bandwidth of 100 MHz is transmitted to a receiver through cable that has 40 dB loss. If the effective oneside noise spectral density at the receiver is $10^{-20} \mathrm{Watt} / \mathrm{Hz}$, then the signal-to-noise ratio at the receiver is
(A) 50 dB
(B) 30 dB
(C) 40 dB
(D) 60 dB

Consider the signal $x(t)$ shown in Fig. Let $h(t)$ denote the impulse response of the filter matched to $x(t)$, with $h(t)$ being non-zero only in the interval 0 to 4 sec . The slope of $h(t)$ in the interval $3<t<4$ sec is

(A) $\frac{1}{2} \sec ^{-1}$
(B) $-1 \sec ^{-1}$
(C) $-\frac{1}{2} \sec ^{-1}$
(D) $1 \mathrm{sec}^{-1}$
8.93 A source produces binary data at the rate of 10 kbps . The binary
symbols are represented as shown in the figure.
The source output is transmitted using two modulation schemes, namely Binary PSK (BPSK) and Quadrature PSK (QPSK). Let B_{1} and B_{2} be the bandwidth requirements of the above rectangular pulses is $10 \mathrm{kHz}, B_{1}$ and B_{2} are

(A) $B_{1}=20 \mathrm{kHz}, B_{2}=20 \mathrm{kHz}$
(B) $B_{1}=10 \mathrm{kHz}, B_{2}=20 \mathrm{kHz}$
(C) $B_{1}=20 \mathrm{khz}, B_{2}=10 \mathrm{kHz}$
(D) $B_{1}=10 \mathrm{kHz}, B_{2}=10 \mathrm{kHz}$
8.94 A 100 MHz carrier of 1 V amplitude and a 1 MHz modulating signal of 1 V amplitude are fed to a balanced modulator. The ourput of the modulator is passed through an ideal high-pass filter with cutoff frequency of 100 MHz . The output of the filter is added with 100 MHz signal of 1 V amplitude and 90° phase shift as shown in the figure. The envelope of the resultant signal is

(A) constant
(B) $\sqrt{1+\sin \left(2 \pi \times 10^{6} t\right)}$
(C) $\sqrt{\frac{5}{4}-\sin \left(2 \pi-10^{6} t\right)}$
(D) $\sqrt{\frac{5}{4}+\cos \left(2 \pi \times 10^{6} t\right)}$
8.95 Two sinusoidal signals of same amplitude and frequencies 10 kHz and 10.1 kHz are added together. The combined signal is given to an ideal frequency detector. The output of the detector is
(A) 0.1 kHz sinusoid
(B) 20.1 kHz sinusoid
(C) a linear function of time
(D) a constant
8.96 Consider a binary digital communication system with equally likely 0 's and 1's. When binary 0 is transmitted the detector input can lie between the levels -0.25 V and +0.25 V with equl probability : when binary 1 is transmitted, the voltage at the detector can have any value between 0 and 1 V with equal probability. If the detector has a threshold of 0.2 V (i.e., if the received signal is greater than 0.2 V , the bit is taken as 1), the average bit error probability is
(A) 0.15
(B) 0.2
(C) 0.05
(D) 0.5

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

8.97 A random variable X with uniform density in the interval 0 to 1 is quantized as follows:

$$
\begin{array}{ll}
\text { If } 0 \leq X \leq 0.3, & x_{q}=0 \\
\text { If } 0.3<X \leq 1, & x_{q}=0.7
\end{array}
$$

where x_{q} is the quantized value of X.
The root-mean square value of the quantization noise is
(A) 0.573
(B) 0.198
(C) 2.205
(D) 0.266
8.98 Choose the current one from among the alternative A, B, C, D after matching an item from Group 1 with the most appropriate item in Group 2.
Group $1 \quad$ Group 2

1. FM	P. Slope overload
2. DM	Q. μ-law
3. PSK	R. Envelope detector
4. PCM	S. Hilbert transform
	T. Hilbert transform
	U. Matched filter

(A) $1-\mathrm{T}, 2-\mathrm{P}, 3-\mathrm{U}, 4-\mathrm{S}$
(B) $1-\mathrm{S}, 2-\mathrm{U}, 3-\mathrm{P}, 4-\mathrm{T}$
(C) $1-\mathrm{S}, 2-\mathrm{P}, 3-\mathrm{U}, 4-\mathrm{Q}$
(D) $1-\mathrm{U}, 2-\mathrm{R}, 3-\mathrm{S}, 4-\mathrm{Q}$
8.99 Three analog signals, having bandwidths $1200 \mathrm{~Hz}, 600 \mathrm{~Hz}$ and 600 Hz , are sampled at their respective Nyquist rates, encoded with 12 bit words, and time division multiplexed. The bit rate for the multiplexed. The bit rate for the multiplexed signal is
(A) 115.2 kbps
(B) 28.8 kbps
(C) 57.6 kbps
(D) 38.4 kbps
8.100 Consider a system shown in the figure. Let $X(f)$ and $Y(f)$ and denote the Fourier transforms of $x(t)$ and $y(t)$ respectively. The ideal HPF has the cutoff frequency 10 kHz .

The positive frequencies where $Y(f)$ has spectral peaks are
(A) 1 kHz and 24 kHz
(B) 2 kHz and 244 kHz
(C) 1 kHz and 14 kHz
(D) 2 kHz and 14 kHz

2003

ONE MARK

8.101 The input to a coherent detector is DSB-SC signal plus noise. The noise at the detector output is
(A) the in-phase component
(B) the quadrature - component
(C) zero
(D) the envelope
${ }_{8.102}$ The noise at the input to an ideal frequency detector is white. The detector is operating above threshold. The power spectral density of the noise at the output is
(A) raised - cosine
(B) flat
(C) parabolic
(D) Gaussian
8.103 At a given probability of error, binary coherent FSK is inferior to binary coherent PSK by.
(A) 6 dB
(B) 3 dB
(C) 2 dB
(D) 0 dB

2003

TWO MARKS

8.104 Let X and Y be two statistically independent random variables uniformly distributed in the ranges $(-1,1)$ and $(-2,1)$ respectively. Let $Z=X+Y$. Then the probability that $(z \leq-1)$ is
(A) zero
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) $\frac{1}{12}$

Common Data For Q. 8.90 \& 8.91 :

$X(t)$ is a random process with a constant mean value of 2 and the auto correlation function $R_{x x}(\tau)=4\left(e^{-0.2|\tau|}+1\right)$.
${ }_{8.105}$ Let X be the Gaussian random variable obtained by sampling the process at $t=t_{i}$ and let

$$
Q(\alpha)=\int_{\alpha}^{\infty}-\frac{1}{\sqrt{2 \pi}} e^{\frac{x^{2}}{2}} d y
$$

The probability that $[x \leq 1]$ is
(A) $1-Q(0.5)$
(B) $Q(0.5)$
(C) $Q\left(\frac{1}{2 \sqrt{2}}\right)$
(D) $1-Q\left(\frac{1}{2 \sqrt{2}}\right)$
8.106 Let Y and Z be the random variable obtained by sampling $X(t)$ at $t=2$ and $t=4$ respectively. Let $W=Y-Z$. The variance of W is
(A) 13.36
(B) 9.36
(C) 2.64
(D) 8.00

A sinusoidal signal with peak-to-peak amplitude of 1.536 V is quantized into 128 levels using a mid-rise uniform quantizer. The
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
quantization-noise power is
(A) 0.768 V
(B) $48 \times 10^{-6} V^{2}$
(B) $12 \times 10^{-6} V^{2}$
(D) 3.072 V
8.108 Let $x(t)=2 \cos (800 \pi)+\cos (1400 \pi t) \cdot x(t)$ is sampled with the rectangular pulse train shown in the figure. The only spectral components (in kHz) present in the sampled signal in the frequency range 2.5 kHz to 3.5 kHz are

(A) $2.7,3.4$
(B) $3.3,3.6$
(C) 2.6, 2.7, 3.3, 3.4, 3.6
(D) $2.7,3.3$

A DSB-SC signal is to be generated with a carrier frequency $f_{c}=1$ MHz using a non-linear device with the input-output characteristic $V_{0}=a_{0} v_{i}+a_{1} v_{i}^{3}$ where a_{0} and a_{1} are constants. The output of the non-linear device can be filtered by an appropriate band-pass filter. Let $V_{i}=A_{c}^{i} \cos \left(2 \pi f^{i} c^{t}\right)+m(t)$ is the message signal. Then the value of $f_{c}^{i}($ in MHz$)$ is
(A) 1.0
(B) 0.333
(B) 0.5
(D) 3.0

Common Data For Q. 8.95 \& 8.96 :

Let $m(t)=\cos \left[\left(4 \pi \times 10^{3}\right) t\right]$ be the message signal \&
$c(t)=5 \cos \left[\left(2 \pi \times 10^{6} t\right)\right]$ be the carrier.
${ }^{8.110} \quad c(t)$ and $m(t)$ are used to generate an AM signal. The modulation index of the generated AM signal is 0.5 . Then the quantity Total sideband power is

Carrier power is
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{1}{8}$
${ }_{8.111} c(t)$ and $m(t)$ are used to generated an FM signal. If the peak frequency deviation of the generated FM signal is three times the transmission bandwidth of the AM signal, then the coefficient of the term $\cos \left[2 \pi\left(1008 \times 10^{3} t\right)\right]$ in the FM signal (in terms of the Bessel coefficients) is
(A) $5 J_{4}(3)$
(B) $\frac{5}{2} J_{8}(3)$
(C) $\frac{5}{2} J_{8}(4)$
(D) $5 J_{4}(6)$

Choose the correct one from among the alternative A, B, C, D after matching an item in Group 1 with most appropriate item in Group 2.

Group 1
P. Ring modulator
Q. VCO
R. Foster-Seely discriminator

Group 2

1. Clock recovery
2. Demodulation of FM
3. Frequency conversion

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
S. Mixer
4. Summing the two inputs
5. Generation of FM
6. Generation of DSB-Sc
(A) $P-1 ; Q-3 ; R-2 ; S-4$
(B) $P-6 ; Q=5 ; R-2 ; S-3$
(C) $P-6 ; Q-1 ; R-3 ; S-2$
(D) $P-5 ; Q-6 ; R-1 ; S-3$
8.113 A superheterodyne receiver is to operate in the frequency range 550 $\mathrm{kHz}-1650 \mathrm{kHz}$, with the intermediate frequency of 450 kHz . Let $R=C_{\max } / C_{\min }$ denote the required capacitance ratio of the local oscillator and I denote the image frequency (in kHz) of the incoming signal. If the receiver is tuned to 700 kHz , then
(A) $R=4.41, I=1600$
(B) $R=2.10, I-1150$
(C) $R=3.0, I=600$
(D) $R=9.0, I=1150$
8.114 If E_{b}, the energy per bit of a binary digital signal, is 10^{-5} wattsec and the one-sided power spectral density of the white noise, $N_{0}=10^{-6} \mathrm{~W} / \mathrm{Hz}$, then the output SNR of the matched filter is
(A) 26 dB
(B) 10 dB
(C) 20 dB
(D) 13 dB
8.115 The input to a linear delta modulator having a step-size $\triangle=0.628$ is a sine wave with frequency f_{m} and peak amplitude E_{m}. If the sampling frequency $f_{x}=40 \mathrm{kHz}$, the combination of the sine-wave frequency and the peak amplitude, where slope overload will take place is

E_{m}	f_{m}
(A) 0.3 V	8 kHz
(B) 1.5 V	4 kHz
(C) 1.5 V	2 kHz
(D) 3.0 V	1 kHz

8.116 If S represents the carrier synchronization at the receiver and ρ represents the bandwidth efficiency, then the correct statement for the coherent binary PSK is
(A) $\rho=0.5, S$ is required
(B) $\rho=1.0, S$ is required
(C) $\rho=0.5, S$ is not required
(D) $\rho=1.0, S$ is not required
8.117 A signal is sampled at 8 kHz and is quantized using 8 - bit uniform quantizer. Assuming $\mathrm{SNR} q$ for a sinusoidal signal, the correct statement for PCM signal with a bit rate of R is
(A) $R=32 \mathrm{kbps}, S N R_{q}=25.8 \mathrm{~dB}$
(B) $R=64 \mathrm{kbps}, S N R_{q}=49.8 \mathrm{~dB}$
(C) $R=64 \mathrm{kbps}, S N R_{q}=55.8 \mathrm{~dB}$
(D) $R=32 \mathrm{kbps}, S N R_{q}=49.8 \mathrm{~dB}$

2002

ONE MARK
${ }_{8.118}$ A 2 MHz sinusoidal carrier amplitude modulated by symmetrical square wave of period $100 \mu \mathrm{sec}$. Which of the following frequencies will NOT be present in the modulated signal ?
(A) 990 kHz
(B) 1010 kHz
(C) 1020 kHz
(D) 1030 kHz
${ }^{8.119} \quad$ Consider a sample signal $y(t)=5 \times 10^{-6} \times(t) \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right)$ where $x(t)=10 \cos \left(8 \pi \times 10^{3}\right) t$ and $T_{s}=100 \mu$ sec.
When $y(t)$ is passed through an ideal lowpass filter with a cutoff frequency of 5 KHz , the output of the filter is
(A) $5 \times 10^{-6} \cos \left(8 \pi \times 10^{3}\right) t$
(b) $5 \times 10^{-5} \cos \left(8 \pi \times 10^{3}\right) t$
(C) $5 \times 10^{-1} \cos \left(8 \pi \times 10^{3}\right) t$
(D) $10 \cos \left(8 \pi \times 10^{3}\right) t$
8.120 For a bit-rate of 8 Kbps , the best possible values of the transmitted frequencies in a coherent binary FSK system are
(A) 16 kHz and 20 kHz
(C) 20 kHz and 32 kHz
(C) 20 kHz and 40 kHz
(D) 32 kHz and 40 kHz
8.121 The line-of-sight communication requires the transmit and receive antennas to face each other. If the transmit antenna is vertically polarized, for best reception the receiver antenna should be
(A) horizontally polarized
(B) vertically polarized
(C) at 45° with respect to horizontal polarization
(D) at 45° with respect to vertical polarization

An angle-modulated signal is given by

$$
s(t)=\cos 2 \pi\left(2 \times 10^{6} t+30 \sin 150 t+40 \cos 150 t\right)
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

The maximum frequency and phase deviations of $s(t)$ are
(A) $10.5 \mathrm{kHz}, 140 \pi \mathrm{rad}$
(B) $6 \mathrm{kHz}, 80 \pi \mathrm{rad}$
(C) $10.5 \mathrm{kHz}, 100 \pi \mathrm{rad}$
(D) $7.5 \mathrm{kHz}, 100 \pi \mathrm{rad}$
8.123 In the figure $m(t)=\frac{2 \sin 2 \pi t}{t}, s(t)=\cos 200 \pi t$ and $n(t)=\frac{\sin 199 \pi t}{t}$

The output $y(t)$ will be

(A) $\frac{\sin 2 \pi t}{t}$
(B) $\frac{\sin 2 \pi t}{t}+\frac{\sin \pi t}{t} \cos 3 \pi t$
(C) $\frac{\sin 2 \pi t}{t}+\frac{\sin 0.5 \pi t}{t} \cos 1.5 \pi t$
(D) $\frac{\sin 2 \pi t}{t}+\frac{\sin \pi t}{t} \cos 0.75 \pi t$
8.124 A signal $x(t)=100 \cos \left(24 \pi \times 10^{3}\right) t$ is ideally sampled with a sampling period of 50μ sec ana then passed through an ideal lowpass filter with cutoff frequency of 15 kHz . Which of the following frequencies is/are present at the filter output?
(A) 12 kHz only
(B) 8 kHz only
(C) 12 kHz and 9 kHz
(D) 12 kHz and 8 kHz
${ }_{8.125}$ If the variance α_{x}^{2} of $d(n)=x(n)-x(n-1)$ is one-tenth the variance α_{x}^{2} of stationary zero-mean discrete-time signal $x(n)$, then the normalized autocorrelation function $\frac{R_{x x}(k)}{\alpha^{2}}$ at $k=1$ is
(A) 0.95
(B) $0.90^{\alpha_{x}^{2}}$
(C) 0.10
(D) 0.05

2001

ONE MARK
8.126 A bandlimited signal is sampled at the Nyquist rate. The signal can be recovered by passing the samples through
(A) an RC filter
(B) an envelope detector
(C) a PLL
(D) an ideal low-pass filter with the appropriate bandwidth
8.127 The PDF of a Gaussian random variable X is given by $p_{x}(x)=\frac{1}{3 \sqrt{2 \pi}} e^{-\frac{(x-4)^{2}}{18}}$. The probability of the event $\{X=4\}$ is
(A) $\frac{1}{2}$
(B) $\frac{1}{3 \sqrt{2 \pi}}$
(C) 0
(D) $\frac{1}{4}$

2001

TWO MARKS
8.128 A video transmission system transmits 625 picture frames per second. Each frame consists of a 400×400 pixel grid with 64 intensity levels per pixel. The data rate of the system is
(A) 16 Mbps
(B) 100 Mbps
(C) 600 Mbps
(D) 6.4 Gbps
8.129 The Nyquist sampling interval, for the signal $\sin c(700 t)+\sin c(500 t)$ is
(A) $\frac{1}{350} \mathrm{sec}$
(B) $\frac{\pi}{350} \mathrm{sec}$
(C) $\frac{1}{700} \mathrm{sec}$
(D) $\frac{\pi}{175} \mathrm{sec}$
8.130 During transmission over a communication channel, bit errors occur independently with probability p. If a block of n bits is transmitted, the probability of at most one bit error is equal to
(A) $1-(1-p)^{n}$
(B) $p+(n-1)(1-p)$
(C) $n p(1-p)^{n-1}$
(D) $(1-p)^{n}+n p(1-p)^{n-1}$
8.131 The PSD and the power of a signal $g(t)$ are, respectively, $S_{g}(\omega)$ and P_{g}. The PSD and the power of the signal $a g(t)$ are, respectively,
(A) $a^{2} S_{g}(\omega)$ and $a^{2} P_{g}$
(B) $a^{2} S_{g}(\omega)$ and $a P_{g}$
(C) $a S_{g}(\omega)$ and $a^{2} P_{g}$
(D) $a S_{g}(\omega)$ and $a P_{s}$

2000

ONE MARK
8.132 The amplitude modulated waveform $s(t)=A_{c}\left[1+K_{a} m(t)\right] \cos \omega_{c} t$ is fed to an ideal envelope detector. The maximum magnitude
of $K_{0} m(t)$ is greater than 1 . Which of the following could be the detector output?
(A) $A_{c} m(t)$
(B) $A_{c}^{2}\left[1+K_{a} m(t)\right]^{2}$
(C) $\left[A_{c}\left(1+K_{a} m(t)\right]\right.$
(D) $A_{c}\left[1+K_{a} m(t)\right]^{2}$
8.133 The frequency range for satellite communication is
(A) 1 KHz to 100 KHz
(B) 100 KHz to 10 KHz
(C) 10 MHz to 30 MHz
(D) 1 GHz to 30 GHz

2000

TWO MARKS
8.134 In a digital communication system employing Frequency Shift Keying (FSK), the 0 and 1 bit are represented by sine waves of 10 KHz and 25 KHz respectively. These waveforms will be orthogonal for a bit interval of
(A) $45 \mu \mathrm{sec}$
(B) $200 \mu \mathrm{sec}$
(C) $50 \mu \mathrm{sec}$
(D) $250 \mu \mathrm{sec}$
8.135 A message $m(t)$ bandlimited to the frequency f_{m} has a power of P_{m} *
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
The power of the output signal in the figure is

(A) $\frac{P_{m} \cos \theta}{2}$
(B) $\frac{P_{m}}{4}$
(C) $\frac{P_{m} \sin ^{2} \theta}{4}$
(D) $\frac{P_{m} \cos ^{2} \theta}{4}$
8.136 The Hilbert transform of $\cos \omega_{1} t+\sin \omega_{2} t$ is
(A) $\sin \omega_{1} t-\cos \omega_{2} t$
(B) $\sin \omega_{1} t+\cos \omega_{2} t$
(C) $\cos \omega_{1} t-\sin \omega_{2} t$
(D) $\sin \omega_{1} t+\sin \omega_{2} t$

In a FM system, a carrier of 100 MHz modulated by a sinusoidal signal of 5 KHz . The bandwidth by Carson's approximation is 1 MHz. If $y(t)=(\text { modulated waveform })^{3}$, than by using Carson's approximation, the bandwidth of $y(t)$ around 300 MHz and the and the spacing of spectral components are, respectively.
(A) $3 \mathrm{MHz}, 5 \mathrm{KHz}$
(B) $1 \mathrm{MHz}, 15 \mathrm{KHz}$
(C) $3 \mathrm{MHz}, 15 \mathrm{KHz}$
(D) $1 \mathrm{MHz}, 5 \mathrm{KHz}$

1999

ONE MARK
8.138 The input to a channel is a bandpass signal. It is obtained by linearly modulating a sinusoidal carrier with a single-tone signal. The output of the channel due to this input is given by

$$
y(t)=(1 / 100) \cos \left(100 t-10^{-6}\right) \cos \left(10^{6} t-1.56\right)
$$

The group delay $\left(t_{g}\right)$ and the phase delay $\left(t_{p}\right)$ in seconds, of the channel are
(A) $t_{g}=10^{-6}, t_{p}=1.56$
(B) $t_{g}=1.56, t_{p}=10^{-6}$
(C) $t_{g}=10^{8}, t_{p}=1.56 \times 10^{-6}$
(D) $t_{g}=10^{8}, t_{p}=1.56$
8.139 Amodulatedsignalisgivenby $s(t)=m_{1}(t) \cos \left(2 \pi f_{c} t\right)+m_{2}(t) \sin \left(2 \pi f_{c} t\right)$
where the baseband signal $m_{1}(t)$ and $m_{2}(t)$ have bandwidths of 10 kHz , and 15 kHz , respectively. The bandwidth of the modulated signal, in kHz , is
(A) 10
(B) 15
(C) 25
(D) 30
8.140 A modulated signal is given by $s(t)=e^{-a t} \cos \left[\left(\omega_{c}+\Delta \omega\right) t\right] u(t)$, where a ω_{c} and $\Delta \omega$ are positive constants, and $\omega_{c} \gg \Delta \omega$. The ${ }^{8.148}$ complex envelope of $s(t)$ is given by
(A) $\exp (-a t) \exp \left[j\left(\omega_{c}+\Delta \omega\right) t\right] u(t)$
(B) $\exp (-a t) \exp (j \Delta \omega t) u(t)$
(C) $\exp (j \Delta \omega t) u(t)$
(D) $\left.\exp \left[j \omega_{c}+\Delta \omega\right) t\right]$

1999

TWO MARKS
8.141 The Nyquist sampling frequency (in Hz) of a signal given by $6 \times 10^{4} \sin c^{2}(400 t) * 10^{6} \sin c^{3}(100 t)$ is
(A) 200
(B) 300

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(C) 500
(D) 1000
${ }_{8.142}$ The peak-to-peak input to an 8 -bit PCM coder is 2 volts. The signal power-to-quantization noise power ratio (in dB) for an input of $0.5 \cos \left(\omega_{m} t\right)$ is
(A) 47.8
(B) 49.8
(C) 95.6
(D) 99.6
8.143 The input to a matched filter is given by

$$
s(t)=\left\{\begin{array}{l}
\left\{0_{0}^{10} \sin \left(2 \pi \times 10^{6} t\right) \quad 0<1<10^{-4} \mathrm{sec}\right. \\
\text { otherwise }
\end{array}\right.
$$

The peak amplitude of the filter output is
(A) 10 volts
(B) 5 volts
(C) 10 millivolts
(D) 5 millivolts
8.144 Four independent messages have bandwidths of 100 Hz , 200 Hz and 400 Hz , respectively. Each is sampled at the Nyquist rate, and the samples are time division multiplexed (TDM) and transmitted. The transmitted sample rate (in Hz) is
(A) 1600
(B) 800
(C) 400
(D) 200

1998

ONE MARK
8.145 The amplitude spectrum of a Gaussian pulse is
(A) uniform
(B) a sine function
(C) Gaussian
(D) an impulse function
${ }_{8.146}$ The ACF of a rectangular pulse of duration T is
(A) a rectangular pulse of duration T
(B) a rectangular pulse of duration $2 T$
(C) a triangular pulse of duration T
(D) a triangular pulse of duration $2 T$
8.147 The image channel selectivity of superheterodyne receiver depends upon
(A) IF amplifiers only
(B) RF and IF amplifiers only
(C) Preselector, RF and IF amplifiers
(D) Preselector, and RF amplifiers only

In a PCM system with uniform quantisation, increasing the number of bits from 8 to 9 will reduce the quantisation noise power by a factor of
(A) 9
(B) 8
(C) 4
(D) 2
8.149 Flat top sampling of low pass signals
(A) gives rise to aperture effect
(B) implies oversampling
(C) leads to aliasing
(D) introduces delay distortion
8.150 A DSB-SC signal is generated using the carrier $\cos \left(\omega_{e} t+\theta\right)$ and modulating signal $x(t)$. The envelope of the DSB-SC signal is
(A) $x(t)$
(B) $|x(t)|$
(C) only positive portion of $x(t)$
(D) $x(t) \cos \theta$
${ }_{8.151}$ Quadrature multiplexing is
(A) the same as FDM
(B) the same as TDM
(C) a combination of FDM and TDM
(D) quite different from FDM and TDM
8.152 The Fourier transform of a voltage signal $x(t)$ is $X(f)$. The unit of $|X(f)|$ is
(A) volt
(B) volt-sec
(C) volt/sec
(D) volt ${ }^{2}$
8.153 Compression in PCM refers to relative compression of
(A) higher signal amplitudes
(B) lower signal amplitudes
(C) lower signal frequencies
(D) higher signal frequencies
8.154 For a give data rate, the bandwidth B_{p} of a BPSK signal and the bandwidth B_{0} of the OOK signal are related as
(A) $B_{p}=\frac{B_{0}}{4}$
(B) $B_{p}=\frac{B_{0}}{2}$
(C) $B_{p}=B_{0}$
(D) $B_{p}=2 B_{0}$

The spectral density of a real valued random process has

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) an even symmetry
(B) an odd symmetry
(C) a conjugate symmetry
(D) no symmetry

The probability density function of the envelope of narrow band Gaussian noise is
(A) Poisson
(B) Gaussian
(C) Rayleigh
(D) Rician
8.157 The line code that has zero dc component for pulse transmission of random binary data is
(A) Non-return to zero (NRZ)
(B) Return to zero (RZ)
(C) Alternate Mark Inversion (AM)
(D) None of the above
8.158 A probability density function is given by $p(x)=K e^{-x^{2} / 2}-\infty<x<\infty$. The value of K should be
(A) $\frac{1}{\sqrt{2 \pi}}$
(B) $\sqrt{\frac{2}{\pi}}$
(C) $\frac{1}{2 \sqrt{\pi}}$
(D) $\frac{1}{\pi \sqrt{2}}$
8.159 A deterministic signal has the power spectrum given in the figure is, The minimum sampling rate needed to completely represent this signal is

(A) 1 kHz
(B) 2 kHz
(C) 3 kHz
(D) None of these
8.160 A communication channel has first order low pass transfer function. The channel is used to transmit pulses at a symbol rate greater than the half-power frequency of the low pass function. Which of the network shown in the figure is can be used to equalise the received pulses?
(A)

(B)

(C)

(D)

8.161 The power spectral density of a deterministic signal is given by $\left[\sin (f) / f^{2}\right]$ where f is frequency. The auto correlation function of this signal in the time domain is
(A) a rectangular pulse
(B) a delta function
(C) a sine pulse
(D) a triangular pulse

1996

ONE MARK
8.162 A rectangular pulse of duration T is applied to a filter matched to this input. The out put of the filter is a
(A) rectangular pulse of duration T
(B) rectangular pulse of duration $2 T$
(C) triangular pulse
(D) sine function
8.163 The image channel rejection in a superheterodyne receiver comes

from

(A) IF stages only
(B) $R F$ stages only
(C) detector and $R F$ stages only
(D) detector $R F$ and $I F$ stages
8.164 The number of bits in a binary PCM system is increased from n to $n+1$. As a result, the signal to quantization noise ratio will improve by a factor
(A) $\frac{n+1}{n}$
(B) $2^{(n+1) / n}$
(C) $2^{2(n+1) / n}$
(D) which is independent of n
8.165 The auto correlation function of an energy signal has
(A) no symmetry
(B) conjugate symmetry
(C) odd symmetry
(D) even symmetry
8.166 An FM signal with a modulation index 9 is applied to a frequency tripler. The modulation index in the output signal will be

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(A) 0
(B) 3
(C) 9
(D) 27

SOLUTIONS

Option (B) is correct.
In ideal Nyquist Channel, bandwidth required for ISI (Inter Symbol reference) free transmission is

$$
W=\frac{R_{b}}{2}
$$

Here, the used modulation is $32-Q A M$ (Quantum Amplitude modulation

$$
\begin{aligned}
\text { i.e., } & q & =32 \\
\text { or } & 2^{v} & =32 \\
& v & =5 \mathrm{bits}
\end{aligned}
$$

So, the signaling rate (sampling rate) is

$$
R_{b}=\frac{R}{5}
$$

($R \rightarrow$ given bit rate)

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

Hence, for ISI free transmission, minimum bandwidth is

$$
W=\frac{R_{b}}{2}=\frac{R}{10} \mathrm{kHz}
$$

Option (B) is correct.
Given, random variables U and V with mean zero and variances $\frac{1}{4}$ and $\frac{1}{9}$
i.e.,

$$
\bar{U}=\bar{V}=0
$$

$$
\sigma_{u}^{2}=\frac{1}{4}
$$

and

$$
\sigma_{v}^{2}=\frac{1}{9}
$$

$$
\text { so, } \quad P(U \geq 0)=\frac{1}{2}
$$

and $\quad P(V \geq 0)=\frac{1}{2}$
The distribution is shown in the figure below

$$
\begin{aligned}
& f_{u}(u)=\frac{1}{\sqrt{2 \pi} \sigma_{u}^{2}} e^{-u / 2 \sigma_{u}^{2}} \\
& f_{v}(v)=\frac{1}{\sqrt{2 \pi} \sigma_{v}^{2}} e^{-v / 2 \sigma_{v}^{2}}
\end{aligned}
$$

We can express the distribution in standard form by assuming
and

$$
\begin{aligned}
& X=\frac{u-0}{\sigma_{u}}=\frac{u}{Y_{2}}=2 U \\
& Y=\frac{v-0}{\sigma_{v}}=\frac{v}{Y_{3}}=3 V
\end{aligned}
$$

for which we have

$$
\begin{aligned}
& \bar{X}=2 \bar{U}=0 \\
& \bar{Y}=2 \bar{V}=0
\end{aligned}
$$

$$
\text { and } \quad \overline{X^{2}}=\overline{4 U^{2}}=1
$$

$$
\text { also, } \quad \overline{Y^{2}}=\overline{9 V^{2}}=1
$$

Therefore, $X-Y$ is also a normal random variable with

$$
\overline{X-Y}=0
$$

Hence,

$$
P(X-Y \geq 0)=P(X-Y \leq 0)=\frac{1}{2}
$$

or, we can say

$$
\begin{aligned}
P(2 U-3 V \leq 0) & =\frac{1}{2} \\
\text { Thus, } \quad P(3 V \geq 2 U) & =\frac{1}{2}
\end{aligned}
$$

3 Option (C) is correct.
The mean of random variables U and V are both zero

$$
\text { i.e., } \quad \bar{U}=\bar{V}=0
$$

Also, the random variables are identical
i.e., $\quad f_{U}(u)=f_{V}(v)$
or, $\quad F_{U}(u)=F_{V}(v)$
i.e., their cdf are also same. So,

$$
F_{U}(u)=F_{2 V}(2 v)
$$

i.e., the cdf of random variable $2 V$ will be also same but for any instant

$$
2 V \geq U
$$

Therefore,

$$
G(x)=F(x)
$$

but, $\quad x G(x) \geq x F(x)$
or,

$$
[F(x)-G(x)] x \leq 0
$$

Option (C) is correct.
Given, $\quad P(U=+1)=P(U=-1)=\frac{1}{2}$
where U is a random variable which is identical to V i.e.,

$$
P(V=+1)=P(V=-1)=\frac{1}{2}
$$

So, random variable U and V can have following values

$$
U=+1,-1 ; \quad V=+1,-1
$$

Therefore the random variable $U+V$ can have the following values,

$$
= \begin{cases}-2 & \text { When } U=V=-1 \\ 0 & \text { When } U=1, V=1 \text { or } u=-1, v=1 \\ 2 & \text { When } U=V=1\end{cases}
$$

Hence, we obtain the probabilities for $U+V$ as follows

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

-2	$\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
0	$\left(\frac{1}{2} \times \frac{1}{2}\right)+\left(\frac{1}{2} \times \frac{1}{2}\right)=\frac{1}{2}$
2	$\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$

Therefore, the entropy of the $(U+V)$ is obtained as

$$
\begin{aligned}
H(U+V) & =\sum P(U+V) \log _{2}\left\{\frac{1}{P(U+V)}\right\} \\
& =\frac{1}{4} \log _{2} 4+\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 4 \\
& =\frac{2}{4}+\frac{1}{2}+\frac{2}{4}
\end{aligned}
$$

$$
=\frac{3}{2}
$$

Option (D) is correct.
For the shown received signal, we conclude that if 0 is the transmitted signal then the received signal will be also zero as the threshold is 1 and the pdf of bit 0 is not crossing 1. Again, we can observe that there is an error when bit 1 is received as it crosses the threshold. The probability of error is given by the area enclosed by the 1 bit pdf (shown by shaded region)

$P($ error when bit 1 received $)=\frac{1}{2} \times 1 \times 0.25=\frac{1}{8}$
or $\quad P\left(\frac{\text { received } 1}{\text { transmitted } 0}\right)=\frac{1}{8}$
Since, the 1 and 0 transmission is equiprobable:
i.e.,

$$
P(0)=P(1)=\frac{1}{2}
$$

Hence bit error rate (BER) is
BER
$=P\left(\frac{\text { received } 0}{\text { transmitted } 1}\right) P(0)+P\left(\frac{\text { received } 1}{\text { transmitted } 0}\right) P(1)$

$$
\begin{aligned}
& =0+\frac{1}{8} \times \frac{1}{2} \\
& =\frac{1}{16}
\end{aligned}
$$

Option (B) is correct.
The optimum threshold is the threshold value for transmission as obtained at the intersection of two pdf. From the shown pdf. We obtain at the intersection
$($ transmitted, received $)=\left(\frac{4}{5}, \frac{1}{5}\right)$
we can obtain the intersection by solving the two linear eqs

$$
\begin{aligned}
x+y & =1 & & \text { pdf of received bit } 0 \\
y & =\frac{0.5}{2} x & & \text { pdf of received bit } 1
\end{aligned}
$$

Hence for threshold $=\frac{4}{5}$, we have

BER

$$
\begin{aligned}
&=P\left(\frac{\text { received 1 }}{\text { transmitted } 0}\right) P(0)+P\left(\frac{\text { received 0 }}{\text { transmitted } 1}\right) P(1) \\
&=\left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{2}+\left(\frac{1}{2} \times \frac{4}{5} \times \frac{1}{5}\right) \times \frac{1}{2} \\
&=\frac{1}{20}<(\text { BER for threshold }=1)
\end{aligned}
$$

Hence, optimum threshold is $\frac{4}{5}$
Option (A) is correct.
The mean square value of a stationary process equals the total area under the graph of power spectral density, that is

$$
\begin{aligned}
& E\left[X^{2}(t)\right]=\int_{-\infty}^{\infty} S_{X}(f) d f \\
& \text { or, } \quad E\left[X^{2}(t)\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X}(\omega) d \omega \\
& \text { or, } \quad E\left[X^{2}(t)\right]=2 \times \frac{1}{2 \pi} \int_{0}^{\infty} S_{X}(\omega) d \omega \text { (Since the PSD is even) } \\
& \left.=\frac{1}{\pi} \text { [area under the triangle }+ \text { integration of delta function }\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[2\left(\frac{1}{2} \times 1 \times 10^{3} \times 6\right)+400\right] \\
& =\frac{1}{\pi}[6000+400]=\frac{6400}{\pi}
\end{aligned}
$$

$|E[X(t)]|$ is the absolute value of mean of signal $X(t)$ which is also equal to value of $X(\omega)$ at $(\omega=0)$.
From given PSD

$$
\begin{aligned}
\left.S_{X}(\omega)\right|_{\omega=0} & =0 \\
S_{X}(\omega) & =|X(\omega)|^{2}=0 \\
|X(\omega)|_{\omega=0}^{2} & =0 \\
|X(\omega)|_{\omega=0} & =0
\end{aligned}
$$

8.8 Option (C) is correct.

For raised cosine spectrum transmission bandwidth is given as

$$
\begin{array}{lr}
B_{T}=W(1+\alpha) \\
B_{T}=\frac{R_{b}}{2}(1+\alpha) \quad \alpha \rightarrow \text { Roll of factor }
\end{array}
$$

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

$$
\begin{aligned}
3500 & =\frac{R_{b}}{2}(1+0.75) \\
R_{b} & =\frac{3500 \times 2}{1.75}=4000
\end{aligned}
$$

8.9 Option (D) is correct.

Entropy function of a discrete memory less system is given as

$$
H=\sum_{k=0}^{N-1} P_{k} \log \left(\frac{1}{P_{k}}\right)
$$

where P_{k} is probability of symbol S_{k}.
For first two symbols probability is same, so

$$
\begin{aligned}
& H= P_{1} \log \left(\frac{1}{P_{1}}\right)+P_{2} \log \left(\frac{1}{P_{2}}\right)+\sum_{k=3}^{N-1} P_{k} \log \left(\frac{1}{P_{k}}\right) \\
&=-\left(P_{1} \log P_{1}+P_{2} \log P_{2}+\sum_{k=3}^{N-1} P_{k} \log P_{k}\right) \\
&=-\left(2 P \log P+\sum_{k=3}^{N-1} P_{k} \log P_{k}\right) \quad\left(P_{1}=P_{2}=P\right) \\
& P_{1}=P+\varepsilon, P_{2}=P-\varepsilon
\end{aligned}
$$

Now,
So, $\quad H^{\prime}=-\left[(P+\varepsilon) \log (P+\varepsilon)+(P-\varepsilon) \log (P-\varepsilon)+\sum_{k=3}^{N-1} P_{k} \log P_{k}\right]$
By comparing,
$H^{\prime}<H, \quad$ Entropy of source decreases.
8.10 Option (B) is correct.

Probability density function of uniformly distributed variables X and Y is shown as

$$
P\left\{[\max (x, y)]<\frac{1}{2}\right\}
$$

Since X and Y are independent.

$$
\begin{aligned}
& \qquad \begin{aligned}
P\left\{[\max (x, y)]<\frac{1}{2}\right\} & =P\left(X<\frac{1}{2}\right) P\left(Y<\frac{1}{2}\right) \\
P\left(X<\frac{1}{2}\right) & =\text { shaded area }=\frac{3}{4}
\end{aligned} \\
& \text { Similarly for } Y: \begin{aligned}
P\left(Y<\frac{1}{2}\right) & =\frac{3}{4} \\
\text { So } \quad P\left\{[\max (x, y)]<\frac{1}{2}\right\} & =\frac{3}{4} \times \frac{3}{4}=\frac{9}{16}
\end{aligned}
\end{aligned}
$$

Alternate Method:

From the given data since random variables X and Y lies in the interval $[-1,1]$ as from the figure X, Y lies in the region of the square $A B C D$.

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

Probability for $\max [X, Y]<1 / 2$: The points for $\max [X, Y]<1 / 2$ will be inside the region of square $A E F G$.
So,

$$
\begin{aligned}
P\left\{\max [X, Y]<\frac{1}{2}\right\} & =\frac{\text { Area of } \square A E F G}{\text { Area of square } A B C D} \\
& =\frac{\frac{3}{2} \times \frac{3}{2}}{2 \times 2}=\frac{9}{16}
\end{aligned}
$$

Option (B) is correct.
In a coherent binary PSK system, the pair of signals $s_{1}(t)$ and $s_{2}(t)$ used to represent binary system 1 and 0 respectively.

$$
\begin{aligned}
& s_{1}(t)=\sqrt{\frac{2 E}{T}} \sin \omega_{c} t \\
& s_{2}(t)=-\sqrt{\frac{2 E}{T}} \sin \omega_{c} t
\end{aligned}
$$

where $0 \leq t \leq T, E$ is the transmitted energy per bit.
General function of local oscillator

$$
\phi_{1}(t)=\sqrt{\frac{2}{T}} \sin \left(\omega_{c} t\right), 0 \leq t<T
$$

But here local oscillator is ahead with 45°. so,

$$
\phi_{1}(t)=\sqrt{\frac{2}{T}} \sin \left(\omega_{c} t+45^{\circ}\right)
$$

The coordinates of message points are

$$
\begin{aligned}
s_{11} & =\int_{0}^{T} s_{1}(t) \phi_{1}(t) d t \\
& =\int_{0}^{T} \sqrt{\frac{2 E}{T}} \sin \omega_{c} t \sqrt{\frac{2}{T}} \sin \left(\omega_{c} t+45^{\circ}\right) d t \\
& =\sqrt{\frac{2 E}{T}} \int_{0}^{T} \sin \left(\omega_{c} t\right) \sin \left(\omega_{c} t+45^{\circ}\right) d t \\
& =\sqrt{\frac{2 E}{T}} \sqrt{\frac{2}{T}} \int_{0}^{T} \frac{1}{2}\left[\sin 45^{\circ}+\sin \left(2 \omega_{c} t+45^{\circ}\right)\right] d t \\
& =\frac{1}{T} \sqrt{E} \int_{0}^{T} \frac{1}{\sqrt{2}} d t+\underbrace{\frac{1}{T} \sqrt{E} \int_{0}^{T} \sin \left(2 \omega_{c} t+45^{\circ}\right) d t}_{0} \\
& =\sqrt{\frac{E}{2}} \\
s_{21} & =-\sqrt{\frac{E}{2}}
\end{aligned}
$$

Similarly,
Signal space diagram

Now here the two message points are s_{11} and s_{21}.
The error at the receiver will be considered.
When : (i) s_{11} is transmitted and s_{21} received
(ii) s_{21} is transmitted and s_{11} received

So, probability for the $1^{\text {st }}$ case will be as :

$$
\begin{aligned}
P\left(\frac{s_{21} \text { received }}{s_{11} \text { transmitted }}\right) & =P(X<0) \text { (as shown in diagram }) \\
& =P(\sqrt{E / 2}+N<0) \\
& =P(N<-\sqrt{E / 2})
\end{aligned}
$$

Taking the Gaussian distribution as shown below :

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Mean of the Gaussian distribution $=\sqrt{E / 2}$

$$
\text { Variance }=\frac{N_{0}}{2}
$$

Putting it in the probability function :

$$
\begin{aligned}
P\left(N<-\sqrt{\frac{E}{2}}\right. & =\int_{-\infty}^{0} \frac{1}{\sqrt{2 \pi \frac{N_{0}}{2}}} e^{-\frac{(x+\sqrt{E / 2})^{2}}{2 N_{0} / 2}} d x \\
& =\int_{-\infty}^{0} \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{(x+\sqrt{E / 2})^{2}}{N_{0}}} d x
\end{aligned}
$$

Taking, $\quad \frac{x+\sqrt{E / 2}}{\sqrt{N_{0} / 2}}=t$

$$
d x=\sqrt{\frac{N_{0}}{2}} d t
$$

So, $P(N<-\sqrt{E / 2})=\int_{\sqrt{E / N_{0}}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t Q\left(\sqrt{\frac{E}{N_{0}}}\right)$
where Q is error function.
Since symbols are equiprobable in the $2^{\text {nd }}$ case
So,

$$
P\left(\frac{s_{11} \text { received }}{s_{21} \text { transmitted }}\right)=Q\left(\sqrt{\frac{E}{N_{0}}}\right)
$$

So the average probability of error

$$
\begin{aligned}
& =\frac{1}{2}\left[P\left(\frac{s_{21} \text { received }}{s_{11} \text { transmitted }}\right)+P\left(\frac{s_{11} \text { received }}{s_{21} \text { transmitted }}\right)\right] \\
& =\frac{1}{2}\left[Q\left(\sqrt{\frac{E}{N_{0}}}\right)+Q\left(\sqrt{\frac{E}{N_{0}}}\right)\right]=Q\left(\sqrt{\frac{E}{N_{0}}}\right)
\end{aligned}
$$

Option () is correct.
Option (B) is correct.
General equation of FM and PM waves are given by

$$
\begin{aligned}
& \phi_{F M}(t)=A_{c} \cos \left[\omega_{c} t+2 \pi k_{f} \int_{0}^{t} m(\tau) d \tau\right] \\
& \phi_{P M}(t)=A_{c} \cos \left[\omega_{c} t+k_{p} m(t)\right]
\end{aligned}
$$

For same maximum phase deviation.

$$
\begin{aligned}
k_{p}[m(t)]_{\max } & =2 \pi k_{f}\left[\int_{0}^{t} m(\tau) d \tau\right]_{\max } \\
k_{p} \times 2 & =2 \pi k_{f}[x(t)]_{\max } \\
x(t) & =\int_{0}^{t} m(\tau) d \tau
\end{aligned}
$$

where,

$$
[x(t)]_{\max }=4
$$

So

$$
\begin{aligned}
k_{p} \times 2 & =2 \pi k_{f} \times 4 \\
\frac{k_{p}}{k_{f}} & =4 \pi
\end{aligned}
$$

Option (A) is correct.

$$
G_{C}(s)=\frac{s+a}{s+b}=\frac{j \omega+a}{j \omega+b}
$$

Phase lead angle

$$
\begin{aligned}
& \phi=\tan ^{-1}\left(\frac{\omega}{a}\right)-\tan ^{-1}\left(\frac{\omega}{b}\right) \\
& \phi=\tan ^{-1}\left(\frac{\frac{\omega}{a}-\frac{\omega}{b}}{1+\frac{\omega^{2}}{a b}}\right)=\tan ^{-1}\left(\frac{\omega(b-a)}{a b+\omega^{2}}\right)
\end{aligned}
$$

For phase-lead compensation $\phi>0$

$$
\begin{aligned}
b-a & >0 \\
b & >a
\end{aligned}
$$

Note: For phase lead compensator zero is nearer to the origin as compared to pole, so option (C) can not be true.
8.15 Option (A) is correct.

$$
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{\omega}{a}\right)-\tan ^{-1}\left(\frac{\omega}{b}\right) \\
\frac{d \phi}{d \omega} & =\frac{1 / a}{1+\left(\frac{\omega}{a}\right)^{2}}-\frac{1 / b}{1+\left(\frac{\omega}{b}\right)^{2}}=0 \\
\frac{1}{a}+\frac{\omega^{2}}{a b^{2}} & =\frac{1}{b}+\frac{1}{b} \frac{\omega^{2}}{a^{2}} \\
\frac{1}{a}-\frac{1}{b} & =\frac{\omega^{2}}{a b}\left(\frac{1}{a}-\frac{1}{b}\right) \\
\omega & =\sqrt{a b}=\sqrt{1 \times 2}=\sqrt{2} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

8.16 Option (D) is correct.

Quantized 4 level require 2 bit representation i.e. for one sample 2 bit are required. Since 2 sample per second are transmitted we require 4 bit to be transmitted per second.

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
8.17 Option (B) is correct.

In FM the amplitude is constant and power is efficient transmitted. No variation in power.
There is most bandwidth efficient transmission in SSB- SC. because we transmit only one side band.
Simple Diode in Non linear region (Square law) is used in conventional AM that is simplest receiver structure.
In VSB dc. component exists.
8.18 Option (A) is correct.

We have

$$
\begin{aligned}
S_{x}(f) & =F\left\{R_{x}(\tau)\right\}=F\left\{\exp \left(-\pi \tau^{2}\right)\right\} \\
& =e^{-\pi f^{2}}
\end{aligned}
$$

The given circuit can be simplified as

Power spectral density of output is

$$
\begin{aligned}
S_{y}(f) & =|G(f)|^{2} S_{x}(f) \\
& =|j 2 \pi f-1|^{2} e^{-\pi f^{2}} \\
& =\left(\sqrt{(2 \pi f)^{2}+1}\right)^{2} e^{-\pi f^{2}} \\
S_{y}(f) & =\left(4 \pi^{2} f^{2}+1\right) e^{-\pi f^{2}}
\end{aligned}
$$

or
8.19 Option (B) is correct.

Highest frequency component in $m(t)$ is $f_{m}=4000 \pi / 2 \pi=2000 \mathrm{~Hz}$

$$
\text { Carrier frequency } \quad f_{C}=1 \mathrm{MHz}
$$

For Envelope detector condition

$$
\begin{aligned}
& 1 / f_{C} \ll R C \ll 1 / f_{m} \\
& 1 \mu \mathrm{~s} \ll R C \ll 0.5 \mathrm{~ms}
\end{aligned}
$$

Option (D) is correct.
Four phase signal constellation is shown below

Now

$$
\begin{aligned}
d^{2} & =r_{1}^{2}+r_{1}^{2} \\
d^{2} & =2 r_{1}^{2} \\
r_{1} & =d / \sqrt{2}=0.707 \mathrm{~d}
\end{aligned}
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\theta=\frac{2 \pi}{M}=\frac{2 \pi}{8}=\frac{\pi}{4}
$$

Applying Cooine law we have
or

$$
\begin{aligned}
d^{2} & =r_{2}^{2}+r_{2}^{2}-2 r_{2}^{2} \cos \frac{\pi}{4} \\
& =2 r_{2}^{2}-2 r_{2}^{2} 1 / \sqrt{2}=(2-\sqrt{2}) r_{2}^{2} \\
r_{2} & =\frac{d}{\sqrt{2-\sqrt{2}}}=1.3065 \mathrm{~d}
\end{aligned}
$$

Option (D) is correct.
Here P_{e} for 4 PSK and 8 PSK is same because P_{e} depends on d. Since P_{e} is same, d is same for 4 PSK and 8 PSK.

Additional Power SNR

$$
\begin{aligned}
& =(S N R)_{2}-(S N R)_{1} \\
& =10 \log \left(\frac{E_{S 2}}{N o}\right)-10 \log \left(\frac{E_{S 1}}{N o}\right) \\
& =10 \log \left(\frac{E_{S 2}}{E_{S 1}}\right)
\end{aligned}
$$

$$
=10 \log \left(\frac{r_{2}}{r_{1}}\right)^{2} \Rightarrow 20 \log \left(\frac{r_{2}}{r_{1}}\right)=20 \log \frac{1.3065 \mathrm{~d}}{0.707 \mathrm{~d}}
$$

Additional $\mathrm{SNR}=5.33 \mathrm{~dB}$
Option (C) is correct.
Conventional AM signal is given by

$$
x(t)=A_{C}[1+\mu m(t)] \cos \left(2 \pi f_{C} t\right)
$$

Where $\mu<1$, for no over modulation.
In option (C)

$$
x(t)=A_{C}\left[1+\frac{1}{4} m(t)\right] \cos \left(2 \pi f_{C} t\right)
$$

Thus $\mu=\frac{1}{4}<1$ and this is a conventional AM-signal without overmodulation
8.23 Option (B) is correct.

$$
\text { Power } \quad P=\frac{(6)^{2}}{2}=18 \mathrm{~W}
$$

Option (C) is correct.
Impulse response of the matched filter is given by

$$
h(t)=S(T-t)
$$

Option (B) is correct.
Let response of LPF filters

$$
H(f)= \begin{cases}1, & |f|<1 \mathrm{MHz} \\ 0, & \text { elsewhere }\end{cases}
$$

Noise variance (power) is given as

$$
\begin{aligned}
P & =\sigma^{2}=\int_{0}^{f_{0}}|H(f)|^{2} N_{o} d f=\frac{2}{\alpha^{2}} \text { (given) } \\
\int_{0}^{1 \times 10^{6}} 2 \times 10^{-20} d f & =\frac{2}{\alpha^{2}} \\
2 \times 10^{-20} \times 10^{6} & =\frac{2}{\alpha^{2}} \\
\alpha^{2} & =10^{14} \\
\alpha & =10^{7}
\end{aligned}
$$

8.26 Option (D) is correct.

Probability of error is given by

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

$$
\begin{aligned}
P_{e} & =\frac{1}{2}[P(0 / 1)+P(1 / 0)] \\
P(0 / 1) & =\int_{-\infty}^{\alpha / 2} 0.5 e^{-\alpha|n-a|} d n=0.5 e^{-10}
\end{aligned}
$$

where $a=2 \times 10^{-6} \mathrm{~V}$ and $\alpha=10^{7} V^{-1}$

$$
\begin{aligned}
P(1 / 0) & =\int_{a / 2}^{\infty} 0.5 e^{-\alpha|n|} d n=0.5 e^{-10} \\
P_{e} & =0.5 e^{-10}
\end{aligned}
$$

8.27 Option (C) is correct.

$$
S(t)=\sin c(500 t) \sin c(700 t)
$$

$S(f)$ is convolution of two signals whose spectrum covers $f_{1}=250 \mathrm{~Hz}$
and $f_{2}=350 \mathrm{~Hz}$. So convolution extends

$$
f=25+350=600 \mathrm{~Hz}
$$

Nyquist sampling rate

$$
N=2 f=2 \times 600=1200 \mathrm{~Hz}
$$

Option (D) is correct.
For the given system, output is written as

$$
\begin{aligned}
& y(t)=\frac{d}{d t}[x(t)+x(t-0.5)] \\
& y(t)=\frac{d x(t)}{d t}+\frac{d x(t-0.5)}{d t}
\end{aligned}
$$

Taking Laplace on both sides of above equation

$$
\begin{aligned}
Y(s) & =s X(s)+s e^{-0.5 s} X(s) \\
H(s) & =\frac{Y(s)}{X(s)}=s\left(1+e^{-0.5 s}\right) \\
H(f) & =j f\left(1+e^{-0.5 \times 2 \pi f}\right)=j f\left(1+e^{-\pi f}\right)
\end{aligned}
$$

Power spectral density of output

$$
S_{Y}(f)=|H(f)|^{2} S_{X}(f)=f^{2}\left(1+e^{-\pi f}\right)^{2} S_{X}(f)
$$

For $S_{Y}(f)=0, \quad 1+e^{-\pi f}=0$

$$
\begin{aligned}
& f=(2 n+1) f_{0} \\
& f_{0}=1 \mathrm{KHz}
\end{aligned}
$$

or
Option (C) is correct.

$$
\begin{aligned}
\cos \left(2 \pi f_{m} t\right) \cos \left(2 \pi f_{c} t\right) & \longrightarrow \text { DSB suppressed carrier } \\
\cos \left(2 \pi f_{c} t\right) & \longrightarrow \text { Carrier Only } \\
\cos \left[2 \pi\left(f_{c}+f_{m}\right) t\right] & \longrightarrow \text { USB Only } \\
{\left[1+\cos \left(2 \pi f_{m} t\right) \cos \left(2 \pi f_{c} t\right)\right] } & \longrightarrow \text { USB with carrier }
\end{aligned}
$$

Option (C) is correct.
We have

Let

$$
\begin{aligned}
& p(X=0)=p(Y=0)=\frac{1}{2} \\
& p(X=1)=p(Y=1)=\frac{1}{4} \\
& p(X=2)=p(Y=2)=\frac{1}{4}
\end{aligned}
$$

$$
X+Y=2 \longrightarrow A
$$

and

$$
X-Y=0 \longrightarrow B
$$

Now

$$
P(X+Y=2 \mid X-Y=0)=\frac{P(A \cap B)}{P(B)}
$$

Event $P(A \cap B)$ happen when $X+Y=2$ and $X-Y=0$. It is only the case when $X=1$ and $Y=1$.

Thus

$$
P(A \cap B)=\frac{1}{4} \times \frac{1}{4}=\frac{1}{16}
$$

Now event $P(B)$ happen when

$$
\begin{aligned}
X-Y & =0 \text { It occurs when } X=Y, \text { i.e. } \\
X & =0 \text { and } Y=0 \text { or } \\
X & =1 \text { and } Y=1 \text { or } \\
X & =2 \text { and } Y=2 \\
P(B) & =\frac{1}{2} \times \frac{1}{2}+\frac{1}{4} \times \frac{1}{4}+\frac{1}{4} \times \frac{1}{4}=\frac{6}{16}
\end{aligned}
$$

Thus
Now $\quad \frac{P(A \cap B)}{P(B)}=\frac{1 / 16}{6 / 16}=\frac{1}{6}$
Option (B) is correct.
The mean is

$$
\begin{aligned}
\bar{X} & =\Sigma x_{i} p_{i}(x) \\
& =1 \times 0.1+2 \times 0.2+3 \times 0.4+4 \times 0.2+5 \times 0.1 \\
& =0.1+0.4+1.2+0.8+0.5=3.0
\end{aligned}
$$

$$
\begin{aligned}
\overline{X^{2}} & =\Sigma x_{i}^{2} p_{i}(x) \\
& =1 \times 0.1+4 \times 0.2+9 \times 0.4+16 \times 0.2+25 \times 0.1 \\
& =0.1+0.8+3.6+3.2+2.5=10.2 \\
& \quad \begin{aligned}
\sigma_{x}^{2} & =\overline{X^{2}}-(\bar{X})^{2} \\
& =10.2-(3)^{2}=1.2
\end{aligned}
\end{aligned}
$$

Variance
8.32 Option (C) is correct.

$$
\begin{aligned}
m(t) & =\frac{1}{2} \cos \omega_{1} t-\frac{1}{2} \sin \omega_{2} t \\
s_{A M}(t) & =[1+m(t)] \cos \omega_{c} t \\
& =\frac{|m(t)|_{\max }}{V_{c}} \\
m & =\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{1}{\sqrt{2}} \\
\eta & =\frac{m^{2}}{m^{2}+2} \times 100 \%
\end{aligned}
$$

$$
=\frac{\left(\frac{1}{\sqrt{2}}\right)^{2}}{\left(\frac{1}{\sqrt{2}}\right)^{2}+2} \times 100 \%=20 \%
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
8.33 Option (B) is correct.

We have

$$
\begin{aligned}
C_{1} & =B \log _{2}\left(1+\frac{S}{N}\right) \\
& \approx B \log _{2}\left(\frac{S}{N}\right)
\end{aligned}
$$

As $\frac{S}{N} \gg 1$
If we double the $\frac{S}{N}$ ratio then

$$
\begin{aligned}
C_{2} & \approx B \log _{2}\left(\frac{2 S}{N}\right) \\
& \approx B \log _{2} 2+B \log _{2} \frac{S}{N} \approx B+C_{1}
\end{aligned}
$$

8.34 Option (C) is correct.

We have

$$
\begin{aligned}
S N R & =1.76+6 n \\
43.5 & =1.76+6 n
\end{aligned}
$$

or

$$
\begin{aligned}
& 6 n=43.5+1.76 \\
& 6 n=41.74 \longrightarrow n \approx 7
\end{aligned}
$$

No. of quantization level is

$$
2^{7}=128
$$

Step size required is

$$
\begin{aligned}
& =\frac{V_{H}-V_{L}}{128}=\frac{5-(-5)}{128}=\frac{10}{128} \\
& =.078125 \approx .0667
\end{aligned}
$$

8.35 Option (B) is correct.

For positive values step size

$$
s_{+}=0.05 \mathrm{~V}
$$

For negative value step size

$$
s_{-}=0.1 \mathrm{~V}
$$

No. of quantization in $+i v e$ is

Thus

$$
\begin{aligned}
& =\frac{5}{s_{+}}=\frac{5}{0.05}=100 \\
2^{n+} & =100 \longrightarrow n^{+}=7
\end{aligned}
$$

No. of quantization in $-v e$

$$
\begin{aligned}
& \text { Thus } \\
& \qquad \begin{aligned}
2^{n^{-}} & =50 \longrightarrow n^{-}=6 \\
\left(\frac{S}{N}\right)_{+} & =1.76+6 n^{+}=1.76+42=43.76 \mathrm{~dB} \\
\left(\frac{S}{N}\right)_{-} & =1.76+6 n^{-}=1.76+36=37.76 \mathrm{~dB} \\
\text { Best } \quad\left(\frac{S}{N}\right)_{0} & =43.76 \mathrm{~dB}
\end{aligned}
\end{aligned}
$$

Option (A) is correct.

$$
\begin{aligned}
& \text { We have } \\
& x_{A M}(t)=A_{c} \cos \omega_{c}+2 \cos \omega_{m} t \cos \omega_{c} t \\
& =A_{C}\left(1+\frac{2}{A_{c}} \cos \omega_{m} t\right) \cos \omega_{c} t
\end{aligned}
$$

For demodulation by envelope demodulator modulation index must be less than or equal to 1 .

$$
\text { Thus } \quad \begin{aligned}
& \frac{2}{A_{c}} \leq 1 \\
& \\
& \\
& A_{c} \geq 2
\end{aligned}
$$

Hence minimum value of $A_{c}=2$

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
8.37 Option (A) is correct.

CDF is the integration of PDF. Plot in option (A) is the integration of plot given in question.
Option (A) is correct.
The entropy is

Since

$$
\begin{aligned}
H & =\sum_{i=1}^{m} p_{i} \log _{2} \frac{1}{p_{i}} \text { bits } \\
p_{1} & =p_{2}=\ldots=p_{n}=\frac{1}{n} \\
H & =\sum_{i=1}^{n} \frac{1}{n} \log n=\log n
\end{aligned}
$$

Option (C) is correct.
PSD of noise is $\quad \frac{N_{0}}{2}=K$
The $3-\mathrm{dB}$ cut off frequency is

$$
\begin{equation*}
f_{c}=\frac{1}{2 \pi R C} \tag{2}
\end{equation*}
$$

Output noise power is

$$
=\frac{N_{0}}{4 R C}=\left(\frac{N_{0}}{2}\right) \frac{1}{2 R C}=K \pi f_{c}
$$

Option (D) is correct.
At receiving end if we get two zero or three zero then its error.
Let p be the probability of 1 bit error, the probability that transmitted bit error is
$=$ Three zero + two zero and single one

$$
\begin{aligned}
& ={ }^{3} C_{3} p^{3}+3 C_{2} p^{2}(1-p) \\
& =p^{3}+p^{2}(1-p)
\end{aligned}
$$

Option (D) is correct.
Bandwidth of TDM is

$$
=\frac{1}{2}(\text { sum of Nyquist Rate })
$$

$$
=\frac{1}{2}[2 W+2 W+4 W+6 W]=7 W
$$

8.42 Option (B) is correct.

We have $\quad \theta_{i}=2 \pi 10^{5} t+5 \sin (2 \pi 1500 t)+7.5 \sin (2 \pi 1000 t)$

$$
\omega_{i}=\frac{d \theta_{i}}{d t}=2 \pi 10^{5}+10 \pi 1500 \cos (2 \pi 1500 t)+15 \pi 1000 \cos (2 \pi 1000 t)
$$

Maximum frequency deviation is

$$
\begin{aligned}
\Delta \omega_{\max } & =2 \pi(5 \times 1500+7.5 \times 1000) \\
\Delta f_{\max } & =15000
\end{aligned}
$$

Modulation index is $=\frac{\Delta f_{\max }}{f_{m}}=\frac{15000}{1500}=10$
8.43 Option (C) is correct.
8.44 Option (B) is correct.

$$
\begin{aligned}
f_{m} & =4 \mathrm{KHz} \\
f_{s} & =2 f_{m}=8 \mathrm{kHz}
\end{aligned}
$$

$$
\text { Bit Rate } \quad R_{b}=n f_{s}=8 \times 8=64 \mathrm{kbps}
$$

The minimum transmission bandwidth is

$$
B W=\frac{R_{b}}{2}=32 \mathrm{kHz}
$$

8.45 Option (C) is correct.

$$
\begin{aligned}
\left(\frac{S_{0}}{N_{0}}\right) & =1.76+6 n \mathrm{~dB} \\
& =1.76+6 \times 8=49.76 \mathrm{~dB} \quad \text { We have } n=8
\end{aligned}
$$

8.46 Option (B) is correct.

As \quad Noise $\propto \frac{1}{L^{2}}$
To reduce quantization noise by factor 4 , quantization level must be two times i.e. $2 L$.
Now

$$
L=2^{n}=2^{8}=256
$$

Thus

$$
2 L=512
$$

8.47 Option (C) is correct.

Autocorrelation is even function.
8.48 Option (B) is correct.

Power spectral density is non negative. Thus it is always zero or greater than zero.
8.49 Option (A) is correct.

The variance of a random variable x is given by

$$
E\left[X^{2}\right]-E^{2}[X]
$$

8.50 Option (A) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

A Hilbert transformer is a non-linear system.
8.51 Option (D) is correct.

Slope overload distortion can be reduced by increasing the step size

$$
\frac{\triangle}{T_{s}} \geq \text { slope of } x(t)
$$

8.52 Option (C) is correct.

We have $\quad p(t)=\frac{\sin (4 \pi W t)}{4 \pi W t\left(1-16 W^{2} t^{2}\right)}$
at $t=\frac{1}{4 W}$ it is $\frac{0}{0}$ form. Thus applying L^{\prime} Hospital rule

$$
p^{\left(\frac{1}{4 W}\right)}=\frac{4 \pi W \cos (4 \pi W t)}{4 \pi W\left[1-48 W^{2} t^{2}\right]}
$$

$$
=\frac{\cos (4 \pi W t)}{1-48 W^{2} t^{2}}=\frac{\cos \pi}{1-3}=0.5
$$

Option (B) is correct.
The block diagram is as shown below

Here

$$
\begin{aligned}
M_{1}(f) & =\hat{M}(f) \\
Y_{1}(f) & =M(f)\left(\frac{e^{j 2 \pi B}+e^{-j 2 \pi B}}{2}\right) \\
Y_{2}(f) & =M_{1}(f)\left(\frac{e^{j 2 \pi B}-e^{-j 2 \pi B}}{2}\right) \\
Y(f) & =Y_{1}(f)+Y_{2}(f)
\end{aligned}
$$

All waveform is shown below

Option (C) is correct.
By Binomial distribution the probability of error is

$$
p_{e}={ }^{n} C_{r} p^{r}(1-p)^{n-r}
$$

Probability of at most one error

$$
\begin{aligned}
& =\text { Probability of no error }+ \text { Probability of one error } \\
& ={ }^{n} C_{0} p^{0}(1-p)^{n-0}+{ }^{n} C_{1} p^{1}(1-p)^{n-1} \\
& =(1-p)^{n}+n p(1-p)^{n-1}
\end{aligned}
$$

Option (B) is correct.
Bandwidth allocated for 1 Channel $=5 \mathrm{M} \mathrm{Hz}$
Average bandwidth for 1 Channel $\frac{5}{5}=1 \mathrm{MHz}$
Total Number of Simultaneously Channel $=\frac{1 \mathrm{M} \times 8}{200 k}=40$ Channel
Option (A) is correct.
Chip Rate $\quad R_{C}=1.2288 \times 10^{6} \mathrm{chips} / \mathrm{sec}$
Data Rate $\quad R_{b}=\frac{R_{C}}{G}$
Since the processing gain G must be at least 100 , thus for $G_{\min }$ we get

$$
R_{b \max }=\frac{R_{C}}{G_{\min }}=\frac{1.2288 \times 10^{6}}{100}=12.288 \times 10^{3} \mathrm{bps}
$$

8.57 Option (B) is correct.

Energy of constellation 1 is

$$
\begin{array}{r}
=(0)^{2}+(-\sqrt{2} a)^{2}+(-\sqrt{2} a)^{2}+(\sqrt{2} a)^{2}+(-2 \sqrt{2} a)^{2} \\
=2 a^{2}+2 a^{2}+2 a^{2}+8 a^{2}=16 a^{2}
\end{array}
$$

Energy of constellation 2 is

$$
\begin{aligned}
E_{g 2} & =a^{2}+a^{2}+a^{2}+a^{2}=4 a^{2} \\
\text { Ratio } & =\frac{E_{g 1}}{E_{g 2}}=\frac{16 a^{2}}{4 a^{2}}=4
\end{aligned}
$$

8.58 Option (A) is correct.

Noise Power is same for both which is $\frac{N_{0}}{2}$.
Thus probability of error will be lower for the constellation 1 as it has higher signal energy.
8.59 Option (A) is correct.

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
Area under the pdf curve must be unity
Thus

$$
\begin{array}{r}
2 a+4 a+4 b=1 \\
2 a+8 b=1 \tag{1}
\end{array}
$$

For maximum entropy three region must by equivaprobable thus

$$
\begin{equation*}
2 a=4 b=4 b \tag{2}
\end{equation*}
$$

From (1) and (2) we get

$$
b=\frac{1}{12} \text { and } a=\frac{1}{6}
$$

8.60 Option $\left(^{*}\right)$ is correct.
8.61 Option (B) is correct.

A LPF will not produce phase distortion if phase varies linearly with frequency.

$$
\begin{array}{ll}
& \phi(\omega) \propto \omega \\
\text { i.e. } \quad \phi(\omega)=k \omega
\end{array}
$$

8.62 Option (B) is correct.

Let $m(t)$ is a low pass signal, whose frequency spectra is shown below

Fourier transform of $g(t)$

$$
G(t)=\frac{1}{0.5 \times 10^{-4}} \sum_{k=-\infty}^{\infty} \delta\left(f-20 \times 10^{3} k\right)
$$

Spectrum of $G(f)$ is shown below

Now when $m(t)$ is sampled with above signal the spectrum of sampled signal will look like.

When sampled signal is passed through a $L P$ filter of $B W 1 \mathrm{kHz}$, only $m(t)$ will remain.

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

The highest frequency signal in $x(t)$ is $1000 \times 3=3 \mathrm{kHz}$ if expression is expanded. Thus minimum frequency requirement is

$$
f=2 \times 3 \times 10^{3}=6 \times 10^{3} \mathrm{~Hz}
$$

Option (B) is correct.
We have

$$
x(t)=125 t[u(t)-u(t-1)]+(250-125 t)[u(t-1)-u(t-2)]
$$

The slope of expression $x(t)$ is 125 and sampling frequency f_{s} is 32×1000 samples/sec.
Let Δ be the step size, then to avoid slope overload

$$
\begin{aligned}
\frac{\triangle}{T_{s}} & \geq \text { slope } x(t) \\
\triangle f_{c} & \geq \text { slope } x(t) \\
\triangle \times 32000 & \geq 125 \\
\triangle & \geq \frac{125}{32000} \\
\triangle & =2^{-8}
\end{aligned}
$$

Option (A) is correct.
The sampling frequency is

$$
f_{s}=\frac{1}{0.03 \mathrm{~m}}=33 \mathrm{kHz}
$$

Since $f_{s} \geq 2 f_{m}$, the signal can be recovered and are correlated.
Option (B) is correct.
We have $p_{1}=0.25, p_{2}=0.25$ and $p_{3}=0.5$

$$
\begin{aligned}
H & =\sum_{i=1}^{3} p_{1} \log _{2} \frac{1}{p_{1}} \text { bits/symbol } \\
& =p_{1} \log _{2} \frac{1}{p_{1}}+p_{2} \log _{2} \frac{1}{p_{2}}+p_{3} \log _{2} \frac{1}{p_{3}}
\end{aligned}
$$

$=0.25 \log _{2} \frac{1}{0.25}+0.25 \log _{2} \frac{1}{0.25}+0.5 \log _{2} \frac{1}{0.5}$

$$
\begin{aligned}
& =0.25 \log _{2} 4+0.25 \log _{2} 4+0.5 \log _{2} 2 \\
& =0.5+0.5+\frac{1}{2}=\frac{3}{2} \text { bits } / \mathrm{symbol}
\end{aligned}
$$

$$
R_{b}=3000 \mathrm{symbol} / \mathrm{sec}
$$

Average bit rate

$$
=R_{b} H
$$

$$
=\frac{3}{2} \times 3000=4500 \mathrm{bits} / \mathrm{sec}
$$

Option (A) is correct.
The diagonal clipping in AM using envelop detector can be avoided if

But from

$$
\frac{1}{\omega_{c}} \ll R C<\frac{1}{W}
$$

We say that $R C$ den
We can say that $R C$ depends on W, thus

$$
R C<\frac{1}{W}
$$

8.68 Option (B) is correct.
8.69 Option (B) is correct.

When $\Delta / 2$ is added to $y(t)$ then signal will move to next quantization level. Otherwise if they have step size less than $\frac{\Delta}{2}$ then they will be on the same quantization level.
8.70 Option (C) is correct.

After the SSB modulation the frequency of signal will be $f_{c}-f_{m}$ i.e.

$$
1000-10 \mathrm{kHz} \approx 1000 \mathrm{kHz}
$$

The bandwidth of FM is

$$
B W=2(\beta+1) \Delta f
$$

For $N B F M \beta \ll 1$, thus

$$
B W_{N B F M} \approx 2 \triangle f=2\left(10^{9}-10^{6}\right) \approx 2 \times 10^{9}
$$

8.71 Option (A) is correct.

We have

$$
\begin{aligned}
p(t) & =u(t)-u(t-1) \\
g(t) & =p(t)^{*} p(t) \\
s(t) & =g(t)-\delta(t-2)^{*} g(t)=g(t)-g(t-2)
\end{aligned}
$$

All signal are shown in figure below :

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

The impulse response of matched filter is

$$
h(t)=s(T-t)=s(1-t)
$$

Here T is the time where output SNR is maximum.
8.72 Option (A) is correct.

We have

$$
\begin{aligned}
x_{A M}(t) & =10[P(t)+0.5 g(t)] \cos \omega_{c} t \\
p(t) & =u(t)-u(t-1) \\
g(t) & =r(t)-2 r(t-1)+r(t-2)
\end{aligned}
$$

and
For desired interval $0 \leq t \leq 1, p(t)=1$ and $g(t)=t$, Thus we have,

$$
x_{A M}(t)=100(1-0.5 t) \cos \omega_{c} t
$$

Hence modulation index is 0.5
Option (A) is correct
We know that $\quad S_{Y Y}(\omega)=|H(\omega)|^{2} \cdot S_{X X}(\omega)$
Now $S_{Y Y}(\omega)=\frac{16}{16+\omega^{2}}$ and $S_{X X}(\omega)=1$ white noise
Thus

$$
\frac{16}{16+\omega^{2}}=|H(\omega)|^{2}
$$

or

$$
|H(\omega)|=\frac{4}{\sqrt{16+\omega^{2}}}
$$

or

$$
H(s)=\frac{4}{4+s}
$$

which is a first order low pass RL filter.
Option (A) is correct.
We have

$$
\frac{R}{R+s L}=\frac{4}{4+s}
$$

or

$$
\frac{\frac{R}{L}}{\frac{R}{L}+s}=\frac{4}{4+s}
$$

Comparing we get $L=1 \mathrm{H}$ and $R=4 \Omega$
Option (C) is correct.
We have $\quad x_{A M}(t)=10\left(1+0.5 \sin 2 \pi f_{m} t\right) \cos 2 \pi f_{c} t$
The modulation index is 0.5
Carrier power

$$
P_{c}=\frac{(10)^{2}}{2}=50
$$

Side band power

$$
P_{s}=\frac{(10)^{2}}{2}=50
$$

Side band power

$$
P_{s}=\frac{m^{2} P_{c}}{2}=\frac{(0.5)^{2}(50)}{2}=6.25
$$

Option (B) is correct.

$$
\begin{aligned}
\text { Mean noise power } & =\text { Area under the PSD curve } \\
& =4\left[\frac{1}{2} \times B \times \frac{N_{o}}{2}\right]=B N_{o}
\end{aligned}
$$

The ratio of average sideband power to mean noise power is

$$
\frac{\text { Side Band Power }}{\text { Noise Power }}=\frac{6.25}{N_{0} B}=\frac{25}{4 N_{o} B}
$$

Option (D) is correct.

$$
\begin{aligned}
\{1+k m(t)\} A \sin \left(\omega_{c} t\right) & \rightarrow \text { Amplitude modulation } \\
d m(t) A_{\sin }\left(\omega_{c} t\right) & \longrightarrow \text { DSB-SC modulation } \\
A \sin \{\cos t+k m(t)\} & \rightarrow \text { Phase Modulation } \\
A \sin \left[\omega_{c}^{t}+k\right]_{-\infty}^{t} m(t) d t & \rightarrow \text { Frequency Modulation }
\end{aligned}
$$

Option (C) is correct.

$$
\begin{aligned}
\mathrm{VSB} & \longrightarrow f_{m}+f_{c} \\
\mathrm{DSB}-\mathrm{SC} & \longrightarrow 2 f_{m} \\
\mathrm{SSB} & \longrightarrow f_{m} \\
\mathrm{AM} & \longrightarrow 2 f_{m}
\end{aligned}
$$

Thus SSB has minimum bandwidth and it require minimum power.

Option (A) is correct.
Let $x(t)$ be the input signal where

$$
\begin{aligned}
& x(t)=\cos \left(\cos t+\beta_{1} \cos \omega_{m} t\right) \\
& y(t)=x^{2}(t)=\frac{1}{2}+\frac{\cos \left(2 \omega_{c} t+2 \beta_{1} \cos \omega_{m} t\right)}{2}
\end{aligned}
$$

Here

$$
\begin{aligned}
\beta & =2 \beta_{1} \text { and } \beta_{1}=\frac{\Delta f}{f_{m}}=\frac{90}{5}=18 \\
B W & =2(\beta+1) f_{m}=2(2 \times 18+1) \times 5=370 \mathrm{kHz}
\end{aligned}
$$

Option (C) is correct.

The transfer function of matched filter is

$$
h(t)=x(t-t)=x(2-t)
$$

The output of matched filter is the convolution of $x(t)$ and $h(t)$ as shown below

8.81 Option (B) is correct.

We have

$$
\begin{aligned}
H(f) & =2 e^{-j u_{t} t_{i}} \\
|H(f)| & =2 \\
G_{0}(f) & =|H(f)|^{2} G_{i}(f)
\end{aligned}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
$=4 N_{o} \mathrm{~W} / \mathrm{Hz}$
The noise power is $\quad=4 N_{o} \times B$
${ }_{8.82}$ Option (C) is correct.
As the area under pdf curve must be unity

$$
\frac{1}{2}(4 \times k)=1 \rightarrow k=\frac{1}{2}
$$

Now mean square value is

$$
\begin{aligned}
\sigma_{v}^{2} & =\int_{-\infty}^{+\infty} v^{2} p(v) d v \\
& =\int_{0}^{4} v^{2}\left(\frac{v}{8}\right) d v \quad \text { as } p(v)=\frac{1}{8} v \\
& =\int_{0}^{4}\left(\frac{v^{3}}{8}\right) d v=8
\end{aligned}
$$

Option (D) is correct.
The phase deviation is

$$
\beta=\frac{\Delta f}{f_{m}}=\frac{10}{1}=10
$$

If phase deviation remain same and modulating frequency is changed

$$
B W=2(\beta+1) f_{m}^{\prime}=2(10+1) 2=44 \mathrm{kHz}
$$

${ }^{8.84}$ Option (B) is correct.
As the area under pdf curve must be unity and all three region are equivaprobable. Thus are under each region must be $\frac{1}{3}$.

$$
2 a \times \frac{1}{4}=\frac{1}{3} \longrightarrow a=\frac{2}{3}
$$

8.85 Option (A) is correct.

$$
N_{q}=\int_{-a}^{+a} x^{2} p(x) d x=2 \int_{0}^{a} x^{2} \cdot \frac{1}{4} d x=\frac{1}{2}\left[\frac{x^{3}}{3}\right]_{0}^{a}=\frac{a^{3}}{6}
$$

Substituting $a=\frac{2}{3}$ we have

$$
N_{q}=\frac{4}{81}
$$

Option (C) is correct.
When word length is 6

$$
\left(\frac{S}{N}\right)_{N=6}=2^{2 \times 6}=2^{12}
$$

When word length is 8

$$
\begin{aligned}
\left(\frac{S}{N}\right)_{N=8} & =2^{2 \times 8}=2^{16} \\
\text { Now } \quad \frac{\left(\frac{S}{N}\right)_{N=8}}{\left(\frac{S}{N}\right)_{N=6}} & =2^{16} \\
2^{12} & =2^{4}=16
\end{aligned}
$$

Thus it improves by a factor of 16 .
Option (B) is correct.
Carrier frequency $\quad f_{c}=1 \times 10^{6} \mathrm{~Hz}$
Modulating frequency

$$
f_{m}=2 \times 10^{3} \mathrm{~Hz}
$$

For an envelope detector

$$
\begin{aligned}
& 2 \pi f_{c}>\frac{1}{R c}>2 \pi f_{m} \\
& \frac{1}{2 \pi f_{c}}<R C<\frac{1}{2 \pi f_{m}}
\end{aligned}
$$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{aligned}
\frac{1}{2 \pi f_{c}} & <R C<\frac{1}{2 \pi f_{m}} \\
\frac{1}{2 \pi 10^{6}} & <R C<\frac{1}{2 \times 10^{3}} \\
1.59 \times 10^{-7} & <R C<7.96 \times 10^{-5}
\end{aligned}
$$

so, $20 \mu \mathrm{sec}$ sec best lies in this interval.
Option (B) is correct.

$$
\begin{aligned}
S_{A M}(t) & =A_{c}\left[1+0.1 \cos \omega_{m} t\right] \cos \omega_{m} t \\
s_{\text {NBFM }}(t) & =A_{c} \cos \left[\omega_{c} t+0.1 \sin \omega_{m} t\right] \\
s(t) & =S_{A M}(t)+S_{N B} f_{m}(t)
\end{aligned}
$$

$$
\begin{aligned}
=A_{c}\left[1+0.1 \cos \omega_{m} t\right] \cos \omega_{c} t & +A_{c} \cos \left(\omega_{c} t+0.1 \sin \omega_{m} t\right) \\
& =A_{c} \cos \omega_{c} t+A_{c} 0.1 \cos \omega_{m} t \cos \omega_{c} t
\end{aligned}
$$

$+A_{c} \cos \omega_{c} t \cos \left(0.1 \sin \omega_{m} t\right)-A_{c} \sin \omega_{c} t \cdot \sin \left(0.1 \sin \omega_{m} t\right)$
As $\quad 0.1 \sin \omega_{m} t \cong+0.1$ to -0.1
so, $\quad \cos \left(0.1 \sin \omega_{m} t\right) \approx 1$
As when θ is small $\cos \theta \approx 1$ and $\sin \theta \cong \theta$, thus

$$
\sin \left(0.1 \sin \omega_{m} t\right)
$$

$=0.1 \sin \cos \omega_{c} t \cos \omega_{m} t+A_{c} \cos \omega_{c} t$
$-A_{c} 0.1 \sin \omega_{m} t \sin \omega_{c} t$

$$
=\underbrace{2 A_{c} \cos \omega_{c} t}_{\text {cosec }}+\underbrace{0.1 A_{c} \cos \left(\omega_{c}+\omega_{m}\right) t}_{U S B}
$$

Thus it is SSB with carrier.
Option (A) is correct.
Consecutive pulses are of same polarity when modulator is in slope overload.
Consecutive pulses are of opposite polarity when the input is constant.
8.90 Option (D) is correct.

$$
\begin{aligned}
F\left(x_{1} \leq X<x_{2}\right) & =p\left(X=x_{2}\right)-P\left(X=x_{1}\right) \\
P(X=1) & =P\left(X=1^{+}\right)-P\left(X=1^{-}\right) \\
& =0.55-0.25=0.30
\end{aligned}
$$

or
8.91 Option (A) is correct.

The $S N R$ at transmitter is

$$
\begin{aligned}
S N R_{t r} & =\frac{P_{t r}}{\mathbb{N} B} \\
\frac{10^{-3}}{10^{-20} \times 100 \times 10^{6}} & =10^{9}
\end{aligned}
$$

In $\mathrm{dB} \quad S N R_{t r}=10 \log 10^{9}=90 \mathrm{~dB}$
Cable Loss $\quad=40 \mathrm{db}$
At receiver after cable loss we have

$$
S N R_{R c}=90-40=50 \mathrm{~dB}
$$

8.92 Option (B) is correct.

The impulse response of matched filter is

$$
h(t)=x(T-t)
$$

Since here $T=4$, thus

$$
h(t)=x(4-t)
$$

The graph of $h(t)$ is as shown below.

From graph it may be easily seen that slope between $3<t<4$ is -1 .
8.93 Option (C) is correct.

The required bandwidth of M array PSK is

$$
B W=\frac{2 R_{b}}{n}
$$

where $2^{n}=M$ and R_{b} is bit rate

For BPSK,

$$
M=2=2^{n} \longrightarrow n=1
$$

Thus

$$
B_{1}=\frac{2 R_{b}}{1}=2 \times 10=20 \mathrm{kHz}
$$

For QPSK, $M=4=2^{n} \longrightarrow n=2$
Thus

$$
B_{2}=\frac{2 R_{b}}{2}=10 \mathrm{kHz}
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

8.94 Option (C) is correct.

We have

$$
f_{c}=100 \mathrm{MHz}=100 \times 10^{6} \text { and } f_{m}=1
$$

MHz

$$
=1 \times 10^{6}
$$

The output of balanced modulator is

$$
\begin{aligned}
V_{B M}(t) & =\left[\cos \omega_{c} t\right]\left[\cos \omega_{c} t\right] \\
& =\frac{1}{2}\left[\cos \left(\omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}-\omega_{m}\right) t\right]
\end{aligned}
$$

If $V_{B M}(t)$ is passed through HPF of cut off frequency $f_{H}=100 \times 10^{6}$, then only $\left(\omega_{c}+\omega_{m}\right)$ passes and output of HPF is

$$
V_{H P}(t)=\frac{1}{2} \cos \left(\omega_{c}+\omega_{m}\right) t
$$

$$
\begin{aligned}
& \text { Now } \begin{aligned}
V_{0}(t) & =V_{H P}(t)+\sin \left(2 \pi \times 100 \times 10^{6}\right) t \\
=\frac{1}{2} \cos \left[2 \pi 100 \times 10^{6}+2 \pi \times 1\right. & \left.\times 10^{6} t\right]+\sin \left(2 \pi \times 100 \times 10^{6}\right) t \\
& =\frac{1}{2} \cos \left[2 \pi 10^{8}+2 \pi 10^{6} t\right]+\sin \left(2 \pi 10^{8}\right) t
\end{aligned}
\end{aligned}
$$

$$
=\frac{1}{2}\left[\cos \left(2 \pi 10^{8} t\right) t \cos \left(2 \pi 10^{6} t\right)\right]-\sin \left[2 \pi 10^{8} t \sin \left(2 \pi 10^{6} t\right)+\sin 2 \pi 10^{8} t\right]
$$

$=\frac{1}{2} \cos \left(2 \pi 10^{6} t\right) \cos 2 \pi 10^{8} t+\left(1-\frac{1}{2} \sin 2 \pi 10^{6} t\right) \sin 2 \pi 10^{8} t$
This signal is in form

$$
\begin{gathered}
=A \cos 2 \pi 10^{8} t+B \sin 2 \pi 10^{8} t \\
\text { Now }
\end{gathered}
$$

GATE

by
RK Kanodia \& Ashish Murolia in 3 Volumes

Fully Revised

Every Unit Contain All Questions of Last 15 Year Papers Purchase from Nodia Online Store at Maximum Discount with fr Shipping
The envelope of this signal is

$$
\begin{aligned}
&=\sqrt{A^{2}+B^{2}} \\
&=\sqrt{\left(\frac{1}{2} \cos \left(2 \pi 10^{6} t\right)\right)^{2}+\left(1-\frac{1}{2} \sin \left(2 \pi 10^{6} t\right)^{2}\right.} \\
&=\sqrt{\frac{1}{4} \cos ^{2}\left(2 \pi 10^{6} t\right)+1+\frac{1}{4} \sin ^{2}\left(2 \pi 10^{6} t\right)-\sin \left(2 \pi 10^{6} t\right)} \\
&=\sqrt{\frac{1}{4}+1-\sin \left(2 \pi 10^{6} t\right)} \\
&=\sqrt{\frac{5}{4}-\sin \left(2 \pi 10^{6} t\right)}
\end{aligned}
$$

Option (A) is correct.

$$
s(t)
$$

$=A \cos \left[2 \pi 10 \times 10^{3} t\right]+A \cos \left[2 \pi 10.1 \times 10^{3} t\right]$
Here

$$
T_{1}=\frac{1}{10 \times 10^{3}}=100 \mu \mathrm{sec}
$$

and $\quad T_{2}=\frac{1}{10.1 \times 10^{3}}=99 \mu \mathrm{sec}$
Period of added signal will be LCM $\left[T_{1}, T_{2}\right]$
Thus
$T=L C M[100,99]=9900 \mu \mathrm{sec}$
Thus frequency $\quad f=\frac{1}{9900 \mu}=0.1 \mathrm{kHz}$
Option (A) is correct.
The pdf of transmission of 0 and 1 will be as shown below :

Probability of error of 1

$$
P(0 \leq X \leq 0.2)=0.2
$$

Probability of error of 0 :

$$
\begin{aligned}
P(0.2 \leq X \leq 0.25) & =0.05 \times 2=0.1 \\
\text { Average error } & =\frac{P(0 \leq X \leq 0.2)+P(0.2 \leq X \leq 0.25)}{2} \\
& =\frac{0.2+0.1}{0}=0.15
\end{aligned}
$$

8.97 Option (B) is correct.

The square mean value is

$$
\begin{aligned}
\sigma^{2} & =\int_{-\infty}^{\infty}\left(x-x_{q}\right)^{2} f(x) d x \\
& =\int_{0}^{1}\left(x-x_{q}\right)^{2} f(x) d x
\end{aligned}
$$

$$
=\int_{0}^{0.3}(x-0)^{2} f(x) d x+\int_{0.3}^{0.1}(x-0.7)^{2} f(x) d x
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
or

$$
\begin{aligned}
& =\left[\frac{x^{3}}{3}\right]_{0}^{0.3}+\left[\frac{x^{3}}{3}+0.49 x-14 \frac{x^{2}}{2}\right]_{0.3}^{1} \\
\sigma^{2} & =0.039 \\
\mathrm{RMS} & =\sqrt{\sigma^{2}}=\sqrt{0.039}=0.198
\end{aligned}
$$

8.98 Option (C) is correct.

$$
\begin{aligned}
\text { FM } & \longrightarrow \text { Capture effect } \\
\text { DM } & \longrightarrow \text { Slope over load } \\
\text { PSK } & \longrightarrow \text { Matched filter } \\
\text { PCM } & \longrightarrow \mu \text { - law }
\end{aligned}
$$

8.99 Option (C) is correct.

Since $f_{s}=2 f_{m}$, the signal frequency and sampling frequency are as follows

$$
\begin{aligned}
f_{m 1} & =1200 \mathrm{~Hz} \longrightarrow 2400 \text { samples per sec } \\
f_{m 2} & =600 \mathrm{~Hz} \longrightarrow 1200 \text { samples per sec } \\
f_{m 3} & =600 \mathrm{~Hz} \longrightarrow 1200 \text { samples per sec }
\end{aligned}
$$

Thus by time division multiplexing total 4800 samples per second will be sent. Since each sample require 12 bit, total 4800×12 bits per second will be sent
Thus bit rate

$$
R_{b}=4800 \times 12=57.6 \mathrm{kbps}
$$

ption (B) is correct.
The input signal $X(f)$ has the peak at 1 kHz and -1 kHz . After balanced modulator the output will have peak at $f_{c} \pm 1 \mathrm{kHz}$ i.e. :

$$
\begin{aligned}
10 \pm 1 & \longrightarrow 11 \text { and } 9 \mathrm{kHz} \\
10 \pm(-1) & \longrightarrow 9 \text { and } 11 \mathrm{kHz}
\end{aligned}
$$

9 kHz will be filtered out by HPF of 10 kHz . Thus 11 kHz will remain. After passing through 13 kHz balanced modulator signal will have $13 \pm 11 \mathrm{kHz}$ signal i.e. 2 and 24 kHz .
Thus peak of $Y(f)$ are at 2 kHz and 24 kHz .
8.101 Option (A) is correct

The input is a coherent detector is DSB - SC signal plus noise. The noise at the detector output is the in-phase component as the quadrature component $n_{q}(t)$ of the noise $n(t)$ is completely rejected by the detector.
${ }_{8.102}$ Option (C) is correct.
The noise at the input to an ideal frequency detector is white. The PSD of noise at the output is parabolic
8.103 Option (B) is correct.

We have

$$
P_{e}=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{d}}{2 \eta}}\right)
$$

Since P_{e} of Binary FSK is 3 dB inferior to binary PSK
Option (D) is correct.
The pdf of Z will be convolution of pdf of X and pdf of Y as shown below.
Now $\quad p[Z \leq z]=\int_{-\infty}^{z} f_{Z}(z) d z$

$$
p[Z \leq-2]=\int_{-\infty}^{-2} \underset{Z}{ }(z) d z
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

$$
\begin{aligned}
& =\text { Area }[z \leq-2] \\
& =\frac{1}{2} \times \frac{1}{6} \times 1=\frac{1}{12}
\end{aligned}
$$

Option (D) is correct.
We have

$$
\begin{array}{rlr}
R_{X X}(\tau) & =4\left(e^{-0.2|\tau|}+1\right) \\
R_{X X}(0) & =4\left(e^{-0.2|0|}+1\right)=8=\sigma^{2} \\
\sigma & =2 \sqrt{2} \quad \quad \quad \text { Given } \\
\mu & =0 \\
P(x \leq 1) & =F_{x}(1) \\
& =1-Q\left(\frac{X-\mu}{\sigma}\right) \quad \text { at } x=1 \\
& =1-Q\left(\frac{1-0}{2 \sqrt{2}}\right)=1-Q\left(\frac{1}{2 \sqrt{2}}\right)
\end{array}
$$

or

Now

Given ${ }^{8.109}$ Option (C) is correct.

$$
\begin{aligned}
& v_{i}=A_{c}^{1} \cos \left(2 \pi f_{c} t\right)+m(t) \\
& v_{0}=a_{o} v_{i}+a v_{i}^{3} \\
& v_{0}
\end{aligned}
$$

$$
=a_{0}\left[A_{c}^{\prime} \cos \left(2 \pi f_{c}^{\prime} t\right)+m(t)\right]+a_{1}\left[A_{c}^{\prime} \cos \left(2 \pi f_{c}^{\prime} t\right)+m(t)\right]^{3}
$$

$$
=a_{0} A_{c}^{\prime} \cos \left(2 \pi f_{c}^{\prime} t\right)+a_{0} m(t)+a_{1}\left[\left(A_{c}^{\prime} \cos 2 \pi f_{c}^{\prime} t\right)^{3}\right.
$$

$$
\begin{aligned}
& \left.+\left(A_{c}^{\prime} \cos \left(2 \pi f_{c}^{\prime}\right) t\right)^{2} m(t)+3 A_{c}^{\prime} \cos \left(2 \pi f_{c}^{\prime} t\right) m^{2}(t)+m^{3}(t)\right] \\
& \begin{array}{r}
=a_{0} A_{c}^{\prime} \cos \left(2 \pi f_{c}^{\prime} t\right)+a_{0} m(t)+a_{1}\left(A_{c}^{\prime} \cos 2 f_{c}^{\prime} t\right)^{3} \\
\\
\quad+3 a_{1} A_{c}^{\prime 2}\left[\frac{1+\cos \left(4 \pi f_{c} t\right)}{2}\right] m(t) \\
\\
=3 a_{1} A_{c}^{\prime} \cos \left(2 \pi f_{c}^{\prime} t\right) m^{2}(t)+m^{3}(t)
\end{array}
\end{aligned}
$$

The term $3 a_{1} A_{c}^{\prime}\left(\frac{\cos 4 \pi f_{c} t}{2}\right) m(t)$ is a DSB-SC signal having carrier frequency 1. MHz. Thus $2 f_{c}^{\prime}=1 \mathrm{MHz}$ or $f_{c}^{\prime}=0.5 \mathrm{MHz}$

Option (D) is correct.

$$
\begin{aligned}
P_{T} & =P_{c}\left(1+\frac{\alpha^{2}}{2}\right) \\
P_{s b} & =\frac{P_{c} \alpha^{2}}{2}=\frac{P_{c}(0.5)^{2}}{2} \\
\frac{P_{s b}}{P_{c}} & =\frac{1}{8}
\end{aligned}
$$

Option (D) is correct.
AM Band width $=2 f_{m}$
Peak frequency deviation $=3\left(2 f_{m}\right)=6 f_{m}$
Modulation index $\beta=\frac{6 f_{m}}{f_{m}}=6$
The FM signal is represented in terms of Bessel function as

$$
\begin{aligned}
x_{F M}(t) & =A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) \cos \left(\omega_{c}-n \omega_{n}\right) t \\
\omega_{c}+n \omega_{m} & =2 \pi\left(1008 \times 10^{3}\right) \\
2 \pi 10^{6}+n 4 \pi \times 10^{3} & =2 \pi\left(1008 \times 10^{3}\right), n=4
\end{aligned}
$$

Thus coefficient $=5 J_{4}(6)$
Option (B) is correct.

$$
\begin{aligned}
\text { Ring modulation } & \longrightarrow \text { Generation of DSB - SC } \\
V C O & \longrightarrow \text { Generation of FM } \\
\text { Foster seely discriminator } & \longrightarrow \text { Demodulation of fm } \\
\text { mixer } & \longrightarrow \text { frequency conversion }
\end{aligned}
$$

Option (A) is correct

$$
\begin{aligned}
f_{\max } & =1650+450=2100 \mathrm{kHz} \\
f_{\min } & =550+450=1000 \mathrm{kHz}
\end{aligned}
$$

$$
\text { or } \quad f=\frac{1}{2 \pi \sqrt{L C}}
$$

frequency is minimum, capacitance will be maximum

$$
\begin{aligned}
R & =\frac{C_{\max }}{C_{\min }}=\frac{f_{\max }^{2}}{f_{\min }^{2}}=(2.1)^{2} \\
R & =4.41 \\
f_{i} & =f_{c}+2 f_{I F}=700+2(455)=1600 \mathrm{kHz}
\end{aligned}
$$

or

Option (D) is correct.

$$
\begin{gathered}
E_{b}=10^{-6} \text { watt-sec } \\
N_{o}=10^{-5} \mathrm{~W} / \mathrm{Hz} \\
(\mathrm{SNR}) \text { matched filler }=\frac{E_{o}}{\frac{N_{o}}{2}}=\frac{10^{6}}{2 \times 10^{-5}}=.05 \\
(\mathrm{SNR}) d B=10 \log 10(0.05)=13 \mathrm{~dB}
\end{gathered}
$$

Option (B) is correct.
For slopeoverload to take place $E_{m} \geq \frac{\Delta f_{s}}{2 \pi f_{m}}$
This is satisfied with $E_{m}=1.5 \mathrm{~V}$ and $f_{m}=4 \mathrm{kHz}$
Option (A) is correct.
If
$s \rightarrow$ carrier synchronization at receiver
$\rho \rightarrow$ represents bandwidth efficiency
then for coherent binary PSK $\rho=0.5$ and s is required.
8.117 Option (B) is correct.

$$
\begin{aligned}
\text { Bit Rate } & =8 k \times 8=64 \mathrm{kbps} \\
(\mathrm{SNR}) q & =1.76+6.02 n \mathrm{~dB} \\
& =1.76+6.02 \times 8=49.8 \mathrm{~dB}
\end{aligned}
$$

Option (C) is correct.
The frequency of message signal is

$$
f_{c}=1000 \mathrm{kHz}
$$

1 The frequency of message signal is

$$
f_{m}=\frac{1}{100 \times 10^{-6}}=10 \mathrm{kHz}
$$

Here message signal is symmetrical square wave whose FS has only odd harmonics i.e. $10 \mathrm{kHz}, 30 \mathrm{kHz} 50 \mathrm{kHz}$. Modulated signal contain $f_{c} \pm f_{m}$ frequency component. Thus modulated signal has

$$
\begin{aligned}
f_{c} \pm f_{m} & =(1000 \pm 10) \mathrm{kH} \\
f_{c} \pm 3 f_{m} & =(1000 \pm 10) \mathrm{kH}
\end{aligned}=1030 \mathrm{kHz}, 990 \mathrm{kHz}, 970 \mathrm{kHz}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

Thus, there is no 1020 kHz component in modulated signal.
8.119 Option (C) is correct.

We have

$$
\begin{aligned}
y(t) & =5 \times 10^{-6} x(t) \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right) \\
x(t) & =10 \cos \left(8 \pi \times 10^{3}\right) t \\
T_{s} & =100 \mu \mathrm{sec}
\end{aligned}
$$

The cut off f_{c} of LPF is 5 kHz
We know that for the output of filter

$$
\begin{aligned}
& =\frac{x(t) y(t)}{T_{s}} \\
& =\frac{10 \cos \left(8 \pi \times 10^{3}\right) t \times 5 \times 10^{-6}}{100 \times 10^{-6}} \\
& =5 \times 10^{-1} \cos \left(8 \pi \times 10^{3}\right) t
\end{aligned}
$$

8.120 Option (C) is correct.

Transmitted frequencies in coherent BFSK should be integral of bit rate 8 kHz .
8.121 Option (B) is correct.

For best reception, if transmitting waves are vertically polarized, then receiver should also be vertically polarized i.e. transmitter and receiver must be in same polarization.
8.122 Option (D) is correct.

$$
\begin{aligned}
s(t) & =\cos 2 \pi\left(2 \times 10^{6} t+30 \sin 150 t+40 \cos 150 t\right) \\
& =\cos \left\{4 \pi 10^{6} t+100 \pi \sin (150 t+\theta)\right\}
\end{aligned}
$$

Angle modulated signal is

$$
s(t)=A \cos \left\{\omega_{c} t+\beta \sin \left(\omega_{m} t+\theta\right)\right\}
$$

Comparing with angle modulated signal we get
Phase deviations $\quad \beta=100 \pi$
Frequency deviations

$$
\triangle f=\beta f_{m}=100 \pi \times \frac{150}{2 \pi}=7.5 \mathrm{kHz}
$$

Option $\left({ }^{*}\right)$ is correct.

$$
\begin{aligned}
& \text { We have } \begin{aligned}
& m(t) s(t)=y_{1}(t) \\
&=\frac{2 \sin (2 \pi t) \cos (200 \pi t)}{t} \\
&=\frac{\sin (202 \pi t)-\sin (198 \pi t)}{t} \\
& y_{1}(t)+n(t) y_{2}(t)=\frac{\sin 202 \pi t-\sin 198 \pi t}{t}+\frac{\sin 199 \pi t}{t} \\
&=y_{2}(t)=u(t) \\
&=\frac{[\sin 202 \pi t-\sin 198 \pi t+\sin 199 \pi t] \cos 200 \pi t}{t} \\
&=\frac{1}{2}[\sin (402 \pi t)+\sin (2 \pi t)-\{\sin (398 \pi t)-\sin (2 \pi t)\}
\end{aligned} \\
&
\end{aligned}
$$

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
After filtering

$$
\begin{aligned}
y(t) & =\frac{\sin (2 \pi t)+\sin (2 \pi t)-\sin (\pi t)}{2 t} \\
& =\frac{\sin (2 \pi t)+2 \sin (0.5 t) \cos (1.5 \pi t)}{2 t} \\
& =\frac{\sin 2 \pi t}{2 t}+\frac{\sin 0.5 \pi t}{t} \cos 1.5 \pi t
\end{aligned}
$$

Option (B) is correct.
The signal frequency is

$$
\begin{aligned}
& f_{m}=\frac{24 \pi 10^{3}}{2 \pi}=12 \mathrm{kHz} \\
& T_{s}=50 \mu \mathrm{sec} \rightarrow f_{s}=\frac{1}{T_{s}}=\frac{1}{50} \times 10^{6}=20
\end{aligned}
$$

kHz
After sampling signal will have $f_{s} \pm f_{m}$ frequency component i.e. 32 and 12 kHz

At filter output only 8 kHz will be present as cutoff frequency is 15 kHz .

Option (A) is correct.

$$
\begin{aligned}
d(n) & =x(n)-x(n-1) \\
E[d(n)]^{2} & =E[x(n)-x(n-1)]^{2}
\end{aligned}
$$

or $\quad E[d(n)]^{2}$
$=E[x(n)]^{2}+E[x(n-1)]^{2}-2 E[x(n) x(n-1)]$
or $\quad \sigma_{d}^{2}=\sigma_{x}^{2}+\sigma_{x}^{2}-2 R_{x x}(1)$
as $k=1$
As we have been given $\sigma_{d}^{2}=\frac{\sigma_{x}^{2}}{10}$, therefore

$$
\frac{\sigma_{x}^{2}}{10}=\sigma_{x}^{2}+\sigma_{x}^{2}-2 R_{x x}(1)
$$

or

$$
2 R_{x x}(1)=\frac{19}{10} \sigma_{x}^{2}
$$

or

$$
\frac{R_{x x}}{\sigma_{x}^{2}}=\frac{19}{20}=0.95
$$

8.126 Option (A) is correct.

An ideal low - pass filter with appropriate bandwidth f_{m} is used to recover the signal which is sampled at nyquist rate $2 f_{m}$.
8.127 Option (A) is correct.

For any PDF the probability at mean is $\frac{1}{2}$. Here given PDF is Gaussian random variable and $X=4$ is mean.
8.128 Option (C) is correct.

We require 6 bit for 64 intensity levels because $64=2^{6}$
Data Rate $=$ Frames per second \times pixels per frame \times bits per pixel

$$
=625 \times 400 \times 400 \times 6=600 \mathrm{Mbps} \mathrm{sec}
$$

8.129 Option (C) is correct.

We have

$$
\sin c(700 t)+\sin c(500 t)=\frac{\sin (700 \pi t)}{700 \pi t}+\frac{\sin (500 \pi t)}{500 \pi t}
$$

Here the maximum frequency component is $2 \pi f_{m}=700 \pi$ i.e.
$f_{m}=350 \mathrm{~Hz}$
Thus Nyquist rate

$$
\begin{aligned}
f_{s} & =2 f_{m} \\
& =2(350)=700 \mathrm{~Hz} \\
& =\frac{1}{700} \mathrm{sec}
\end{aligned}
$$

Thus sampling interval
Option (D) is correct.
Probability of error $=p$
Probability of no error $=q=(1-p)$
Probability for at most one bit error

$$
\begin{aligned}
= & \text { Probability of no bit error } \\
& + \text { probability of } 1 \text { bit error } \\
= & (1-p)^{n}+n p(1-p)^{n-1}
\end{aligned}
$$

8.131 Option (A) is correct.

If $\quad g(t) \stackrel{F T}{\longleftrightarrow} G(\omega)$
then PSD of $g(t)$ is

$$
S_{g}(\omega)=|G(\omega)|^{2}
$$

and power is

Now

$$
\begin{aligned}
P_{g} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{g}(\omega) d \omega \\
a g(t) & \stackrel{F T}{\longleftrightarrow} a G(\omega)
\end{aligned}
$$

PSD of $a g(t)$ is

$$
\begin{aligned}
S_{a g}(\omega) & =|a(G(\omega))|^{2} \\
& =a^{2}|G(\omega)|^{2} \\
S_{a g}(\omega) & =a^{2} S_{g}(\omega)
\end{aligned}
$$

or

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

Similarly $\quad P_{a g}=a^{2} P_{g}$
8.132 Option (C) is correct.

The envelope of the input signal is $\left[1+k_{a} m(t)\right]$ that will be output of envelope detector.
${ }^{8.133}$ Option (D) is correct.
Frequency Range for satellite communication is 1 GHz to 30 GHz ,
8.134 Option (B) is correct.

Waveform will be orthogonal when each bit contains integer number of cycles of carrier.
Bit rate

$$
\begin{aligned}
R_{b} & =H C F\left(f_{1}, f_{2}\right) \\
& =H C F(10 k, 25 k)
\end{aligned}
$$

Thus bit interval is

$$
=5 \mathrm{kHz}
$$

$$
T_{b}=\frac{1}{R_{b}}=\frac{1}{5 k}=0.2 \mathrm{msec}=200 \mu \mathrm{sec}
$$

8.135 Option (D) is correct.

We have

$$
P_{m}=\overline{m^{2}(t)}
$$

The input to LPF is

$$
\begin{aligned}
x(t) & =m(t) \cos \omega_{o} t \cos \left(\omega_{o} t+\theta\right) \\
& =\frac{m(t)}{2}\left[\cos \left(2 \omega_{o} t+\theta\right)+\cos \theta\right] \\
& =\frac{m(t) \cos \left(2 \omega_{o} t+\theta\right)}{2}+\frac{m(t) \cos \theta}{2}
\end{aligned}
$$

The output of filter will be

$$
y(t)=\frac{m(t) \cos \theta}{2}
$$

Power of output signal is

$$
P_{y}=\overline{y^{2}(t)}=\frac{1}{4} \overline{m^{2}(t)} \cos ^{2} \theta=\frac{P_{m} \cos ^{2} \theta}{4}
$$

Option (A) is correct.
Hilbert transformer always adds -90° to the positive frequency component and 90° to the negative frequency component.
Hilbert Trans form

$$
\begin{aligned}
\cos \omega t & \rightarrow \sin \omega t \\
\sin \omega t & \rightarrow \cos \omega t
\end{aligned}
$$

Thus $\quad \cos \omega_{1} t+\sin \omega_{2} t \rightarrow \sin \omega_{1} t-\cos \omega_{2} t$
Option (A) is correct.
We have

$$
\begin{aligned}
& x(t)=A_{c} \cos \left\{\omega_{c} t+\beta \sin \omega_{m} t\right\} \\
& y(t)=\{x(t)\}^{3}
\end{aligned}
$$

$=A_{c}^{2} \cos \left(3 \omega_{c} t+3 \beta \sin \omega_{m} t\right)+3 \cos \left(\omega_{c} t+\beta \sin \omega_{m} t\right)$
Thus the fundamental frequency doesn't change but BW is three times.

$$
B W=2(\triangle f)=2(\triangle f \times 3)=3 \mathrm{MHz}
$$

8.138 Option (C) is correct.
8.139 Option (C) is correct.

This is Quadrature modulated signal. In QAM, two signals having bandwidth. $\mathrm{B}_{1} \& \mathrm{~B}_{2}$ can be transmitted simultaneous over a bandwidth of $\left(\mathrm{B}_{1}+\mathrm{B}_{2}\right) \mathrm{Hz}$
so

$$
B . W .=(15+10)=25 \mathrm{kHz}
$$

8.140 Option (B) is correct.

A modulated signal can be expressed in terms of its in-phase and quadrature component as
$=S_{1}(t) \cos \left(2 \pi f_{c} t\right)-S_{Q}(t) \sin \left(2 \pi f_{c} t\right)$
Here
$S(t)$
$=\left[e^{-a t} c p s \Delta \omega t \cos \omega_{c} t-e^{a t} \sin \Delta \omega t \sin \omega_{c} t\right] \mu(t)$
$=\left[e^{-a t} \cos \Delta \omega t\right] \cos 2 \pi f_{c} t-\left[e^{-a t} \sin \Delta \omega t\right] \sin 2 \pi f_{c} t$

$$
=S_{1}(t) \cos 2 \pi f_{c} t-S_{Q}(t) \sin 2 \pi f_{c} t
$$

Complex envelope of $s(t)$ is

$$
\begin{aligned}
\bar{S}(t) & =S_{1}(t)+j S_{Q}(t) \\
& =e^{-a t} \cos \Delta \omega t+j e^{-a t} \sin \Delta \omega t \\
& =e^{-a t}[\cos \Delta \omega t+j \sin \Delta \omega t] \\
& =\exp (-a t) \exp (j \Delta \omega t) \mu(t)
\end{aligned}
$$

Option (B) is correct.
Given function

$$
g(t)
$$

$=6 \times 10^{4} \sin c^{2}(400 t) * 10^{6} \sin c^{3}(100 t)$
Let

$$
\begin{aligned}
& g_{1}(t)=6 \times 10^{4} \sin c^{2}(400 t) \\
& g_{2}(t)=\left(10^{6}\right) \sin c^{3}(100 t)
\end{aligned}
$$

We know that $g_{1}(t) * g_{2}(t) \rightleftharpoons G_{1}(\omega) G_{2}(\omega)$ occupies minimum of Bandwidth of $G_{1}(\omega)$ or $G_{2}(\omega)$

$$
\text { Band width of } G_{1}(\omega)
$$

$=2 \times 400=800 \mathrm{rad} / \mathrm{sec} \quad$ or $=400 \mathrm{~Hz}$
Band width of $G_{2}(\omega)$
$=3 \times 100=300 \mathrm{rad} / \mathrm{sec}$ or 150 Hz
Sampling frequency

$$
=2 \times 150=300 \mathrm{~Hz}
$$

8.142 Option (B) is correct.

For a sinusoidal input $S N R(\mathrm{~dB})$ is PCM is obtained by following formulae.
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Here

$$
\begin{aligned}
S N R(\mathrm{~dB}) & =1.8+6 n \quad n \text { is no. of bits } \\
n & =8 \\
S N R(\mathrm{~dB}) & =1.8+6 \times 8=49.8
\end{aligned}
$$

So,
8.143 Option (D) is correct.

We know that matched filter output is given by

$$
g_{0}(t)=\int_{-\infty}^{\infty} g(\lambda) g\left(T_{0}-t+\lambda\right) d \lambda \text { at }
$$

$t=T_{0}$

$$
\begin{aligned}
{\left[g_{0}(t)\right]_{\max } } & =\int_{-\infty}^{\infty} g(\lambda) g(\lambda) d \lambda=\int_{-\infty}^{\infty} g^{2}(t) d t \\
& =\int_{0}^{1 \times 10^{-4}}\left[10 \sin \left(2 \pi \times 10^{6}\right)^{2}\right] d t \\
{\left[g_{0}(t)\right]_{\max } } & =\frac{1}{2} \times 100 \times 10^{-4}=5 \mathrm{mV}
\end{aligned}
$$

8.144 Option (B) is correct.

Sampling rate must be equal to twice of maximum frequency.

$$
f_{s}=2 \times 400=800 \mathrm{~Hz}
$$

8.145 Option (C) is correct.

The amplitude spectrum of a gaussian pulse is also gaussian as shown in the fig.

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-y^{2}}{2}\right)
$$

8.146 Option (C) is correct.

Let the rectangular pulse is given as

Auto correlation function is given by

$$
R_{x x}(\tau)=\frac{1}{T} \int_{-T / 2}^{T / 2}(t) x(t-\tau) d t
$$

When $x(t)$ is shifted to right $(\tau>0), x(t-\tau)$ will be shown as dotted line.

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(τ) can be negative or positive, so generalizing above equations

$$
R_{x x}(\tau)=\frac{A^{2}}{T}\left[\frac{T}{2}-|\tau|\right]
$$

$R_{x x}(\tau)$ is a regular pulse of duration T.

Option (B) is correct.
Selectivity refers to select a desired frequency while rejecting all others. In super heterodyne receiver selective is obtained partially by RF amplifier and mainly by IF amplifier.

Option (C) is correct.
In PCM, SNR $\alpha \quad 2^{2 n}$
so if bit increased from 8 to 9

$$
\frac{(S N R)_{1}}{(S N R)_{2}}=\frac{2^{2 \times 8}}{2^{2 \times 9}}=2^{2}=\frac{1}{4}
$$

so SNR will increased by a factor of 4
8.149 Option (A) is correct.

In flat top sampling an amplitude distortion is produced while reconstructing original signal $x(t)$ from sampled signal $s(t)$. High frequency of $x(t)$ are mostly attenuated. This effect is known as aperture effect.
8.150 Option (A) is correct.

$$
\text { Carrier } C(t)=\cos \left(\omega_{e} t+\theta\right)
$$

Modulating signal $=x(t)$
DSB - SC modulated signal $=x(t) c(t)=x(t) \cos \left(\omega_{e} t+\theta\right)$

$$
\text { envelope }=|x(t)|
$$

8.151 Option (D) is correct.

In Quadrature multiplexing two baseband signals can transmitted or modulated using I_{4} phase \& Quadrature carriers and its quite different form FDM \& TDM.
8.152 Option (A) is correct.

Fourier transform perform a conversion from time domain to frequency domain for analysis purposes. Units remain same.
8.153 Option (A) is correct.

In PCM, SNR is depends an step size (i.e. signal amplitude) $S N R$ can be improved by using smaller steps for smaller amplitude. This is obtained by compressing the signal.
8.154 Option (C) is correct.

Band width is same for BPSK and $\operatorname{APSK}(O O K)$ which is equal to twice of signal Bandwidth.
8.155 Option (A) is correct.

The spectral density of a real value random process symmetric about vertical axis so it has an even symmetry.
8.156 Option (A) is correct.
8.157 Option (C) is correct.

It is one of the advantage of bipolar signalling (AMI) that its spectrum has a dc null for binary data transmission PSD of bipolar signalling is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

8.158 Option (A) is correct.

Probability Density function (PDF) of a random variable x defined
so here

$$
\begin{aligned}
P_{x}(x) & =\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
K & =\frac{1}{\sqrt{2 \pi}}
\end{aligned}
$$

8.159 Option (C) is correct.

Here the highest frequency component in the spectrum is 1.5 kHz [at 2 kHz is not included in the spectrum]

$$
\text { Minimum sampling freq. }=1.5 \times 2=3 \mathrm{kHz}
$$

Option (B) is correct.
We need a high pass filter for receiving the pulses.
${ }_{8.161}$ Option (D) is correct.
Power spectral density function of a signal $g(t)$ is fourier transform of its auto correlation function

$$
R_{g}(\tau) \stackrel{\mathcal{F}}{\longleftrightarrow} S_{g}(\omega)
$$

here $S_{g}(\omega)=\sin c^{2}(f)$
so $R_{g}(t)$ is a triangular pulse.

$$
f[\text { triang. }]=\sin c^{2}(f)
$$

Option (C) is correct.
For a signal $g(t)$, its matched filter response given as

$$
h(t)=g(T-t)
$$

so here $g(t)$ is a rectangular pulse of duration T.

factor of $2^{2(n+1) / n}$

8.165 Option (D) is correct.

The auto correlation of energy signal is an even function. auto correlation function is gives as

$$
\begin{aligned}
R(\tau) & =\int_{-\infty}^{\infty} x(t) x(t+\tau) d t \\
\text { put } & =\begin{aligned}
R(-\tau) & =\int_{-\infty}^{\infty} x(t) x(t-\tau) d t \\
t-\tau & =\alpha^{\infty} \\
d t & =d \alpha \\
R(-\tau) & =\int_{-\infty}^{\infty} x(\alpha+\tau) x(\alpha) d \alpha
\end{aligned}
\end{aligned}
$$

change variable $\alpha \rightarrow t$

$$
\begin{aligned}
& R(-\tau)=\int_{-\infty}^{\infty} x(t) x(t+\tau) d t=R(\tau) \\
& R(-\tau)=R(\tau) \text { even function }
\end{aligned}
$$

8.166 Option (D) is correct.

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
WWW.nodia.co.in
output of matched filter

$$
y(t)=g(t) * h(t)
$$

if we shift $g(-t)$ for convolution $y(t)$ increases first linearly then decreases to zero.

8.163 Option (C) is correct.

The difference between incoming signal frequency $\left(f_{c}\right)$ and its image frequency $\left(f_{c}\right)$ is $2 I_{f}$ (which is large enough). The RF filter may provide poor selectivity against adjacent channels separated by a small frequency differences but it can provide reasonable selectivity against a station separated by $2 I_{f}$. So it provides adequate suppression of image channel.
8.164 Option (C) is correct. In PCM SNR is given by

$$
S N R=\frac{3}{2} 2^{2 n}
$$

if no. of bits is increased from n to $(n+1)$ SNR will increase by a

2013

ONE MARK
Consider a vector field $\vec{A}(\vec{r})$. The closed loop line integral $\oint \vec{A} \cdot d \vec{l}$ can be expressed as
(A) $\oiiint(\nabla \times \vec{A}) \cdot d \vec{s}$ over the closed surface bounded by the loop
(B) $\iint(\nabla \cdot \vec{A}) d v$ over the closed volume bounded by the loop
(C) $\iiint(\nabla \cdot \vec{A}) d v$ over the open volume bounded by the loop
(D) $\iint(\nabla \times \vec{A}) \cdot d \vec{s}$ over the open surface bounded by the loop

The divergence of the vector field $\vec{A}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}$ is
(A) 0
(B) $1 / 3$

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(C) 1
(D) 3

The return loss of a device is found to be 20 dB . The voltage standing wave ratio (VSWR) and magnitude of reflection coefficient are respectively
(A) 1.22 and 0.1
(B) 0.81 and 0.1
(C) - 1.22 and 0.1
(D) 2.44 and 0.2

2013
TWO MARKS

Statement for Linked Answer Questions 52 and 53:

A monochromatic plane wave of wavelength $\lambda=600 \mu \mathrm{~m}$ is propagating in the direction as shown in the figure below. \vec{E}_{i}, \vec{E}_{r} and \vec{E}_{t} denote incident, reflected, and transmitted electric field vectors associated with the wave.

The angle of incidence θ_{i} and the expression for \vec{E}_{i} are
(A) 60° and $\frac{E_{0}}{\sqrt{2}}\left(\hat{a}_{x}-\hat{a}_{z}\right) e^{-j \frac{\pi \times 10^{4}(x+2)}{3 \sqrt{2}}} \mathrm{~V} / \mathrm{m}$
(B) 45° and $\frac{E_{0}}{\sqrt{2}}\left(\hat{a}_{x}+\hat{a}_{z}\right) e^{-j \frac{\pi \times 10^{4} z}{3}} \mathrm{~V} / \mathrm{m}$
(C) 45° and $\frac{E_{0}}{\sqrt{2}}\left(\hat{a}_{x}-\hat{a}_{z}\right) e^{-j \frac{\pi \times 10^{4}(x+z)}{3 \sqrt{2}}} \mathrm{~V} / \mathrm{m}$
(D) 60° and $\frac{E_{0}}{\sqrt{2}}\left(\hat{a}_{x}-\hat{a}_{z}\right) e^{-j \frac{\pi \times 10^{4} z}{3}} \mathrm{~V} / \mathrm{m}$

The expression for \vec{E}_{r} is
(A) $0.23 \frac{E_{0}}{\sqrt{2}}\left(\hat{a}_{x}+\hat{a}_{z}\right) e^{-j \frac{\pi \times 10^{4}(x-z)}{3 \sqrt{2}}} \mathrm{~V} / \mathrm{m}$
(B) $-\frac{E_{0}}{\sqrt{2}}\left(\hat{a}_{x}+\hat{a}_{z}\right) e^{j \frac{\pi \times 10^{4} z}{3}} \mathrm{~V} / \mathrm{m}$
(C) $0.44 \frac{E_{0}}{\sqrt{2}}\left(\hat{a}_{x}+\hat{a}_{z}\right) e^{-j \frac{\pi \times 10^{4}(x-z)}{3 \sqrt{2}}} \mathrm{~V} / \mathrm{m}$
(D) $\frac{E_{0}}{\sqrt{2}}\left(\hat{a}_{x}+\hat{a}_{z}\right) e^{-j \frac{\pi \times 10^{4}(x+z)}{3}} \mathrm{~V} / \mathrm{m}$

ONE MARK
9.6 A plane wave propagating in air with $\boldsymbol{E}=\left(8 \boldsymbol{a}_{x}+6 \boldsymbol{a}_{y}+5 \boldsymbol{a}_{z}\right) e^{j(\omega t+3 x-4 y)} \mathrm{V} / \mathrm{m}$ is incident on a perfectly conducting slab positioned at $x \leq 0$. The \boldsymbol{E} field of the reflected wave is
(A) $\left(-8 \boldsymbol{a}_{x}-6 \boldsymbol{a}_{y}-5 \boldsymbol{a}_{z}\right) e^{j(\omega t+3 x+4 y)} \mathrm{V} / \mathrm{m}$
(B) $\left(-8 \boldsymbol{a}_{x}+6 \boldsymbol{a}_{y}-5 \boldsymbol{a}_{z}\right) e^{j(\omega t+3 x+4 y)^{-}} \mathrm{V} / \mathrm{m}$
(C) $\left(-8 \boldsymbol{a}_{x}-6 \boldsymbol{a}_{y}-5 \boldsymbol{a}_{z}\right) e^{j(\omega t-3 x-4 y)} \mathrm{V} / \mathrm{m}$
(D) $\left(-8 \boldsymbol{a}_{x}+6 \boldsymbol{a}_{y}-5 \boldsymbol{a}_{z}\right) e^{j(\omega t-3 x-4 y)} \mathrm{V} / \mathrm{m}$
9.7 The electric field of a uniform plane electromagnetic wave in free space, along the positive x direction is given by $\boldsymbol{E}=10\left(\boldsymbol{a}_{y}+j \boldsymbol{a}_{z}\right) e^{-j 25 x}$. The frequency and polarization of the wave, respectively, are
(A) 1.2 GHz and left circular
(B) 4 Hz and left circular
(C) 1.2 GHz and right circular
(D) 4 Hz and right circular
9.8 A coaxial-cable with an inner diameter of 1 mm and outer diameter of 2.4 mm is filled with a dielectric of relative permittivity 10.89 . Given $\quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}, \quad \varepsilon_{0}=\frac{10^{-9}}{36 \pi} \mathrm{~F} / \mathrm{m}, \quad$ the characteristic impedance of the cable is
(A) 330Ω
(B) 100Ω
(C) 143.3Ω
(D) 43.4Ω
9.9 The radiation pattern of an antenna in spherical co-ordinates is given by $F(\theta)=\cos ^{4} \theta ; \quad 0 \leq \theta \leq \pi / 2$. The directivity of the antenna is

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(A) 10 dB
(B) 12.6 dB
(C) 11.5 dB
(D) 18 dB

2012

TWO MARKS
9.10 A transmission line with a characteristic impedance of 100Ω is used to match a 50Ω section to a 200Ω section. If the matching is to be done both at 429 MHz and 1 GHz , the length of the transmission line can be approximately
(A) 82.5 cm
(b) 1.05 m
(C) 1.58 cm
(D) 1.75 m
9.11 The magnetic field among the propagation direction inside a rectangular waveguide with the cross-section shown in the figure is $H_{z}=3 \cos \left(2.094 \times 10^{2} x\right) \cos \left(2.618 \times 10^{2} y\right) \cos \left(6.283 \times 10^{10} t-\beta z\right)$

The phase velocity v_{p} of the wave inside the waveguide satisfies
(A) $v_{p}>c$
(B) $v_{p}=c$
(C) $0<v_{p}<c$
(D) $v_{p}=0$

Statement for Linked Answer Question 7 and 8 :

An infinitely long uniform solid wire of radius a carries a uniform dc current of density J

The magnetic field at a distance r from the center of the wire is proportional to
(A) r for $r<a$ and $1 / r^{2}$ for $r>a$
(B) 0 for $r<a$ and $1 / r$ for $r>a$
(C) r for $r<a$ and $1 / r$ for $r>a$
(D) 0 for $r<a$ and $1 / r^{2}$ for $r>a$

A hole of radius $b(b<a)$ is now drilled along the length of the wire at a distance d from the center of the wire as shown below.

The magnetic field inside the hole is
(A) uniform and depends only on d
(B) uniform and depends only on b
(C) uniform and depends on both b and d
(D) non uniform

2011

ONE MARK

Consider the following statements regarding the complex Poynting vector \vec{P} for the power radiated by a point source in an infinite homogeneous and lossless medium. $\operatorname{Re}(\vec{P})$ denotes the real part of \vec{P}, S denotes a spherical surface whose centre is at the point source, and \hat{n} denotes the unit surface normal on S. Which of the following statements is TRUE?
(A) $\operatorname{Re}(\vec{P})$ remains constant at any radial distance from the source
(B) $\operatorname{Re}(\vec{P})$ increases with increasing radial distance from the source
(C) $\oiint \int_{s} \operatorname{Re}(\vec{P}) \cdot \hat{n} d S$ remains constant at any radial distance from the source
(D) $\oiint_{s_{s}} \operatorname{Re}(\vec{P}) \cdot \hat{n} d S$ decreases with increasing radial distance from the source

A transmission line of characteristic impedance 50Ω is terminated by a 50Ω load. When excited by a sinusoidal voltage source at 10 GHz , the phase difference between two points spaced 2 mm apart on the line is found to be $\pi / 4$ radians. The phase velocity of the wave along the line is
(A) $0.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(B) $1.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(C) $1.6 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(D) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
${ }_{9.16}$ The modes in a rectangular waveguide are denoted by $\frac{\mathrm{TE}_{\mathrm{mn}}}{\mathrm{TM}_{\mathrm{mn}}}$ where m and n are the eigen numbers along the larger and smaller dimensions of the waveguide respectively. Which one of the following statements is TRUE?
(A) The TM_{10} mode of the waveguide does not exist
(B) The TE_{10} mode of the waveguide does not exist
(C) The TM_{10} and the TE_{10} modes both exist and have the same cut-off frequencies
(D) The TM_{10} and the TM_{01} modes both exist and have the same cut-off frequencies
9.17 A current sheet $\vec{J}=10 \hat{u}_{y} \mathrm{~A} / \mathrm{m}$ lies on the dielectric interface $x=0$ between two dielectric media with $\varepsilon_{r 1}=5, \mu_{r 1}=1$ in Region-1

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
$(x<0)$ and $\varepsilon_{r 2}=2, \mu_{r_{2}}=2$ in Region- $2(x>0)$. If the magnetic field in Region-1 at $x=0^{-}$is $\vec{H}_{1}=3 \hat{u}_{x}+30 \hat{u}_{y} \mathrm{~A} / \mathrm{m}$ the magnetic field in Region-2 at $x=0^{+}$is

$$
\begin{aligned}
& \mathrm{x}>0 \text { (Region-2) : } \varepsilon_{r 2}=2, \mu_{r 2}=2 \\
& \xrightarrow{\vec{J}} x=0 \\
& \mathrm{x}<0 \text { (Region-1) : } \varepsilon_{r 1}=5, \mu_{r 1}=1
\end{aligned}
$$

(A) $\vec{H}_{2}=1.5 \hat{u}_{x}+30 \hat{u}_{y}-10 \hat{u}_{z} \mathrm{~A} / \mathrm{m}$
(B) $\vec{H}_{2}=3 \hat{u}_{x}+30 \hat{u}_{y}-10 \hat{u}_{z} \mathrm{~A} / \mathrm{m}$
(C) $\vec{H}_{2}=1.5 \hat{u}_{x}+40 \hat{u}_{y} \mathrm{~A} / \mathrm{m}$
(D) $\vec{H}_{2}=3 \hat{u}_{x}+30 \hat{u}_{y}+10 \hat{u}_{z} \mathrm{~A} / \mathrm{m}$

A transmission line of characteristic impedance 50Ω is terminated in a load impedance Z_{L}. The VSWR of the line is measured as 5 and the first of the voltage maxima in the line is observed at a distance of $\lambda / 4$ from the load. The value of Z_{L} is
(A) 10Ω
(B) 250Ω
(C) $(19.23+j 46.15) \Omega$
(D) $(19.23-j 46.15) \Omega$
9.19 The electric and magnetic fields for a TEM wave of frequency 14 GHz in a homogeneous medium of relative permittivity ε_{r} and relative permeability $\mu_{r}=1$ are given by $\vec{E}=E_{p} e^{j(\omega t-280 \pi y)} \hat{u}_{z} \mathrm{~V} / \mathrm{m}$ and $\vec{H}=3 e^{j(\omega t-280 \pi y)} \hat{u}_{x} \mathrm{~A} / \mathrm{m}$. Assuming the speed of light in free space to be $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the intrinsic impedance of free space to be 120π , the relative permittivity ε_{r} of the medium and the electric field amplitude E_{p} are
(A) $\varepsilon_{r}=3, E_{p}=120 \pi$
(B) $\varepsilon_{r}=3, E_{p}=360 \pi$
(C) $\varepsilon_{r}=9, E_{p}=360 \pi$
(D) $\varepsilon_{r}=9, E_{p}=120 \pi$

ONE MARK
9.20 If the scattering matrix $[S]$ of a two port network is

$$
[S]=\left[\begin{array}{cc}
0.2 \angle 0^{\circ} & 0.9 \angle 90^{\circ} \\
0.9 \angle 90^{\circ} & 0.1 \angle 90^{\circ}
\end{array}\right] \text {, then the network is }
$$

(A) lossless and reciprocal
(B) lossless but not reciprocal
(C) not lossless but reciprocal
(D) neither lossless nor reciprocal
9.21 A transmission line has a characteristic impedance of 50Ω and a resistance of $0.1 \Omega / \mathrm{m}$. If the line is distortion less, the attenuation constant(in Np / m) is
(A) 500
(B) 5
(C) 0.014
(D) 0.002

The electric field component of a time harmonic plane EM wave traveling in a nonmagnetic lossless dielectric medium has an amplitude of $1 \mathrm{~V} / \mathrm{m}$. If the relative permittivity of the medium is 4 , the magnitude of the time-average power density vector (in $\mathrm{W} / \mathrm{m}^{2}$) is
(A) $\frac{1}{30 \pi}$
(B) $\frac{1}{60 \pi}$
(C) $\frac{1}{120 \pi}$
(D) $\frac{1}{240 \pi}$

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
2010
TWO MARKS
${ }^{9.23}$ If $\vec{A}=x y \hat{a}_{x}+x^{2} \hat{a}_{y}$, then $\oint_{C} \vec{A} \cdot d \vec{l}$ over the path shown in the figure is

(A) 0
(B) $\frac{2}{\sqrt{3}}$
(C) 1
(D) $2 \sqrt{3}$
9.24 A plane wave having the electric field components $\vec{E}_{i}=24 \cos \left(3 \times 10^{8}-\beta y\right) \hat{a}_{x} \mathrm{~V} / \mathrm{m}$ and traveling in free space is incident normally on a lossless medium with $\mu=\mu_{0}$ and $\varepsilon=9 \varepsilon_{0}$ which occupies the region $y \geq 0$. The reflected magnetic field component is given by
(A) $\frac{1}{10 \pi} \cos \left(3 \times 10^{8} t+y\right) \hat{a}_{x} \mathrm{~A} / \mathrm{m}$
(B) $\frac{1}{20 \pi} \cos \left(3 \times 10^{8} t+y\right) \hat{a}_{x} \mathrm{~A} / \mathrm{m}$
(C) $-\frac{1}{20 \pi} \cos \left(3 \times 10^{8} t+y\right) \hat{a}_{x} \mathrm{~A} / \mathrm{m}$
(D) $-\frac{1}{10 \pi} \cos \left(3 \times 10^{8} t+y\right) \hat{a}_{x} \mathrm{~A} / \mathrm{m}$
0.25 In the circuit shown, all the transmission line sections are lossless. The Voltage Standing Wave Ration(VSWR) on the 60Ω line is

(A) 1.00
(B) 1.64
(C) 2.50
(D) 3.00

ONE MARK

Two infinitely long wires carrying current are as shown in the figure below. One wire is in the $y-z$ plane and parallel to the $y-$ axis. The other wire is in the $x-y$ plane and parallel to the $x-$ axis. Which components of the resulting magnetic field are non-zero at the origin?

(A) x, y, z components
(B) x, y components
(C) y, z components
(D) x, z components
${ }^{9.27}$ Which of the following statements is true regarding the fundamental mode of the metallic waveguides shown?

P: Coaxial

Q: Cylindrical

R: Rectangular
(A) Only P has no cutoff-frequency
(B) Only Q has no cutoff-frequency
(C) Only R has no cutoff-frequency
(D) All three have cutoff-frequencies

For more GATE Resources, Mock Test and

 Study material join the community http:/lwww.facebook.com/gateec2014${ }^{9.28}$ If a vector field \vec{V} is related to another vector field \vec{A} through $\vec{V}=\nabla \times \vec{A}$, which of the following is true? (Note : C and S_{C} refer to any closed contour and any surface whose boundary is C.)
(A) $\oint_{C} \vec{V} \cdot \vec{d} l=\int_{S} \int_{C} \vec{A} \cdot \vec{d} S$
(B) $\oint_{C} \vec{A} \cdot \overrightarrow{d l}=\int_{S} \int_{C} \vec{V} \cdot \vec{d} S$
(C) $\oint_{C} \Delta \times \vec{V} \cdot \vec{d} l=\int_{S} \int_{C} \Delta \times \vec{A} \cdot \vec{d} S$
(D) $\oint_{C} \Delta \times \vec{V} \cdot \vec{d} l=\int_{S} \int_{C} \vec{V} \cdot \vec{d} S$
9.29

A transmission line terminates in two branches, each of length $\frac{\lambda}{4}$, as shown. The branches are terminated by 50Ω loads. The lines are lossless and have the characteristic impedances shown. Determine the impedance Z_{i} as seen by the source.

(A) 200Ω
(B) 100Ω
(C) 50Ω
(D) 25Ω
9.30 A magnetic field in air is measured to be

$$
\vec{B}=B_{0}\left(\frac{x}{x^{2}+y^{2}} \hat{y}-\frac{y}{x^{2}+y^{2}} \hat{x}\right)
$$

What current distribution leads to this field?
[Hint : The algebra is trivial in cylindrical coordinates.]
(A) $\vec{J}=\frac{B_{0} \hat{z}}{\mu_{0}}\left(\frac{1}{x^{2}+y^{2}}\right), r \neq 0$
(B) $\vec{J}=-\frac{B_{0} \hat{z}}{\mu_{0}}\left(\frac{2}{x^{2}+y^{2}}\right), r \neq 0$
(C) $\vec{J}=0, r \neq 0$
(D) $\vec{J}=\frac{B_{0} \hat{z}}{\mu_{0}}\left(\frac{1}{x^{2}+y^{2}}\right), r \neq 0$

2008

ONE MARK
For a Hertz dipole antenna, the half power beam width (HPBW) in the E-plane is
(A) 360°
(B) 180°
(C) 90°
(D) 45°
9.32 For static electric and magnetic fields in an inhomogeneous sourcefree medium, which of the following represents the correct form of Maxwell's equations ?
(A) $\nabla \cdot E=0, \nabla \times B=0$
(B) $\nabla \cdot E=0, \nabla \cdot B=0$
(C) $\nabla \times E=0, \quad \nabla \times B=0$
(D) $\nabla \times E=0, \nabla \cdot B=0$

2008

TWO MARKS
A rectangular waveguide of internal dimensions $(a=4 \mathrm{~cm}$ and $b=3 \mathrm{~cm}$) is to be operated in $T E_{11}$ mode. The minimum operating frequency is
(A) 6.25 GHz
(B) 6.0 GHz
(C) 5.0 GHz
(D) 3.75 GHz
9.34 One end of a loss-less transmission line having the characteristic impedance of 75Ω and length of 1 cm is short-circuited. At 3 GHz , the input impedance at the other end of transmission line is
(A) 0
(B) Resistive
(C) Capacitive
(D) Inductive
9.35 A uniform plane wave in the free space is normally incident on an infinitely thick dielectric slab (dielectric constant $\varepsilon=9$). The magnitude of the reflection coefficient is
(A) 0
(B) 0.3
(C) 0.5
(D) 0.8

In the design of a single mode step index optical fibre close to upper cut-off, the single-mode operation is not preserved if
(A) radius as well as operating wavelength are halved
(B) radius as well as operating wavelength are doubled
(C) radius is halved and operating wavelength is doubled
(D) radius is doubled and operating wavelength is halved
9.37 At 20 GHz , the gain of a parabolic dish antenna of 1 meter and 70% efficiency is
(A) 15 dB
(B) 25 dB
(C) 35 dB
(D) 45 dB

2007
ONE MARK
9.38 A plane wave of wavelength λ is traveling in a direction making an angle 30° with positive x - axis and 90° with positive y - axis. The $\overrightarrow{\mathrm{E}}$ field of the plane wave can be represented as (E_{0} is constant)
(A) $\vec{E}=\hat{y} E_{0} e^{j\left(\omega t-\frac{\sqrt{3} \pi}{\lambda} x-\frac{\pi}{\lambda} z\right)}$
(B) $\vec{E}=\hat{y} E_{0} e^{j\left(\omega t-\frac{\pi}{\lambda} x-\frac{\sqrt{3} \pi}{\lambda} z\right)}$
(C) $\vec{E}=\hat{y} E_{0} e^{j\left(\omega t+\frac{\sqrt{3} \pi}{\lambda} x+\frac{\pi}{\lambda} z\right)}$
(D) $\vec{E}=\hat{y} E_{0} e^{\hat{j}\left(\omega t-\frac{\pi}{\lambda} x+\frac{\sqrt{3} \pi}{\lambda} z\right)}$
9.39 If C is code curve enclosing a surface S, then magnetic field intensity \vec{H}, the current density \vec{j} and the electric flux density \vec{D} are related by
(A) $\iint_{S} \vec{H} \cdot d \vec{s}=\oiint_{c}\left(\vec{j}+\frac{\partial \vec{D}}{\partial t}\right) \cdot d \vec{t}$
(B) $\int_{S} \vec{H} \cdot d \vec{l}=\oint_{S}\left(\vec{j}+\frac{\partial \vec{D}}{\partial t}\right) \cdot d \vec{S}$
(C) $\oiiint_{S} \vec{H} \cdot d \vec{S}=\int_{C}\left(\vec{j}+\frac{\partial \vec{D}}{\partial t}\right) \cdot d \vec{t}$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
(D) $\oint_{C} \vec{H} \cdot d \vec{l} \oint_{c}=\iint_{S}\left(\vec{j}+\frac{\partial \vec{D}}{\partial t}\right) \cdot d \vec{s}$

The \vec{E} field in a rectangular waveguide of inner dimension $a \times b$ is given by

$$
\vec{E}=\frac{\omega \mu}{h^{2}}\left(\frac{\lambda}{2}\right) H_{0} \sin \left(\frac{2 \pi x}{a}\right)^{2} \sin (\omega t-\beta z) \hat{y}
$$

Where H_{0} is a constant, and a and b are the dimensions along the x - axis and the y - axis respectively. The mode of propagation in the waveguide is
(A) $T E_{20}$
(B) $T M_{11}$
(C) $T M_{20}$
(D) $T E_{10}$
9.41 A load of 50Ω is connected in shunt in a 2 -wire transmission line of $Z_{0}=50 \Omega$ as shown in the figure. The 2 -port scattering parameter matrix (s-matrix) of the shunt element is

(A) $\left[\begin{array}{rr}-\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right]$
(B) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(C)

(D)

9.42 The parallel branches of a 2-wirw transmission line re terminated in 100Ω and 200Ω resistors as shown in the figure. The characteristic impedance of the line is $Z_{0}=50 \Omega$ and each section has a length of $\frac{\lambda}{4}$. The voltage reflection coefficient Γ at the input is

(A) $-j \frac{7}{5}$
(B) $\frac{-5}{7}$
(C) $j \frac{5}{7}$
(D) $\frac{5}{7}$

The \vec{H} field (in A / m) of a plane wave propagating in free space is given by $\vec{H}=\hat{x} \frac{5 \sqrt{3}}{\eta_{0}} \cos (\omega t-\beta z)+\hat{y}\left(\omega t-\beta z+\frac{\pi}{2}\right)$.
The time average power flow density in Watts is
(A) $\frac{\eta_{0}}{100}$
(B) $\frac{100}{\eta_{0}}$

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(C) $50 \eta_{0}^{2}$
(D) $\frac{50}{\eta_{0}}$
9.44 An air-filled rectangular waveguide has inner dimensions of 3 cm $\times 2 \mathrm{~cm}$. The wave impedance of the $T E_{20}$ mode of propagation in the waveguide at a frequency of 30 GHz is (free space impedance $\eta_{0}=377 \Omega$)
(A) 308Ω
(B) 355Ω
(C) 400Ω
(D) 461Ω

A $\frac{\lambda}{2}$ dipole is kept horizontally at a height of $\frac{\lambda_{0}}{2}$ above a perfectly conducting infinite ground plane. The radiation pattern in the lane of the dipole (\vec{E} plane) looks approximately as
(A)

(B)

(C)

(D)

A right circularly polarized (RCP) plane wave is incident at an angle 60° to the normal, on an air-dielectric interface. If the reflected wave is linearly polarized, the relative dielectric constant $\xi_{r 2}$ is.

(A) $\sqrt{2}$
(B) $\sqrt{3}$

$$
\text { (C) } 2
$$

(D) 3
9.47 The electric field of an electromagnetic wave propagation in the positive direction is given by $E=\hat{a}_{x} \sin (\omega t-\beta z)+\hat{a}_{y} \sin (\omega t-\beta z+\pi / 2)$. The wave is
(A) Linearly polarized in the z-direction
(B) Elliptically polarized
(C) Left-hand circularly polarized
(D) Right-hand circularly polarized
9.48 A transmission line is feeding 1 watt of power to a horn antenna having a gain of 10 dB . The antenna is matched to the transmission line. The total power radiated by the horn antenna into the free space is
(A) 10 Watts
(B) 1 Watts
(C) 0.1 Watts
(D) 0.01 Watt
9.49 When a planes wave traveling in free-space is incident normally on a medium having the fraction of power transmitted into the medium is given by
(A) $\frac{8}{9}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{5}{6}$
9.50 A medium of relative permittivity $\varepsilon_{r 2}=2$ forms an interface with free - space. A point source of electromagnetic energy is located in the medium at a depth of 1 meter from the interface. Due to the total internal reflection, the transmitted beam has a circular crosssection over the interface. The area of the beam cross-section at the interface is given by
(A) $2 \pi \mathrm{~m}^{2}$
(B) $\pi^{2} \mathrm{~m}^{2}$
(C) $\frac{\pi}{2} \mathrm{~m}^{2}$
(D) $\pi \mathrm{m}^{2}$
9.51 A rectangular wave guide having $T E_{10}$ mode as dominant mode is having a cut off frequency 18 GHz for the mode $T E_{30}$. The inner broad - wall dimension of the rectangular wave guide is
(A) $\frac{5}{3} \mathrm{~cm}$
(B) 5 cm
(C) $\frac{5}{2} \mathrm{~cm}$
(D) 10 cm

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec 2014

9.52 A medium is divide into regions I and II about $x=0$ plane, as shown in the figure below.

An electromagnetic wave with electric field $E_{1}=4 \hat{a}_{x}+3 \hat{a}_{y}+5 \hat{a}_{z}$ is incident normally on the interface from region I. The electric file E_{2} in region II at the interface is
(A) $E_{2}=E_{1}$
(B) $4 \hat{a}_{x}+0.75 \hat{a}_{y}-1.25 \hat{a}_{z}$
(C) $3 \hat{a}_{x}+3 \hat{a}_{y}+5 \hat{a}_{z}$
(D) $-3 \hat{a}_{x}+3 \hat{a}_{y}+5 \hat{a}_{z}$

A mast antenna consisting of a 50 meter long vertical conductor operates over a perfectly conducting ground plane. It is base-fed at a frequency of 600 kHz . The radiation resistance of the antenna is Ohms is
(A) $\frac{2 \pi^{2}}{5}$
(B) $\frac{\pi^{2}}{5}$
(C) $\frac{4 \pi^{2}}{5}$
(D) $20 \pi^{2}$

2005

ONE MARK

The magnetic field intensity vector of a plane wave is given by

$$
\bar{H}(x, y, z, t)=10 \sin (50000 t+0.004 x+30) \hat{a}_{y}
$$

where \hat{a}_{y}, denotes the unit vector in y direction. The wave is propagating with a phase velocity.
(A) $5 \times 10^{4} \mathrm{~m} / \mathrm{s}$
(B) $-3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(C) $-1.25 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(D) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
9.55 Refractive index of glass is 1.5. Find the wavelength of a beam of light with frequency of $10^{14} \mathrm{~Hz}$ in glass. Assume velocity of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in vacuum
(A) $3 \mu \mathrm{~m}$
(B) 3 mm
(C) $2 \mu \mathrm{~m}$
(D) 1 mm

2005

TWO MARKS
Which one of the following does represent the electric field lines for the mode in the cross-section of a hollow rectangular metallic waveguide?
(A)

(B)

(C)

(D)

Characteristic impedance of a transmission line is 50Ω. Input impedance of the open-circuited line when the transmission line a short circuited, then value of the input impedance will be.
(A) 50Ω
(B) $100+j 150 \Omega$
(C) $7.69+j 11.54 \Omega$
(D) $7.69-j 11.54 \Omega$

Two identical and parallel dipole antennas are kept apart by a distance of $\frac{\lambda}{4}$ in the H - plane. They are fed with equal currents but the right ${ }^{4}$ most antenna has a phase shift of $+90^{\circ}$. The radiation pattern is given as.
(A)

(A)

Statement of Linked Answer Questions 9.46 \& 9.47 :

Voltage standing wave pattern in a lossless transmission line with characteristic impedance 50 and a resistive load is shown in the figure.
$\frac{\cap \bigcap \bigcap_{\lambda / 2}}{\lambda \overbrace{1}^{4}}$
9.59 The value of the load resistance is
(A) 50Ω
(B) 200Ω
(C) 12.5Ω
(D) 0
9.60 The reflection coefficient is given by
(A) -0.6
(B) -1
(C) 0.6
(D) 0

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
9.61 Many circles are drawn in a Smith Chart used for transmission line calculations. The circles shown in the figure represent

(A) Unit circles
(B) Constant resistance circles
(C) Constant reactance circles
(D) Constant reflection coefficient circles.
9.62 The phase velocity of an electromagnetic wave propagating in a hollow metallic rectangular waveguide in the $T E_{10}$ mode is
(A) equal to its group velocity
(B) less than the velocity of light in free space
(C) equal to the velocity of light in free space
(D) greater than the velocity of light in free space
9.63 Consider a lossless antenna with a directive gain of +6 dB . If 1 mW of power is fed to it the total power radiated by the antenna will be
(A) 4 mW
(B) 1 mW
(C) 7 mW
(D) $1 / 4 \mathrm{~mW}$
9.64 A parallel plate air-filled capacitor has plate area of $10^{-4} \mathrm{~m}^{2}$ and plate separation of $10^{-3} \mathrm{~m}$. It is connect - ed to a $0.5 \mathrm{~V}, 3.6 \mathrm{GHz}$
source. The magnitude of the displacement current is $\left(\varepsilon=\frac{1}{36 \pi} 10^{-9}\right.$ F/m)
(A) 10 mA
(B) 100 mA
(C) 10 A
(D) 1.59 mA

Consider a 300Ω, quarter - wave long (at 1 GHz) transmission line as shown in Fig. It is connected to a $10 \mathrm{~V}, 50 \Omega$ source at one end and is left open circuited at the other end. The magnitude of the voltage at the open circuit end of the line is

(A) 10 V
(B) 5 V
(C) 60 V
(D) $60 / 7 \mathrm{~V}$

In a microwave test bench, why is the microwave signal amplitude modulated at 1 kHz

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(A) To increase the sensitivity of measurement
(B) To transmit the signal to a far-off place
(C) To study amplitude modulations
(D) Because crystal detector fails at microwave frequencies

If $\vec{E}=\left(\hat{a}_{x}+j \hat{a}_{y}\right) e^{j k z-k w t}$ and $\vec{H}=(k / \omega \mu)\left(\hat{a}_{y}+k \hat{a}_{x}\right) e^{j k z-j \omega t}$, the timeaveraged Poynting vector is
(A) null vector
(B) $(k / \omega \mu) \hat{a}_{z}$
(C) $(2 k / \omega \mu) \hat{a}_{z}$
(D) $(k / 2 \omega \mu) \hat{a}_{z}$

Consider an impedance $Z=R+j X$ marked with point P in an impedance Smith chart as shown in Fig. The movement from point P along a constant resistance circle in the clockwise direction by an angle 45° is equivalent to

(A) adding an inductance in series with Z
(B) adding a capacitance in series with Z
(C) adding an inductance in shunt across Z
(D) adding a capacitance in shunt across Z
9.69 A plane electromagnetic wave propagating in free space is incident normally on a large slab of loss-less, non-magnetic, dielectric material with $\varepsilon>\varepsilon_{0}$. Maxima and minima are observed when the electric field is measured in front of the slab. The maximum electric field is found to be 5 times the minimum field. The intrinsic impedance of
the medium should be
(A) $120 \pi \Omega$
(B) $60 \pi \Omega$
(C) $600 \pi \Omega$
(D) $24 \pi \Omega$
9.70 A lossless transmission line is terminated in a load which reflects a part of the incident power. The measured VSWR is 2 . The percentage of the power that is reflected back is
(A) 57.73
(B) 33.33
(C) 0.11
(D) 11.11
9.71 The unit of $\nabla \times H$ is
(A) Ampere
(B) Ampere/meter
(C) Ampere/meter ${ }^{2}$
(D) Ampere-meter
9.72 The depth of penetration of electromagnetic wave in a medium having conductivity σ at a frequency of 1 MHz is 25 cm . The depth of penetration at a frequency of 4 MHz will be
(A) 6.25 dm
(B) 12.50 cm
(C) 50.00 cm
(D) 100.00 cm
9.73 Medium 1 has the electrical permittivity $\varepsilon_{1}=1.5 \varepsilon_{0}$ farad $/ \mathrm{m}$ and occupies the region to the left of $x=0$ plane. Medium 2 has the electrical permittivity $\varepsilon_{2}=2.5 \varepsilon_{0}$ farad $/ \mathrm{m}$ and occupies the region to the right of $x=0$ plane. If E_{1} in medium 1 is $E_{1}=\left(2 u_{x}-3 u_{y}+1 u_{z}\right)$ volt $/ \mathrm{m}$, then E_{2} in medium 2 is
(A) $\left(2.0 u_{x}-7.5 u_{y}+2.5 u_{z}\right)$ volt $/ \mathrm{m}$
(B) $\left(2.0 u_{x}-2.0 u_{y}+0.6 u_{z}\right)$ volt $/ \mathrm{m}$
(C) $\left(2.0 u_{x}-3.0 u_{y}+1.0 u_{z}\right)$ volt $/ \mathrm{m}$
(D) $\left(2.0 u_{x}-2.0 u_{y}+0.6 u_{z}\right)$ volt $/ \mathrm{m}$
9.74 If the electric field intensity is given by $E=\left(x u_{x}+y u_{y}+z u_{z}\right)$ volt $/ \mathrm{m}$, the potential difference between $X(2,0,0)$ and $Y(1,2,3)$ is
(A) +1 volt
(B) -1 volt
(C) +5 volt
(D) +6 volt
9.75 A uniform plane wave traveling in air is incident on the plane boundary between air and another dielectric medium with $\varepsilon_{r}=4$. The reflection coefficient for the normal incidence, is
(A) zero
(B) $0.5 \angle 180^{\circ}$
(B) $0.333 \angle 0^{\circ}$
(D) $0.333 \angle 180^{\circ}$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

9.76 If the electric field intensity associated with a uniform plane electromagnetic wave traveling in a perfect dielectric medium is given by $E(z, t)=10 \cos \left(2 \pi 10^{7} t-0.1 \pi z\right) \mathrm{V} / \mathrm{m}$, then the velocity of the traveling wave is
(A) $3.00 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
(B) $2.00 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
(C) $6.28 \times 10^{7} \mathrm{~m} / \mathrm{sec}$
(D) $2.00 \times 10^{7} \mathrm{~m} / \mathrm{sec}$
9.77 A short - circuited stub is shunt connected to a transmission line as shown in fig. If $Z_{0}=50 \mathrm{ohm}$, the admittance Y seen at the junction of the stub and the transmission line is

(A) $(0.01-j 0.02) \mathrm{mho}$
(B) $(0.02-j 0.01) \mathrm{mho}$
(C) $(0.04-j 0.02)$ mho
(D) $(0.02+j 0)$ mho

A rectangular metal wave guide filled with a dielectric material of relative permittivity $\varepsilon_{r}=4$ has the inside dimensions $3.0 \mathrm{~cm} \times 1.2$ cm . The cut-off frequency for the dominant mode is
(A) 2.5 GHz
(B) 5.0 GHz
(C) 10.0 GHz
(D) 12.5 GHz

Two identical antennas are placed in the $\theta=\pi / 2$ plane as shown in Fig. The elements have equal amplitude excitation with 180° polarity difference, operating at wavelength λ. The correct value of the magnitude of the far-zone resultant electric field strength normalized with that of a single element, both computed for $\phi=0$, is

(A) $2 \cos \left(\frac{2 \pi s}{\lambda}\right)$
(B) $2 \sin \left(\frac{2 \pi s}{\lambda}\right)$
(C) $2 \cos \left(\frac{\pi s}{\lambda}\right)$
(D) $2 \sin \left(\frac{\pi s}{\lambda}\right)$

2002

ONE MARK
9.80 The VSWR can have any value between
(A) 0 and 1
(B) -1 and +1
(C) 0 and ∞
(D) 1 and ∞

In in impedance Smith movement along a constant resistance circle gives rise to
(A) a decrease in the value of reactance
(B) an increase in the value of reactance
(C) no change in the reactance value
(D) no change in the impedance
9.82 The phase velocity for the $T E_{10}$-mode in an air-filled rectangular waveguide is (c is the velocity of plane waves in free space)
(A) less than c
(B) equal to c
(C) greater than c
(D) none of these

2002

TWO MARKS
A plane wave is characterized by $\vec{E}=\left(0.5 \hat{x}+\hat{y} e^{j \pi / 2}\right) e^{j \omega t-j k z}$. This wave is
(A) linearly polarized
(B) circularly polarized
(C) elliptically polarized
(D) unpolarized
9.84 Distilled water at $25^{\circ} \mathrm{C}$ is characterized by $\sigma=1.7 \times 10^{-4} \mathrm{mho} / \mathrm{m}$ and $\varepsilon=78 \varepsilon_{o}$ at a frequency of 3 GHz . Its loss tangent $\tan \delta$ is $\left(\varepsilon=\frac{10^{-9}}{36 \pi} \mathrm{~F} / \mathrm{m}\right)$
(A) 1.3×10^{-5}
(B) 1.3×10^{-3}
(C) $1.3 \times 10^{-4} / 78$
(D) $1.3 \times 10^{-5} / 78 \varepsilon_{0}$
9.85 The electric field on the surface of a perfect conductor is $2 \mathrm{~V} / \mathrm{m}$. The conductor is immersed in water with $\varepsilon=80 \varepsilon_{o}$. The surface charge density on the conductor is $\left(\varepsilon=\frac{10^{-9}}{36 \pi} \mathrm{~F} / \mathrm{m}\right)$
(A) $0 \mathrm{C} / \mathrm{m}^{2}$
(B) $2 \mathrm{C} / \mathrm{m}^{2}$
(C) $1.8 \times 10^{-11} \mathrm{C} / \mathrm{m}^{2}$
(D) $1.41 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}$
9.86 A person with receiver is 5 Km away from the transmitter. What is the distance that this person must move further to detect a $3-\mathrm{dB}$ decrease in signal strength
(A) 942 m
(B) 2070 m
(C) 4978 m
(D) 5320 m

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

2001

ONE MARK
9.87 A transmission line is distortonless if
(A) $R L=\frac{1}{G C}$
(B) $R L=G C$
(C) $L G=R C$
(D) $R G=L C$
${ }_{9.88}$ If a plane electromagnetic wave satisfies the equal $\frac{\delta^{2} E_{x}}{\delta Z^{2}}=c^{2} \frac{\delta^{2} E_{x}}{\delta t^{2}}$, the wave propagates in the
(A) x-direction
(B) z - direction
(C) y - direction
(D) $x y$ plane at an angle of 45° between the x and z direction
9.89 The plane velocity of wave propagating in a hollow metal waveguide is
(A) grater than the velocity of light in free space
(B) less than the velocity of light in free space
(C) equal to the velocity of light free space
(D) equal to the velocity of light in free
9.90 The dominant mode in a rectangular waveguide is $T E_{10}$, because this mode has
(A) the highest cut-off wavelength
(B) no cut-off
(C) no magnetic field component
(D) no attenuation
9.91 A material has conductivity of $10^{-2} \mathrm{mho} / \mathrm{m}$ and a relative permittivity of 4 . The frequency at which the conduction current in the medium is equal to the displacement current is
(A) 45 MHz
(B) 90 MHz
(C) 450 MHz
(D) 900 MHz
9.92 A uniform plane electromagnetic wave incident on a plane surface of a dielectric material is reflected with a VSWR of 3. What is the percentage of incident power that is reflected?
(A) 10%
(B) 25%
(C) 50%
(D) 75%
9.93 A medium wave radio transmitter operating at a wavelength of 492 m has a tower antenna of height 124 . What is the radiation resistance of the antenna?
(A) 25Ω
(B) 36.5Ω
(C) 50Ω
(D) 73Ω

In uniform linear array, four isotropic radiating elements are spaced $\frac{\lambda}{4}$ apart. The progressive phase shift between required for forming the main beam at 60° off the end - fire is :
(A) $-\pi$
(B) $-\frac{\pi}{2}$ radians
(C) $-\frac{\pi}{4}$ radians
(D) $-\frac{\pi}{8}$ radians

GATE Electronics \& Communication

 by RK KanodiaNow in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

2000

ONE MARK
9.95 The magnitudes of the open-circuit and short-circuit input impedances of a transmission line are 100Ω and 25Ω respectively. The characteristic impedance of the line is,
(A) 25Ω
(B) 50Ω
(C) 75Ω
(D) 100Ω
9.96 A TEM wave is incident normally upon a perfect conductor. The E and H field at the boundary will be respectively,
(A) minimum and minimum
(B) maximum and maximum
(C) minimum and maximum
(D) maximum and minimum
0.97 If the diameter of a $\frac{\lambda}{2}$ dipole antenna is increased from $\frac{\lambda}{100}$ to $\frac{\lambda}{50}$, then its
(A) bandwidth increases
(B) bandwidth decrease
(C) gain increases
(D) gain decreases

2000

TWO MARKS

9.98 A uniform plane wave in air impings at 45° angle on a lossless dielectric material with dielectric constant ϵ_{r}. The transmitted wave propagates is a 30° direction with respect to the normal. The value of ϵ_{r} is
(A) 1.5
(B) $\sqrt{1.5}$
(C) 2
(D) $\sqrt{2}$
9.99 A rectangular waveguide has dimensions $1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$. Its cut-off frequency is
(A) 5 GHz
(B) 10 GHz
(C) 15 GHz
(D) 12 GHz
${ }_{9.100}$ Two coaxial cable 1 and 2 are filled with different dielectric constants $\varepsilon_{r 1}$ and $\varepsilon_{r 2}$ respectively. The ratio of the wavelength in the cables
$\left(\lambda_{1} / \lambda_{2}\right)$ is
(A) $\sqrt{\varepsilon_{r 1} / \varepsilon_{r 2}}$
(B) $\sqrt{\varepsilon_{r 2} / \varepsilon_{r 1}}$
(C) $\varepsilon_{r 1} / \varepsilon_{r 2}$
(D) $\varepsilon_{r 2} / \varepsilon_{r 1}$

For an 8 feet (2.4 m) parabolic dish antenna operating at 4 GHz , the minimum distance required for far field measurement is closest to
(A) 7.5 cm
(B) 15 cm
(C) 15 m
(D) 150 m
9.102 An electric field on a place is described by its potential

$$
V=20\left(r^{-1}+r^{-2}\right)
$$

where r is the distance from the source. The field is due to
(A) a monopole
(B) a dipole
(C) both a monopole and a dipole(D) a quadruple
9.103 Assuming perfect conductors of a transmission line, pure TEM propagation is NOT possible in
(A) coaxial cable
(B) air-filled cylindrical waveguide
(C) parallel twin-wire line in air
(D) semi-infinite parallel plate wave guide
9.104 Indicate which one of the following will NOT exist in a rectangular resonant cavity.
(A) $T E_{110}$
(B) $T E_{011}$
(C) $T M_{110}$
(D) $T M_{111}$
9.105 Identify which one of the following will NOT satisfy the wave equation.
(A) $50 e^{j(\omega t-3 z)}$
(B) $\sin [\omega(10 z+5 t)]$
(C) $\cos \left(y^{2}+5 t\right)$
(D) $\sin (x) \cos (t)$
9.106 In a twin-wire transmission line in air, the adjacent voltage maxima are at 12.5 cm and 27.5 cm . The operating frequency is
(A) 300 MHz
(B) 1 GHz
(C) 2 GHz
(D) 6.28 GHz

A transmitting antenna radiates 251 W isotropically. A receiving antenna, located 100 m away from the transmitting antenna, has an effective aperture of $500 \mathrm{~cm}^{2}$. The total received by the antenna is

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

(A) $10 \mu \mathrm{~W}$
(B) $1 \mu \mathrm{~W}$
(C) $20 \mu \mathrm{~W}$
(D) $100 \mu \mathrm{~W}$
9.108 In air, a lossless transmission line of length 50 cm with $L=10 \mu \mathrm{H} / \mathrm{m}$, $C=40 \mathrm{pF} / \mathrm{m}$ is operated at 25 MHz . Its electrical path length is
(A) 0.5 meters
(B) λ meters
(C) $\pi / 2$ radians
(D) 180 deg rees
9.109 A plane wave propagating through a medium $\left[\varepsilon_{r}=8, v_{r}=2\right.$, and $\left.\sigma=0\right]$ has its electric field given by $\vec{E}=0.5 \hat{X} e^{-(z / 3)} \sin \left(10^{8} t-\beta z\right) \mathrm{V} / \mathrm{m}$. The wave impedance, in ohms is
(A) 377
(B) $198.5 \angle 180^{\circ}$
(C) $182.9 \angle 14^{\circ}$
(D) 133.3

1998

ONE MARK

9.110 The intrinsic impedance of copper at high frequencies is
(A) purely resistive
(B) purely inductive
(C) complex with a capacitive component
(D) complex with an inductive component
${ }^{9.111}$ The Maxwell equation $V \times H=J+\frac{\partial \bar{D}}{\partial t}$ is based on
(A) Ampere's law
(B) Gauss' law
(C) Faraday's law
(D) Coulomb's law
9.112 All transmission line sections shown in the figure is have a characteristic impedance $R_{0}+j_{0}$. The input impedance $Z_{\text {in }}$ equals

(A) $\frac{2}{3} R_{0}$
(B) R_{0}
(C) $\frac{3}{2} R_{0}$
(D) $2 R_{0}$

1998

TWO MARKS
The time averages Poynting vector, in W / m^{2}, for a wave with ${ }_{9.122}$ $\vec{E}=24 e^{j(\omega t+\beta z)} \vec{a}_{y} \mathrm{~V} / \mathrm{m}$ in free space is
(A) $-\frac{2.4}{\pi} \vec{a}_{z}$
(B) $\frac{2.4}{\pi} \vec{a}_{z}$
(C) $\frac{4.8}{\pi} \vec{a}_{z}$
(D) $-\frac{4.8}{\pi} \vec{a}_{z}$
9.114 The wavelength of a wave with propagation constant $(0.1 \pi+j 0.2 \pi) \mathrm{m}^{-1}$ is
(A) $\frac{2}{\sqrt{0.05}} \mathrm{~m}$
(B) 10 m
(C) 20 m
(D) 30 m
9.115 The depth of penetration of wave in a lossy dielectric increases with increasing
(A) conductivity
(B) permeability
(C) wavelength
(D) permittivity
${ }^{9.116}$ The polarization of wave with electric field vector ${ }^{9.124}$ A rectangular air filled waveguide has cross section of $4 \mathrm{~cm} \times 10 \mathrm{~cm}$ $\vec{E}=E_{0} e^{j(\omega t+\beta z)}\left(\vec{a}_{x}+\vec{a}_{y}\right)$ is
(A) linear
(B) elliptical
(C) left hand circular
(D) right hand circular
9.117 The vector H in the far field of an antenna satisfies
(A) $\nabla \cdot \vec{H}=0$ and $\nabla \times \vec{H}=0$
(B) $\nabla \cdot \vec{H} \neq 0$ and $\nabla \times \vec{H} \neq 0$
(C) $\nabla \cdot \vec{H}=0$ and $\nabla \times \vec{H} \neq 0$
(D) $\nabla \cdot \vec{H} \neq 0$ and $\nabla \times \vec{H}=0$
9.118 The radiation resistance of a circular loop of one turn is 0.01Ω. The radiation resistance of five turns of such a loop will be
(A) 0.002Ω
(B) 0.01Ω
(C) 0.05Ω
(D) 0.25Ω
9.119 An antenna in free space receives $2 \mu \mathrm{~W}$ of power when the incident electric field is $20 \mathrm{mV} / \mathrm{m} \mathrm{rms}$. The effective aperture of the antenna is
(A) $0.005 \mathrm{~m}^{2}$
(B) $0.05 \mathrm{~m}^{2}$
(C) $1.885 \mathrm{~m}^{2}$
(D) $3.77 \mathrm{~m}^{2}$
9.120 The maximum usable frequency of an ionospheric layer at 60° incidence and with 8 MHz critical frequency is
(A) 16 MHz
(B) $\frac{16}{\sqrt{3}} \mathrm{MHz}$
(C) 8 MHz
(D) 6.93 MHz
9.121 A loop is rotating about they y-axis in a magnetic field $\vec{B}=B_{0} \cos (\omega t+\phi) \vec{a}_{x}$ T. The voltage in the loop is
(A) zero
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
(B) due to rotation only
(C) due to transformer action only
(D) due to both rotation and transformer action
(A) $\frac{1}{r}$
(B) $\frac{1}{r^{2}}$
(C) $\frac{1}{r^{3}}$
(D) $\frac{1}{\sqrt{r}}$
9.123 A transmission line of 50Ω characteristic impedance is terminated with a 100Ω resistance. The minimum impedance measured on the line is equal to
(A) 0Ω
(B) 25Ω
(C) 50Ω
(D) 100Ω
. The minimum frequency which can propagate in the waveguide is
(A) 0.75 GHz
(B) 2.0 GHz
(C) 2.5 GHz
(D) 3.0 GHz
9.125 A parabolic dish antenna has a conical beam 2° wide, the directivity of the antenna is approximately
(A) 20 dB
(B) 30 dB
(C) 40 dB
(D) 50 dB

1997

TWO MARKS
${ }_{9.126}$ A very lossy, $\lambda / 4$ long, 50Ω transmission line is open circuited at the load end. The input impedance measured at the other end of the line is approximately
(A) 0
(B) 50Ω
(C) ∞
(D) None of the above
9.127 The skin depth at 10 MHz for a conductor is 1 cm . The phase velocity of an electromagnetic wave in the conductor at $1,000 \mathrm{MHz}$ is about
(A) $6 \times 10^{6} \mathrm{~m} / \mathrm{sec}$
(B) $6 \times 10^{7} \mathrm{~m} / \mathrm{sec}$
(C) $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
(D) $6 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

1996

ONE MARK
9.128 A lossless transmission line having 50Ω characteristic impedance and length $\lambda / 4$ is short circuited at one end and connected to an ideal voltage source of 1 V at the other end. The current drawn from

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
the voltage source is
(A) 0
(B) 0.02 A
(C) ∞
(D) none of these
9.129 The capacitance per unit length and the characteristic impedance of a lossless transmission line are C and Z_{0} respectively. The velocity of a travelling wave on the transmission line is
(A) $Z_{0} C$
(B) $\frac{1}{Z_{0} C}$
(C) $\frac{Z_{0}}{C}$
(D) $\frac{C}{Z_{0}}$

A transverse electromagnetic wave with circular polarization is received by a dipole antenna. Due to polarization mismatch, the power transfer efficiency from the wave to the antenna is reduced to about
(A) 50%
(B) 35.3%
(C) 25%
(D) 0%
9.131 A metal sphere with 1 m radius and a surface charge density of 10 Coulombs $/ \mathrm{m}^{2}$ is enclosed in a cube of 10 m side. The total outward electric displacement normal to the surface of the cube is
(A) 40π Coulombs
(B) 10π Coulombs
(C) 5π Coulombs
(D) None of these

1996

TWO MARKS

9.132 A uniform plane wave in air is normally incident on infinitely thick slab. If the refractive index of the glass slab is 1.5 , then the percentage of incident power that is reflected from the air-glass interface is
(A) 0%
(B) 4%
(C) 20%
(D) 100%
9.133 The critical frequency of an ionospheric layer is 10 MHz . What is the maximum launching angle from the horizon for which 20 MHz wave will be reflected by the layer ?
(A) 0°
(B) 30°
(C) 45°
(D) 90°
9.134 A 1 km long microwave link uses two antennas each having 30 dB gain. If the power transmitted by one antenna is 1 W at 3 GHz , the power received by the other antenna is approximately
(A) $98.6 \mu \mathrm{~W}$
(B) $76.8 \mu \mathrm{~W}$
(C) $63.4 \mu \mathrm{~W}$
(D) $55.2 \mu \mathrm{~W}$
9.135 Some unknown material has a conductivity of $10^{6} \mathrm{mho} / \mathrm{m}$ and a permeability of $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$. The skin depth for the material at 1 GHz is
(A) $15.9 \mu \mathrm{~m}$
(B) $20.9 \mu \mathrm{~m}$
(C) $25.9 \mu \mathrm{~m}$
(D) $30.9 \mu \mathrm{~m}$

SOLUTION

Option (D) is correct
Stoke's theorem states that the circulation a vector field \vec{A} around a closed path l is equal to the surface integral of the curl of \vec{A} over the open surface S bounded by l.
i.e., $\quad \oint \vec{A} \cdot d \vec{l}=\iint(\nabla \times \vec{A}) \cdot d \vec{s}$

Here, line integral is taken across a closed path which is denoted by a small circle on the integral notation where as, the surface integral of $(\nabla \times \vec{A})$ is taken over open surface bounded by the loop.
Option (D) is correct.
Given, the vector field

$$
\vec{A}=x \vec{a}_{x}+y \vec{a}_{y}+z \vec{a}_{z}
$$

so,

$$
\begin{aligned}
\nabla \cdot \vec{A}(\text { Divergence of } \vec{A}) & =\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
& =1+1+1=3
\end{aligned}
$$

Option (A) is correct.
Given, the return loss of device as 20 dB

$$
\begin{array}{lrl}
\text { i.e., } & |\Gamma|_{\text {indB) }} & =-20 \mathrm{~dB} \text { (loss) } \\
\text { or, } & 20 \log |\Gamma| & =-20 \\
\Rightarrow & & |\Gamma|
\end{array}
$$

Therefore, the standing wave ration is given by

$$
\begin{aligned}
\mathrm{VSWR} & =\frac{1+|\Gamma|}{1-|\Gamma|} \\
& =\frac{1+0.1}{1-0.1}=\frac{1.1}{0.9}=1.22
\end{aligned}
$$

Option (C) is correct.
For the given incidence of plane wave, we have the transmitting angle

$$
\theta_{t}=19.2^{\circ}
$$

From Snell's law, we know

$$
\begin{align*}
n_{1} \sin \theta_{i} & =n_{2} \sin \theta_{t} \\
c \sqrt{\mu_{1} \varepsilon_{1}} \sin \theta_{i} & =c \sqrt{\mu_{2} \varepsilon_{2}} \sin \theta_{t} \tag{1}
\end{align*}
$$

For the given interfaces, we have

$$
\begin{aligned}
\mu_{1} & =\mu_{2}=1 \\
\varepsilon_{1} & =1, \quad \varepsilon_{2}=4.5
\end{aligned}
$$

So, from Eq. (1)

$$
\sin \theta_{i}=\sqrt{4.5} \sin 19.2
$$

or,

$$
\theta_{i} \approx 45^{\circ}
$$

Now, the component of \vec{E}_{i} can be obtained as

$$
\vec{E}_{i}=\left(E_{o x} \vec{a}_{x}-E_{o z} \vec{a}_{z}\right) e^{-j \beta k}
$$

(observed from the shown figure)
Since, the angle $\theta_{i}=45^{\circ}$ so,

Therefore,

$$
E_{o x}=E_{o z}=\frac{E_{o}}{\sqrt{2}}
$$

Now, the wavelength of EM wave is

$$
\lambda=600 \mu \mathrm{~m}
$$

So,

$$
\beta=\frac{2 \pi}{\lambda}=\frac{\pi}{3} \times 10^{4}
$$

Also, direction of propagation is

$$
\begin{aligned}
\vec{a}_{k} & =\frac{\vec{a}_{x}+\vec{a}_{z}}{\sqrt{2}} \\
k & =\frac{x+z}{\sqrt{2}}
\end{aligned}
$$

So,
Substituting it in equation (1), we get

$$
\vec{E}_{i}=\frac{E_{o}}{\sqrt{2}}\left(\vec{a}_{x}-\vec{a}_{z}\right) e^{-j \frac{\pi \times 10^{4}(x+z)}{3 \sqrt{2}}}
$$

Option (A) is correct.
We obtain the reflection coefficient for parallel polarized wave (since, electric field is in the plane of wave propagation) as

$$
\begin{equation*}
\Gamma_{\|}=\frac{\eta_{2} \cos \theta_{t}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}} \tag{1}
\end{equation*}
$$

As we have already obtained

Also,

$$
\begin{aligned}
& \theta_{i}=45^{\circ}, \quad \theta_{t}=19.2^{\circ} \\
& \quad \eta_{2}=\sqrt{\frac{\mu}{\varepsilon}}=\eta_{0} \sqrt{\frac{1}{4.5}}=\frac{\eta_{0}}{\sqrt{4.5}}
\end{aligned}
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
and

$$
\eta_{1}=\sqrt{\frac{\mu}{\varepsilon}}=\eta_{0} \sqrt{\frac{1}{1}}=\eta_{0}
$$

Substituting these in eq. (1) we get

$$
\begin{aligned}
\Gamma_{\|} & =\frac{\cos 19.2^{\circ}-\sqrt{4.5} \cos 45^{\circ}}{\cos 19.2^{\circ}+\sqrt{4.5} \cos 45^{\circ}} \\
& =-0.227 \\
& \approx-0.23
\end{aligned}
$$

Therefore, the reflected field has the magnitude given by

$$
\begin{aligned}
& \frac{\left|E_{r o}\right|}{\left|E_{i o}\right|}=T_{11}^{\prime} \\
& \left|E_{r o}\right|=\Gamma_{\Perp \mid}\left|E_{i o}\right|=-0.23\left|E_{i o}\right|
\end{aligned}
$$

Hence, the expression of reflected electric field is

$$
\begin{equation*}
\vec{E}_{r}=-0.23 \frac{E_{o}}{\sqrt{2}}\left(-\vec{a}_{x}-\vec{a}_{z}\right) e^{-j \frac{\pi \times 10^{4}}{3} k} \tag{2}
\end{equation*}
$$

Again, we have the propagation vector of reflected wave as

$$
\begin{aligned}
\vec{a}_{k} & =\frac{\vec{a}_{x}-\vec{a}_{z}}{\sqrt{2}} \\
\text { or, } \quad k & =\frac{x-z}{\sqrt{2}}
\end{aligned}
$$

Substituting it in Eq. (2), we get

$$
\begin{aligned}
& \vec{E}_{r}=-0.23 \frac{E_{o}}{\sqrt{2}}\left(-\vec{a}_{x}-\vec{a}_{z}\right) e^{-j \frac{\pi \times 10^{4}}{3}\left(\frac{x-z}{\sqrt{2}}\right)} \\
& \vec{E}_{r}=0.23 \frac{E_{o}}{\sqrt{2}}\left(\vec{a}_{x}+\vec{a}_{z}\right) e^{-\frac{j \pi \times 10^{4}(x-z)}{3 \sqrt{2}} \frac{V}{m}}
\end{aligned}
$$

Option (C) is correct.
Electric field of the propagating wave in free space is given as

$$
\boldsymbol{E}_{i}=\left(8 \boldsymbol{a}_{x}+6 \boldsymbol{a}_{y}+5 \boldsymbol{a}_{z}\right) e^{j(\omega t+3 x-4 y)} \mathrm{V} / \mathrm{m}
$$

So, it is clear that wave is propagating in the direction $\left(-3 \boldsymbol{a}_{x}+4 \boldsymbol{a}_{y}\right)$
Since, the wave is incident on a perfectly conducting slab at $x=0$. So, the reflection coefficient will be equal to -1 .
i.e. $\quad E_{r_{0}}=(-1) E_{i_{0}}=-8 \boldsymbol{a}_{x}-6 \boldsymbol{a}_{y}-5 \boldsymbol{a}_{z}$

Again, the reflected wave will be as shown in figure.

i.e. the reflected wave will be in direction $3 a_{x}+4 a_{y}$. Thus, the electric field of the reflected wave will be.

$$
\boldsymbol{E}_{x}=\left(-8 \boldsymbol{a}_{x}-6 \boldsymbol{a}_{y}-5 \boldsymbol{a}_{z}\right) e^{j(\omega t-3 x-4 y)} \mathrm{V} / \mathrm{m}
$$

Option (A) is correct.
The field in circular polarization is found to be

$$
E_{s}=E_{0}\left(\boldsymbol{a}_{y} \pm j \boldsymbol{a}_{z}\right) e^{-j \beta x} \text { propagating in }+ \text { ve } x \text {-direction. }
$$

where, plus sign is used for left circular polarization and minus sign for right circular polarization. So, the given problem has left circular polarization.

$$
\beta=25=\frac{\omega}{c}
$$

GATE Electronics \& Communication

 by RK Kanodia Now in 3 VolumePurchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
25=\frac{2 \pi f}{c} \Rightarrow f=\frac{25 \times c}{2 \pi}=\frac{25 \times 3 \times 10^{8}}{2 \times 3.14}=1.2 \mathrm{GHz}
$$

Option (B) is correct.

$$
\text { Let } \quad \begin{aligned}
b & \rightarrow \text { outer diameter } \\
a & \rightarrow \text { inner diameter }
\end{aligned}
$$

Characteristic impedance,

$$
Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0} \varepsilon_{r}}} \ln \left(\frac{b}{a}\right)=\sqrt{\frac{4 \pi \times 10^{-7} \times 36 \pi}{10^{-9} \times 10.89}} \ln \left(\frac{2.4}{1}\right)=100 \Omega
$$

Option (A) is correct.
The directivity is defined as

$$
\begin{aligned}
D & =\frac{F_{\max }}{F_{\text {avg }}} \\
F_{\max } & =1 \\
F_{\text {aug }} & =\frac{1}{4 \pi} \int F(\theta, \phi) d \Omega \\
& =\frac{1}{4 \pi}\left[\int_{0}^{2 \pi} \int_{0}^{2 \pi} F(\theta, \phi) \sin \theta d \theta d \phi\right] \\
& =\frac{1}{4 \pi}\left[\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \cos ^{4} \theta \sin \theta d \theta d \phi\right] \\
& =\frac{1}{4 \pi}\left[2 \pi\left(-\frac{\cos ^{5} \theta}{5}\right)\right]_{0}^{\pi / 2}=\frac{1}{4 \pi} \times 2 \pi\left[-0+\frac{1}{5}\right] \\
& =\frac{1}{4 \pi} \times \frac{2 \pi}{5}=\frac{1}{10} \\
D & =\frac{1}{10}=10
\end{aligned}
$$

or, $\quad D($ in dB$)=10 \log 10=10 \mathrm{~dB}$
Option (C) is correct.
Since

$$
\begin{aligned}
Z_{0} & =\sqrt{Z_{1} Z_{2}} \\
100 & =\sqrt{50 \times 200}
\end{aligned}
$$

This is quarter wave matching. The length would be odd multiple of $\lambda / 4$.

$$
\begin{array}{ll}
l=(2 m+1) \frac{\lambda}{4} \\
f_{1}=429 \mathrm{MHz}, & l_{1}=\frac{c}{f_{1} \times 4}=\frac{3 \times 10^{8}}{429 \times 10^{6} \times 4}=0.174 \mathrm{~m} \\
f_{2}=1 \mathrm{GHz}, & l_{2}=\frac{c}{f_{2} \times 4}=\frac{3 \times 10^{8}}{1 \times 10^{9} \times 4}=0.075 \mathrm{~m}
\end{array}
$$

Only option (C) is odd multiple of both l_{1} and l_{2}.

$$
\begin{aligned}
& (2 m+1)=\frac{1.58}{l_{1}}=9 \\
& (2 m+1)=\frac{1.58}{l_{2}} \simeq 21
\end{aligned}
$$

9.11 Option (D) is correct.

$$
\begin{gathered}
H_{z}=3 \cos \left(2.094 \times 10^{2} x\right) \cos \left(2.618 \times 10^{2} y\right) \cos \left(6.283 \times 10^{10} t-\beta z\right) \\
\beta_{x}=2.094 \times 10^{2} \\
\beta_{y}=2.618 \times 10^{2} \\
\omega=6.283 \times 10^{10} \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

For the wave propagation,

$$
\beta=\sqrt{\frac{\omega^{2}}{c^{2}}-\left(\beta_{x}^{2}+\beta_{y}^{2}\right)}
$$

Substituting above values,

$$
\beta=\sqrt{\left(\frac{6.283 \times 10^{10}}{3 \times 10^{8}}\right)^{2}-\left(2.094^{2}+2.618^{2}\right) \times 10^{4}}
$$

β is imaginary so mode of operation is non-propagating.

$$
v_{p}=0
$$

9.12 Option () is correct.

For $r>a, \quad I_{\text {enclosed }}=\left(\pi a^{2}\right) J$

$$
\begin{array}{rlr}
\oint H \cdot d l & =I_{\text {enclosed }} & \\
H \times 2 \pi r & =\left(\pi a^{2}\right) J & \\
H & =\frac{I_{o}}{2 \pi r} & I_{o}=\left(\pi a^{2}\right) J \\
H & \propto \frac{1}{r}, \quad \text { for } r>a &
\end{array}
$$

For $r<a$

$$
I_{\text {enclosed }}=\frac{J\left(\pi r^{2}\right)}{\pi a^{2}}=\frac{J r^{2}}{a^{2}}
$$

So,

$$
\begin{aligned}
\oint H \cdot d l & =I_{\text {enclosed }} \\
H \times 2 \pi r & =\frac{J r^{2}}{a^{2}} \\
H & =\frac{J r}{2 \pi a^{2}} \\
H & \propto r, \quad \text { for } r<a
\end{aligned}
$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

9.13 Option (B) is correct.

Assuming the cross section of the wire on $x-y$ plane as shown in figure.

Since, the hole is drilled along the length of wire. So, it can be assumed that the drilled portion carriers current density of $-J$.
Now, for the wire without hole, magnetic field intensity at point P will be given as

$$
\begin{aligned}
H_{\phi 1}(2 \pi R) & =J\left(\pi R^{2}\right) \\
H_{\phi 1}(2 \pi R) & =\frac{J R}{2}
\end{aligned}
$$

Since, point o is at origin. So, in vector form

$$
\boldsymbol{H}_{1}=\frac{J}{2}\left(x \boldsymbol{a}_{x}+y \boldsymbol{a}_{y}\right)
$$

Again only due to the hole magnetic field intensity will be given as.

$$
\begin{aligned}
\left(H_{\phi 2}\right)(2 \pi r) & =-J\left(\pi r^{2}\right) \\
H_{\phi 2} & =\frac{-J r}{2}
\end{aligned}
$$

Again, if we take O^{\prime} at origin then in vector form

$$
\boldsymbol{H}_{2}=\frac{-J}{2}\left(x^{\prime} \boldsymbol{a}_{x}+y^{\prime} \boldsymbol{a}_{y}\right)
$$

where x^{\prime} and y^{\prime} denotes point ' P ' in the new co-ordinate system. Now the relation between two co-ordinate system will be.

$$
\begin{aligned}
& x=x^{\prime}+d \\
& y=y^{\prime}
\end{aligned}
$$

So, $\quad \boldsymbol{H}_{2}=\frac{-J}{2}\left[(x-d) \boldsymbol{a}_{x}+y \boldsymbol{a}_{y}\right]$
So, total magnetic field intensity $=\boldsymbol{H}_{1}+\boldsymbol{H}_{2}=\frac{J}{2} d \boldsymbol{a}_{x}$
So, magnetic field inside the hole will depend only on ' d '.
Option (C) is correct.
Power radiated from any source is constant.
Option (C) is correct.
We have $d=2 \mathrm{~mm}$ and $f=10 \mathrm{GHz}$

$$
\begin{aligned}
\text { Phase difference } & =\frac{2 \pi}{\lambda} d=\frac{\pi}{4} \\
& =\lambda=8 d=8 \times 2 \mathrm{~mm}=16 \mathrm{~mm} \\
v & =\lambda=10 \times 10^{9} \times 16 \times 10^{-3} \\
& =1.6 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Option (A) is correct.
$T M_{11}$ is the lowest order mode of all the $T M_{m n}$ modes.
Option (A) is correct.
From boundary condition

$$
\begin{aligned}
& B n_{1}
\end{aligned}=B n_{2}, ~ \begin{aligned}
\mu_{1} H x_{1} & =\mu_{2} H x_{2} \\
& H x_{2}
\end{aligned}=\frac{H x_{1}}{2}=1.5
$$

Further if

$$
\bar{H}_{z}=1.5 \hat{u}_{x}+A \hat{u}_{y}+B u_{z}
$$

Then from Boundary condition

$$
\begin{aligned}
\left(3 \hat{u}_{x}+30 \hat{u}_{y}\right) \hat{u}_{x} & =\left(1.5 \hat{u}_{x}+A \hat{u}_{y}+B \hat{u}_{z}\right) \hat{x}+\frac{10 \hat{u}_{y}}{\vec{J}} \\
& =-30 \hat{u}_{z}=-A \hat{u}_{z}+B \hat{u}_{y}+10 \hat{u}_{y}
\end{aligned}
$$

Comparing we get $A=30$ and $B=-10$
So

$$
\bar{H}_{z}=1.5 \hat{u}_{x}+30 \hat{u}_{y}-10 \hat{u}_{z} \mathrm{~A} / \mathrm{m}
$$

9.18 Option (A) is correct.

Since voltage maxima is observed at a distance of $\lambda / 4$ from the load and we know that the separation between one maxima and minima equals to $\lambda / 4$ so voltage minima will be observed at the load, Therefore load can not be complex it must be pure resistive.

Now

$$
|\Gamma|=\frac{s-1}{s+1}
$$

also $R_{L}=\frac{R_{0}}{s}$ (since voltage maxima is formed at the load)

$$
R_{L}=\frac{50}{5}=10 \Omega
$$

Option (D) is correct.

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in
From the expressions of $\vec{E} \& \vec{H}$, we can write,

$$
\begin{aligned}
\beta & =280 \pi \\
\text { or } \quad \frac{2 \pi}{\lambda} & =280 \pi \Rightarrow \lambda=\frac{1}{140}
\end{aligned}
$$

Wave impedance,

$$
Z_{w}=\frac{|\vec{E}|}{|\vec{H}|}=\frac{E_{p}}{3}=\frac{120 \pi}{\sqrt{\varepsilon_{r}}}
$$

again,

$$
f=14 \mathrm{GHz}
$$

Now

$$
\lambda=\frac{C}{\sqrt{\varepsilon_{r} f}}=\frac{3 \times 10^{8}}{\sqrt{\varepsilon_{r}} 14 \times 10^{9}}=\frac{3}{140 \sqrt{\varepsilon_{r}}}
$$

or

$$
\frac{3}{140 \sqrt{\varepsilon_{r}}}=\frac{1}{140}
$$

or $\quad \varepsilon_{r}=9$
Now

$$
\frac{E_{p}}{3}=\frac{120 \pi}{\sqrt{9}}=E_{p}=120 \pi
$$

9.20 Option (C) is correct.

For a lossless network

$$
\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}=1
$$

For the given scattering matrix

$$
\begin{array}{r}
S_{11}=0.2 \angle 0^{\circ}, S_{12}=0.9 \angle 90^{\circ} \\
S_{21}=0.9 \angle 90^{\circ}, S_{22}=0.1 \angle 90^{\circ}
\end{array}
$$

Here,

$$
(0.2)^{2}+(0.9)^{2} \neq 1
$$

(not lossless)
Reciprocity :

$$
S_{12}=S_{21}=0.9 / 90^{\circ}(\text { Reciprocal })
$$

9.21 Option (D) is correct.

For distortion less transmission line characteristics impedance

Attenuation constant

$$
Z_{0}=\sqrt{\frac{R}{G}}
$$

So,

$$
\begin{aligned}
& \alpha=\sqrt{R G} \\
& \alpha=\frac{R}{Z_{0}}=\frac{0.1}{50}=0.002
\end{aligned}
$$

9.22 Option (C) is correct.

Intrinsic impedance of EM wave

$$
\eta=\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{\mu_{0}}{4 \varepsilon_{0}}}=\frac{120 \pi}{2}=60 \pi
$$

Time average power density

$$
P_{a v}=\frac{1}{2} E H=\frac{1}{2} \frac{E^{2}}{\eta}=\frac{1}{2 \times 60 \pi}=\frac{1}{120 \pi}
$$

Option (C) is correct.

$$
\begin{aligned}
& \vec{A}=x y \hat{a}_{x}+x^{2} \hat{a}_{y} \\
& \vec{d} l=d x \hat{a}_{x}+d y \hat{a}_{y} \\
& \oint_{C}\left(x y d x+x^{2} d y\right) \oint_{C} \cdot \vec{d} l \\
&=\oint_{C}\left(x y \hat{a}_{x}+x^{2} \hat{a}_{y}\right) \cdot\left(d x \hat{a}_{x}+d y \hat{a}_{y}\right)
\end{aligned}
$$

$$
=\int_{1 / \sqrt{3}}^{2 / \sqrt{3}} x d x+\int_{2 / \sqrt{3}}^{1 / \sqrt{3}} 3 x d x+\int_{1}^{3} \frac{4}{3} d y+\int_{3}^{1} \frac{1}{3} d y
$$

$$
=\frac{1}{2}\left[\frac{4}{3}-\frac{1}{3}\right]+\frac{3}{2}\left[\frac{1}{3}-\frac{4}{3}\right]+\frac{4}{3}[3-1]+\frac{1}{3}[1-3]=1
$$

9.24 Option (A) is correct.

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

In the given problem

$$
y>0
$$

$\eta_{1}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=120 \pi$
lossless medium

$$
\begin{aligned}
& \eta_{2}=\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{\mu_{0}}{9 \varepsilon_{0}}} \\
& =\frac{120}{3}=40 \pi
\end{aligned}
$$

Reflection coefficient

$$
\tau=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{400 \pi-120 \pi}{40 \pi+120 \pi}=-\frac{1}{2}
$$

τ is negative So magnetic field component does not change its direction Direction of incident magnetic field

$$
\begin{gathered}
\hat{a}_{E} \times \hat{a}_{H}=\hat{a}_{K} \\
\hat{a}_{Z} \times \hat{a}_{H}=\hat{a}_{y} \\
\hat{a}_{H}=\hat{a}_{x}(+x \text { direction })
\end{gathered}
$$

So, reflection magnetic field component

$$
\begin{aligned}
H_{r} & =\left|\frac{\tau \times 24}{\eta}\right| \cos \left(3 \times 10^{8}+\beta y\right) \hat{a}_{x}, y \geq 0 \\
& =\left|\frac{1 \times 24}{2 \times 120 \pi}\right| \cos \left(3 \times 10^{8}+\beta y\right) \hat{a}_{x}, \quad y \geq 0 \\
\beta & =\frac{\omega}{v_{C}}=\frac{3 \times 10^{8}}{3 \times 10^{8}}=1
\end{aligned}
$$

So, $\quad H_{r}=\frac{1}{10 \pi} \cos \left(3 \times 10^{8}+y\right) \hat{a}_{x}, y \geq 0$
Option (B) is correct.
For length of $\lambda / 4$ transmission line

$$
Z_{\text {in }}=Z_{o}\left[\frac{Z_{L}+j Z_{o} \tan \beta l}{Z_{o}+j Z_{L} \tan \beta l}\right]
$$

$Z_{L}=30 \Omega, \quad Z_{o}=30 \Omega, \beta=\frac{2 \pi}{\lambda}, l=\frac{\lambda}{4}$

So,

$$
\begin{array}{r}
\tan \beta l=\tan \left(\frac{2 \pi}{\lambda} \cdot \frac{\lambda}{4}\right)=\infty \\
Z_{\text {in }}=Z_{o}\left[\frac{\frac{Z_{L}}{\tan \beta l}+j Z_{o}}{\frac{Z_{o}}{\tan \beta l}+j Z_{L}}\right]=\frac{Z_{0}^{2}}{Z_{L}}=60 \Omega
\end{array}
$$

For length of $\lambda / 8$ transmission line

$$
\begin{aligned}
Z_{\text {in }} & =Z_{o}\left[\frac{Z_{L}+j Z_{o} \tan \beta l}{Z_{o}+j Z_{L} \tan \beta l}\right] \\
Z_{o} & =30 \Omega, Z_{L}=0 \text { (short) } \\
\tan \beta l & =\tan \left(\frac{2 \pi}{\lambda} \cdot \frac{\lambda}{8}\right)=1 \\
Z_{\text {in }} & =j Z_{o} \tan \beta l=30 j
\end{aligned}
$$

Circuit is shown below.

Reflection coefficient

$$
\begin{aligned}
\tau & =\left|\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}\right|=\left|\frac{60+3 j-60}{60+3 j+60}\right|=\frac{1}{\sqrt{17}} \\
\mathrm{VSWR} & =\frac{1+|\tau|}{1-|\tau|}=\frac{1+\sqrt{17}}{1-\sqrt{17}}=1.64
\end{aligned}
$$

9.26 Option (D) is correct.

Due to 1 A current wire in $x-y$ plane, magnetic field be at origin will be in x direction.
Due to 1 A current wire in $y-z$ plane, magnetic field be at origin will be in z direction.
Thus x and z component is non-zero at origin.
9.27 Option (A) is correct.

Rectangular and cylindrical waveguide doesn't support TEM modes and have cut off frequency.
Coaxial cable support TEM wave and doesn't have cut off frequency.
9.28 Option (B) is correct.

We have $\quad V=\nabla \times A$
By Stokes theorem

$$
\begin{equation*}
\oint A \cdot d l=\oint(\nabla \times A) \cdot d s \tag{2}
\end{equation*}
$$

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec 2014

From (1) and (2) we get

$$
\oint A \cdot d l=\oint V \cdot d s
$$

9.29 Option (D) is correct.

The transmission line are as shown below. Length of all line is $\frac{\lambda}{4}$

$$
\begin{aligned}
Z_{i 1} & =\frac{Z_{01}^{2}}{Z_{L 1}}=\frac{100^{2}}{50}=200 \Omega \\
Z_{i 2} & =\frac{Z_{02}^{2}}{Z_{L 2}}=\frac{100^{2}}{50}=200 \Omega \\
Z_{L 3} & =Z_{i 1}\left\|Z_{i 2}=200 \Omega\right\| 200 \Omega=100 \Omega \\
Z_{i} & =\frac{Z_{0}^{2}}{Z_{L 3}}=\frac{50^{2}}{100}=25 \Omega
\end{aligned}
$$

Option (C) is correct.
We have

$$
\begin{equation*}
\vec{B}=B_{0}\left(\frac{x}{x^{2}+y^{2}} a_{y}-\frac{y}{x^{2}+y^{2}} a_{x}\right) \tag{1}
\end{equation*}
$$

To convert in cylindrical substituting
and
In (1) we have

$$
\begin{aligned}
x & =r \cos \phi \text { and } y=r \sin \phi \\
a_{x} & =\cos \phi a_{r}-\sin \phi a_{\phi} \\
a_{y} & =\sin \phi a_{r}+\cos \phi a_{\phi}
\end{aligned}
$$

$$
\vec{B}=\vec{B}_{0} a_{\phi}
$$

Now $\quad \vec{H}=\frac{\vec{B}}{\mu_{0}}=\frac{\vec{B}_{0} a_{\phi}}{\mu_{0}}$

$$
\vec{J}=\nabla \times \vec{H}=0
$$

since H is constant
Option (C) is correct.
The beam-width of Hertizian dipole is 180° and its half power beamwidth is 90°.
Option (D) is correct.
Maxwell equations

$$
\begin{aligned}
\nabla-\vec{B} & =0 \\
\nabla \cdot \vec{E} & =\rho / E \\
\nabla \times \vec{E} & =-\vec{B} \\
\nabla \times \hat{H} & =\vec{D}+\vec{J}
\end{aligned}
$$

For static electric magnetic fields

$$
\begin{aligned}
\nabla \cdot \vec{B} & =0 \\
\nabla \cdot \vec{E} & =\rho / E \\
\nabla \times \vec{E} & =0 \\
\widehat{H} & =\vec{J}
\end{aligned}
$$

Option (A) is correct.
Cut-off Frequency is

$$
f_{c}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}
$$

For $T E_{11}$ mode,

$$
f_{c}=\frac{3 \times 10^{10}}{2} \sqrt{\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{3}\right)^{2}}=6.25 \mathrm{GHz}
$$

Option (D) is correct.

$$
Z_{i n}=Z_{o} \frac{Z_{L}+i Z_{o} \tan (\beta l)}{Z_{o}+i Z_{L} \tan (\beta l)}
$$

For $Z_{L}=0, \quad Z_{i n}=i Z_{o} \tan (\beta l)$
The wavelength is

$$
\lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{3 \times 10^{9}}=0.1 \mathrm{~m} \text { or } 10 \mathrm{~cm}
$$

$$
\beta l=\frac{2 \pi}{\lambda} l=\frac{2 \pi}{10} \times 1=\frac{\pi}{5}
$$

Thus

$$
Z_{i n}=i Z_{o} \tan \frac{\pi}{5}
$$

Thus $Z_{\text {in }}$ is inductive because $Z_{o} \tan \frac{\pi}{5}$ is positive Option (C) is correct.
We have $\quad \eta=\sqrt{\frac{\mu}{\varepsilon}}$

Reflection coefficient

$$
\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}
$$

Substituting values for η_{1} and η_{2} we have

$$
\varepsilon_{r}=9 \quad \tau=\frac{\sqrt{\frac{\mu_{o}}{\varepsilon_{0} \varepsilon_{r}}}-\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}}{\sqrt{\frac{\mu_{o}}{\varepsilon_{o} \varepsilon_{r}}}+\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}}=\frac{1-\sqrt{\varepsilon_{r}}}{1+\sqrt{\varepsilon_{r}}}=\frac{1-\sqrt{9}}{1+\sqrt{9}} \quad \text { since }
$$

$$
=-0.5
$$

9.36 Option (C) is correct.

In single mode optical fibre, the frequency of limiting mode increases as radius decreases
Hence $\quad r \propto \frac{1}{f}$
So. if radius is doubled, the frequency of propagating mode gets halved, while in option (D) it is increased by two times.
9.37 Option (D) is correct.
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

wWW.nodia.co.in

$$
\text { Gain } \begin{aligned}
\lambda & =\frac{c}{f}=\frac{3 \times 10^{8}}{20 \times 10^{9}}=\frac{3}{200} \\
G_{p} & =\eta \pi^{2}\left(\frac{D}{\lambda}\right)^{2}=0.7 \times \pi^{2}\left(\frac{1}{\frac{3}{100}}\right)^{2}=30705.4 \\
& =44.87 \mathrm{~dB}
\end{aligned}
$$

9.38 Option (A) is correct.

$$
\begin{aligned}
\gamma & =\beta \cos 30^{\circ} x \pm \beta \sin 30^{\circ} y \\
& =\frac{2 \pi}{\lambda} \frac{\sqrt{3}}{2} x \pm \frac{2 \pi}{\lambda} \frac{1}{2} y \\
& =\frac{\pi \sqrt{3}}{\lambda} x \pm \frac{\pi}{\lambda} y \\
E & =a_{y} E_{0} e^{j(\omega t-\gamma)}=a_{y} E_{0} e^{j\left[\omega t-\left(\frac{\pi \sqrt{ } 3}{\lambda} x \pm \frac{\pi}{\lambda} y\right)\right]}
\end{aligned}
$$

9.39 Option (D) is correct.

$$
\begin{array}{rlrl}
\nabla \times H & =J+\frac{\partial D}{\partial t} & \text { Maxwell Equations } \\
\iint_{s} \nabla \times H \cdot d s & =\iint_{s}\left(J+\frac{\partial D}{\partial t}\right) \cdot d s & \text { Integral form } \\
\oint H \cdot d l & =\iint_{s}\left(J+\frac{\partial D}{\partial t}\right) \cdot d s & & \text { Stokes Theorem }
\end{array}
$$

9.40 Option (A) is correct.

$$
\vec{E}=\frac{\omega \mu}{h^{2}}\left(\frac{\pi}{2}\right) H_{0} \sin \left(\frac{2 \pi x}{a}\right)^{2} \sin (\omega t-\beta z) \hat{y}
$$

This is TE mode and we know that

$$
E_{y} \propto \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{\pi}{b}\right)
$$

Thus $m=2$ and $n=0$ and mode is $T E_{20}$
9.41 Option (C) is correct.

The 2-port scattering parameter matrix is

$$
S=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]
$$

$$
\begin{aligned}
& S_{11}=\frac{\left(Z_{L} \| Z_{0}\right)-Z_{o}}{\left(Z_{L} \| Z_{0}\right)+Z_{o}}=\frac{(50 \| 50)-50}{(50 \| 50)+50}=-\frac{1}{3} \\
& S_{12}=S_{21}=\frac{2\left(Z_{L} \| Z_{o}\right)}{\left(Z_{L} \| Z_{o}\right)+Z_{o}}=\frac{2(50 \| 50)}{(50 \| 50)+50}=\frac{2}{3} \\
& S_{22}=\frac{\left(Z_{L} \| Z_{o}\right)-Z_{o}}{\left(Z_{L} \| Z_{o}\right)+Z_{o}}=\frac{(50 \| 50)-50}{(50 \| 50)+50}=-\frac{1}{3}
\end{aligned}
$$

Option (D) is correct.
The input impedance is

$$
\begin{array}{rlr}
Z_{i n} & =\frac{Z_{o}^{2}}{Z_{L}} ; & \text { if } l=\frac{\lambda}{4} \\
Z_{i n 1} & =\frac{Z_{o 1}^{2}}{Z_{L 1}}=\frac{50^{2}}{100}=25 \\
Z_{i n 2} & =\frac{Z_{o 2}^{2}}{Z_{L 2}}=\frac{50^{2}}{200}=12.5 \\
Z_{L} & =Z_{i n 1} \| Z_{i n 2} \\
\text { Now } & \\
25 \| 12.5 & =\frac{25}{3} \\
Z_{s} & =\frac{(50)^{2}}{25 / 3}=300
\end{array}
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

$$
\Gamma=\frac{Z_{S}-Z_{o}}{Z_{S}+Z_{o}}=\frac{300-50}{300+50}=\frac{5}{7}
$$

Option (D) is correct.
We have

$$
\begin{aligned}
|H|^{2} & =H_{x}^{2}+H_{y}^{2}=\left(\frac{5 \sqrt{3}}{\eta_{o}}\right)^{2}+\left(\frac{5}{\eta_{o}}\right)^{2}=\left(\frac{10}{\eta_{o}}\right)^{2} \\
P & =\frac{|E|^{2}}{2 \eta_{o}}=\frac{\eta_{o}|H|^{2}}{2}=\frac{\eta_{o}}{2}\left(\frac{10}{\eta_{o}}\right)^{2}=\frac{50}{\eta_{o}}
\end{aligned}
$$

watts
Option (C) is correct.
The cut-off frequency is

$$
f_{c}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}
$$

Since the mode is $T E_{20}, m=2$ and $n=0$

$$
\begin{aligned}
& f_{c}=\frac{c}{2} \frac{m}{2}=\frac{3 \times 10^{8} \times 2}{2 \times 0.03}=10 \mathrm{GHz} \\
& \eta^{\prime}=\frac{\eta_{o}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}=\frac{377}{\sqrt{1-\left(\frac{10^{10}}{3 \times 10^{10}}\right)^{2}}}=400 \Omega
\end{aligned}
$$

Option (B) is correct.
Using the method of images, the configuration is as shown below

Here $d=\lambda, \alpha=\pi$, thus $\beta d=2 \pi$

Array factor is

$$
\begin{aligned}
& =\cos \left[\frac{\beta d \cos \psi+\alpha}{2}\right] \\
& =\cos \left[\frac{2 \pi \cos \psi+\pi}{2}\right]=\sin (\pi \cos \psi)
\end{aligned}
$$

Option (D) is correct.

The Brewster angle is

$$
\begin{aligned}
\tan \theta_{n} & =\sqrt{\frac{\varepsilon_{r 2}}{\varepsilon_{r 1}}} \\
\tan 60^{\circ} & =\sqrt{\frac{\varepsilon_{r 2}}{1}} \\
\varepsilon_{r 2} & =3
\end{aligned}
$$

or
rect.
We have $\quad E=\hat{a}_{x x} \sin (\omega t-\beta z)+\hat{a}_{y} \sin (\omega t-\beta z+\pi / 2)$
Here $\left|E_{x}\right|=\left|E_{y}\right|$ and $\phi_{x}=0, \phi_{y}=\frac{\pi}{2}$
Phase difference is $\frac{\pi}{2}$, thus wave is left hand circularly polarized.
Option (A) is correct.
We have
$10 \log G=10 \mathrm{~dB}$
or $\quad G=10$
Now gain $\quad G=\frac{P_{r a d}}{P_{i n}}$
or
$10=\frac{P_{r a d}}{1 W}$
or $\quad P_{\text {rad }}=10$ Watts
Option (A) is correct.
$\quad \Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{\sqrt{\frac{\mu_{o}}{\varepsilon_{\varepsilon_{r}} \varepsilon_{r}}}-\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}}{\sqrt{\frac{\mu_{o}}{\varepsilon_{o} \varepsilon_{r}}}+\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}}$
$=\frac{1+\sqrt{\varepsilon_{r}}}{1+\sqrt{\varepsilon_{r}}}=\frac{1-\sqrt{4}}{1+\sqrt{4}}=-\frac{1}{3}$
The transmitted power is
or

$$
\begin{aligned}
P_{t} & =\left(1-\Gamma^{2}\right) P_{i}=1-\frac{1}{9}=\frac{8}{9} \\
\frac{P_{t}}{P_{i}} & =\frac{8}{9}
\end{aligned}
$$

9.50 Option (D) is correct.

$$
\begin{aligned}
\sin \theta & =\frac{1}{\sqrt{\varepsilon_{r}}}=\frac{1}{\sqrt{2}} \\
\theta & =45^{\circ}=\frac{\pi}{4}
\end{aligned}
$$

The configuration is shown below. Here A is point source.

$\begin{array}{ll}\text { Now } & A O=1 \mathrm{~m} \\ \text { From geometry } & B O=1 \mathrm{~m}\end{array}$

For more GATE Resources, Mock Test and
 Study material join the community
 http:/lwww.facebook.com/gateec2014

Thus area $\quad=\pi r^{2}=\pi \times O B=\pi \mathrm{m}^{2}$
9.51 Option (C) is correct.

The cut-off frequency is

$$
f_{c}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}}
$$

Since the mode is $T E_{30}, m=3$ and $n=0$

$$
\begin{aligned}
& f_{c}=\frac{c}{2} \frac{m}{a} \\
& \text { or } \\
& \text { or } \quad a=\frac{1}{40} \mathrm{~m}=\frac{5}{2} \mathrm{~cm}
\end{aligned}
$$

Option (C) is correct.

We have $\quad E_{1}=4 u_{x}+3 u_{y}+5 u_{z}$
Since for dielectric material at the boundary, tangential component of electric field are equal

$$
E_{21}=E_{1 t}=3 \hat{a}_{y}+5 \hat{a}_{z}
$$

at the boundary, normal component of displacement vector are equal
i.e.

$$
\begin{aligned}
& D_{n 2}=D_{n 1} \\
& \varepsilon_{2} E_{2 n}=\varepsilon_{1} E_{1 n} \\
& 4 \varepsilon_{o} E_{2 n}=3 \varepsilon_{o} 4 \hat{a}_{z} \\
& E_{2 n}=3 \hat{a}_{x}
\end{aligned}
$$

Option (C) is correct.
Since antenna is installed at conducting ground,

$$
R_{\text {rad }}=80 \pi^{2}\left(\frac{d l}{\lambda}\right)^{2}=80 \pi^{2}\left(\frac{50}{0.5 \times 10^{3}}\right)^{2}=\frac{4 \pi^{2}}{5} \Omega
$$

0.54 Option (C) is correct.

$$
\omega=50,000 \text { and } \beta=-0.004
$$

Phase Velocity is $\quad v_{P}=\frac{\omega}{\beta}=\frac{5 \times 10^{4}}{-4 \times 10^{-3}}=1.25 \times 10^{7} \mathrm{~m} / \mathrm{s}$
0.55 Option (C) is correct.

Refractive index of glass $\mu=1.5$
Frequency

$$
\begin{aligned}
f & =10^{14} \mathrm{~Hz} \\
c & =3 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
\lambda & =\frac{c}{f}=\frac{3 \times 10^{8}}{10^{14}}=3 \times 10^{-6}
\end{aligned}
$$

wavelength in glass is

$$
\lambda_{g}=\frac{\alpha}{\mu}=\frac{3 \times 10^{-6}}{1.5}=2 \times 10^{-6} \mathrm{~m}
$$

0.56 Option (D) is correct.
9.57 Option (D) is correct.

$$
\begin{aligned}
Z_{o}^{2} & =Z_{O C} \cdot Z_{S C} \\
Z_{Z C}=\frac{Z_{o}^{2}}{Z_{O C}} & =\frac{50 \times 50}{100+j 150}=\frac{50}{2+3 j} \\
& =\frac{50(2-3 j)}{13}=7.69-11.54 j
\end{aligned}
$$

Option (A) is correct.
The array factor is

$$
A=\cos \left(\frac{\beta d \sin \theta+\alpha}{2}\right)
$$

Here $\beta=\frac{2 \pi}{\lambda}, d=\frac{\lambda}{4}$ and $\alpha=90^{\circ}$
Thus $\quad A=\cos \left(\frac{\frac{2 \pi}{\lambda} \frac{\lambda}{4} \sin \theta+\frac{\pi}{2}}{2}\right)=\cos \left(\frac{\pi}{4} \sin \theta+\frac{\pi}{2}\right)$
The option (A) satisfy this equation.
Option (C) is correct.
From the diagram, VSWR is

$$
s=\frac{V_{\max }}{V_{\min }}=\frac{4}{1}=4
$$

When minima is at load $Z_{O}=s . Z_{L}$
or $\quad Z_{L}=\frac{Z_{o}}{s}=\frac{50}{4}=12.5 \Omega$
Option (A) is correct.
The reflection coefficient is

$$
\Gamma=\frac{Z_{L}-Z_{O}}{Z_{L}+Z_{O}}=\frac{12.5-50}{125 .+50}=-0.6
$$

9.61 Option (C) is correct.

The given figure represent constant reactance circle.
9.62 Option (D) is correct.

We know that $v_{p}>c>v_{g}$.
9.63 Option (A) is correct.

We have

$$
G_{D}(\theta, \phi)=\frac{4 \pi U(\theta, \phi)}{P_{r a d}}
$$

For lossless antenna

$$
P_{r a d}=P_{i n}
$$

Here we have $\quad P_{\text {rad }}=P_{\text {in }}=1 \mathrm{~mW}$
and $\quad 10 \log G_{D}(\theta, \phi)=6 \mathrm{~dB}$
or $\quad G_{D}(\theta, \phi)=3.98$
Thus the total power radiated by antenna is

$$
4 \pi U(\theta, \phi)=P_{r a d} G_{D}(\theta, \phi)=1 \mathrm{~m} \times 3.98=3.98 \mathrm{~mW}
$$

9.64 Option (D) is correct.

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in
The capacitance is

$$
C=\frac{\varepsilon_{o} A}{d}=\frac{8.85 \times 10^{-12} \times 10^{-4}}{10^{-3}}=8.85 \times 10^{-13}
$$

The charge on capacitor is

$$
Q=C V=8.85 \times 10^{-13}=4.427 \times 10^{-13}
$$

Displacement current in one cycle

$$
I=\frac{Q}{T}=f Q=4.427 \times 10^{-13} \times 3.6 \times 10^{9}=1.59 \mathrm{~mA}
$$

9.65 Option (C) is correct.

$$
\begin{aligned}
& \frac{V_{L}}{V_{i n}}=\frac{Z_{O}}{Z_{i n}} \\
& \text { or } \quad V_{L}=\frac{Z_{O}}{Z_{i n}} V_{i n}=\frac{10 \times 300}{50}=60 \mathrm{~V}
\end{aligned}
$$

9.66 Option (D) is correct.
9.67 Option (A) is correct.

$$
\begin{aligned}
R_{\text {avg }} & =\frac{1}{2} \operatorname{Re}\left[\vec{E} \times \overrightarrow{H^{3}}\right] \\
\vec{E} \times \overrightarrow{H^{*}} & =\left(\hat{a}_{x}+j \hat{a}_{y}\right) e^{j k z-j \omega t} \times \frac{k}{\omega \mu}\left(-j \hat{a}_{x}+\hat{a}_{y}\right) e^{-j k z+j \omega t} \\
& =\hat{a}_{z}\left[\frac{k}{\omega \mu}-(-j)(j) \frac{k}{\omega \mu}\right]=0 \\
R_{\text {avg }} & =\frac{1}{2} \operatorname{Re}\left[\vec{E} \times \overrightarrow{H^{\prime}}\right]=0
\end{aligned}
$$

Thus
9.68 Option (A) is correct.

Suppose at point P impedance is

$$
Z=r+j(-1)
$$

If we move in constant resistance circle from point P in clockwise direction by an angle 45°, the reactance magnitude increase. Let us consider a point Q at 45° from point P in clockwise direction. It's impedance is

$$
Z_{1}=r-0.5 j
$$

or

$$
Z_{1}=Z+0.5 j
$$

Thus movement on constant r - circle by an $\angle 45^{\circ}$ in CW direction is the addition of inductance in series with Z.

Option (D) is correct.
We have

$$
\mathrm{VSWR}=\frac{E_{\max }}{E_{\min }}=5=\frac{1-|\Gamma|}{1+|\Gamma|}
$$

or

$$
|\Gamma|=\frac{2}{3}
$$

Thus

$$
\Gamma=-\frac{2}{3}
$$

Now

$$
\begin{aligned}
\Gamma & =\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} \\
-\frac{2}{3} & =\frac{\eta_{2}-120 \pi}{\eta_{2}+120 \pi} \\
\eta_{2} & =24 \pi
\end{aligned}
$$

Option (D) is correct.
The VSWR $\quad 2=\frac{1-|\Gamma|}{1+|\Gamma|}$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\begin{array}{ll}
\text { or } & |\Gamma|=\frac{1}{3} \\
\text { Thus } & \frac{P_{\text {ref }}}{P_{\text {inc }}}
\end{array}=|\Gamma|^{2}=\frac{1}{9} .
$$

i.e. 11.11% of incident power is reflected.

Option (C) is correct.
By Maxwells equations

$$
\nabla \times \vec{H}=\frac{\partial \vec{D}}{\partial t}+J
$$

Thus $\nabla \times \vec{H}$ has unit of current density J that is A / m^{2}
Option (B) is correct.
We know that

$$
\delta \propto \frac{1}{\sqrt{f}}
$$

Thus

$$
\begin{aligned}
& \frac{\delta_{2}}{\delta_{1}}=\sqrt{\frac{f_{1}}{f_{2}}} \\
& \frac{\delta_{2}}{25}=\sqrt{\frac{1}{4}}
\end{aligned}
$$

or

$$
\delta_{2}=\sqrt{\frac{1}{4}} \times 25=12.5 \mathrm{~cm}
$$

Option (C) is correct.
We have

$$
\begin{aligned}
E_{1} & =2 u_{x}-3 u_{y}+1 u_{z} \\
E_{1 t} & =-3 u_{y}+u_{y} \text { and } E_{1 n}=2 u_{x}
\end{aligned}
$$

Since for dielectric material at the boundary, tangential component of electric field are equal

$$
\begin{aligned}
& E_{1 t}=-3 u_{y}+u_{y}=E_{2 t} \\
& E_{1 n}=2 u_{x}
\end{aligned}
$$

At the boundary the for normal component of electric field are

$$
D_{1 n}=D_{2 n}
$$

or
or
or

$$
\begin{aligned}
\varepsilon_{1} E_{1 n} & =\varepsilon_{2} E_{2 n} \\
1.5 \varepsilon_{o} 2 u_{x} & =2.5 \varepsilon_{o} E_{2 n} \\
E_{2 n} & =\frac{3}{2.5} u_{x}=1.2 u_{x} \\
E_{2} & =E_{2 t}+E_{2 n}=-3 u_{y}+u_{z}+1.2 u_{x}
\end{aligned}
$$

Thus
Option (C) is correct.
We have

$$
\begin{aligned}
E & =x u_{x}+y u_{y}+z u_{z} \\
d l & =\hat{u}_{x} d x+\hat{u}_{y} d y+\hat{u}_{z} d z \\
V_{X Y} & =-\int_{X}^{Y} E \cdot d l \\
& =\int_{1}^{2} x d x \hat{u}_{x}+\int_{2}^{0} y d y \hat{u}_{z}+\int_{3}^{0} z d z \hat{u} z \\
& =-\left[\left.\frac{x^{2}}{2}\right|_{1} ^{2}+\left.\frac{y^{2}}{2}\right|_{2} ^{0}+\left.\frac{z^{2}}{2}\right|_{3} ^{0}\right] \\
& =-\frac{1}{2}\left[2^{2}-1^{2}+0^{2}-2^{2}+0^{2}-3^{2}\right]=5
\end{aligned}
$$

Option (D) is correct.

$$
\eta=\sqrt{\frac{\mu}{\varepsilon}}
$$

Reflection coefficient

$$
\tau=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}
$$

Substituting values for η_{1} and η_{2} we have

$$
\tau=\frac{\sqrt{\frac{\mu_{0}}{\varepsilon_{\varepsilon} \varepsilon_{0}}}-\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}}{\sqrt{\frac{\mu_{0}}{\varepsilon_{0} \varepsilon_{\varepsilon}}}+\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}}=\frac{1-\sqrt{\varepsilon_{r}}}{1+\sqrt{\varepsilon_{r}}}=\frac{1-\sqrt{4}}{1+\sqrt{4}}
$$

since
$\varepsilon_{r}=4$

$$
=\frac{-1}{3}=0.333 \angle 180^{\circ}
$$

Option (B) is correct.
We have

$$
E(z, t)=10 \cos \left(2 \pi \times 10^{7} t-0.1 \pi z\right)
$$

where

$$
\omega=2 \pi \times 10^{7} t
$$

$$
\beta=0.1 \pi
$$

Phase Velocity

$$
u=\frac{\omega}{\beta}=\frac{2 \pi \times 10^{7}}{0.1 \pi}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

9.77 Option (A) is correct.

The fig of transmission line is as shown below.
We know that $\quad Z_{i n}=Z_{o} \frac{\left[Z_{L}+j Z_{o} \tan \beta l\right]}{\left[Z_{o}+j Z_{L} \tan \beta l\right.}$
For line $1, l=\frac{\lambda}{2}$ and $\beta=\frac{2 \pi}{\lambda}, Z_{L 1}=100 \Omega$

For more GATE Resources, Mock Test and Study material join the community
 http://www.facebook.com/gateec2014

Thus

$$
Z_{i n 1}=Z_{o} \frac{\left[Z_{L}+j Z_{o} \tan \pi\right]}{\left[Z_{o}+j Z_{L} \tan \pi\right]}=Z_{L}=100 \Omega
$$

For line $2, l=\frac{\lambda}{8}$ and $\beta=\frac{2 \pi}{\lambda}, Z_{L 2}=0$ (short circuit)
Thus

$$
\begin{aligned}
Z_{i n 2} & =Z_{o} \frac{\left[0+j Z_{o} \tan \frac{\pi}{4}\right]}{\left[Z_{o}+0\right]}=j Z_{o}=j 50 \Omega \\
Y & =\frac{1}{Z_{i n 1}}+\frac{1}{Z_{i n 2}}=\frac{1}{100}+\frac{1}{j 50}=0.01-j 0.02
\end{aligned}
$$

Option (A) is correct.

$$
u=\frac{c}{\sqrt{\varepsilon_{0}}}=\frac{3 \times 10^{8}}{2}=1.5 \times 10^{8}
$$

In rectangular waveguide the dominant mode is $T E_{10}$ and

$$
\begin{aligned}
f_{C} & =\frac{v}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \\
& =\frac{1.5 \times 10^{8}}{2} \sqrt{\left(\frac{1}{0.03}\right)^{2}+\left(\frac{0}{b}\right)^{2}}=\frac{1.5 \times 10^{8}}{0.06}=2.5 \mathrm{GHz}
\end{aligned}
$$

Option (D) is correct
Normalized array factor $=2\left|\cos \frac{\psi}{2}\right|$

$$
\begin{aligned}
\psi & =\beta d \sin \theta \cos \phi+\delta \\
\theta & =90^{\circ}, \\
d & =\sqrt{2} s, \\
\phi & =45^{\circ}, \\
\delta & =180^{\circ} \\
2\left|\cos \frac{\psi}{2}\right| & =2 \cos \left[\frac{\beta d \sin \theta \cos \phi+\delta}{2}\right] \\
& =2 \cos \left[\frac{\angle \pi}{\lambda .2} \sqrt{ } 2 s \cos 45^{\circ}+\frac{18 U}{2}\right] \\
& =2 \cos \left[\frac{\pi s}{\lambda}+90^{\circ}\right]=2 \sin \left(\frac{\pi s}{\lambda}\right)
\end{aligned}
$$

Now

Option (D) is correct.

$$
\text { VSWR } \quad s=\frac{1+\Gamma}{1-\Gamma} \quad \text { where } \Gamma \text { varies from } 0 \text { to } 1
$$

Thus s varies from 1 to ∞.
Option (B) is correct.
Reactance increases if we move along clockwise direction in the constant resistance circle.
Option (C) is correct.
Phase velocity

$$
V_{P}=\frac{V_{C}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}
$$

When wave propagate in waveguide $f_{c}<f \longrightarrow V_{P}>V_{C}$
Option (C) is correct.
We have

$$
\begin{aligned}
E & =\left(0.5 \hat{x}+\hat{y} e^{j \frac{j}{2}}\right) e^{j(\omega t-k z)} \\
\left|E_{x}\right| & =0.5 e^{j(\omega t-k z)} \\
\left|E_{y}\right| & =e^{j \frac{\pi}{2}} e^{j(\omega t-k z)} \\
\frac{\left|E_{x}\right|}{\left|E_{y}\right|} & =0.5 e^{-\frac{\pi}{2}}
\end{aligned}
$$

Since $\frac{\left|E_{x}\right|}{\left|E_{y}\right|} \neq 1$, it is elliptically polarized.
9.84 Option (A) is correct.

Loss tangent

$$
\begin{aligned}
\tan \alpha & =\frac{\sigma}{\omega \varepsilon}=\frac{1.7 \times 10^{-4}}{2 \pi \times 3 \times 10^{9} \times 78 \varepsilon_{o}} \\
& =\frac{1.7 \times 10^{-4} \times 9 \times 10^{9}}{3 \times 10^{9} \times 39}=1.3 \times 10^{-5}
\end{aligned}
$$

9.85 Option (D) is correct.

The flux density is

$$
\begin{array}{ll}
& \sigma=\varepsilon E=\varepsilon_{0} \varepsilon_{r} E=80 \times 8.854 \times 10^{-12} \times 2 \\
\text { or } \quad & \sigma=1.41 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}
\end{array}
$$

$9.86 \quad$ Option (B) is correct.

$$
P \propto \frac{1}{r^{2}}
$$

Thus $\quad \frac{P_{1}}{P_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}}$
3 dB decrease \longrightarrow Strength is halved
Thus

$$
\frac{P_{1}}{P_{2}}=2
$$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Substituting values we have

$$
\begin{array}{ll}
2 & =\frac{r_{2}^{2}}{5^{2}} \\
\text { or } \quad & r_{2}=5 \sqrt{2} \mathrm{kM}=7071 \mathrm{~m}
\end{array}
$$

Distance to move $\quad=7071-5000=2071 \mathrm{~m}$
9.87 Option (C) is correct.

A transmission line is distortion less if $L G=R C$
9.88 Option (B) is correct.

We have

$$
\frac{d^{2} E_{x}}{d z^{2}}=c^{2} \frac{d^{2} E_{x}}{d t^{2}}
$$

This equation shows that x component of electric fields E_{x} is traveling in z direction because there is change in z direction.
9.89 Option (A) is correct.

In wave guide $v_{p}>c>v_{g}$ and in vacuum $v_{p}=c=v_{g}$

$$
\text { where } \quad \begin{aligned}
v_{p} & \longrightarrow \text { Phase velocity } \\
c & \longrightarrow \text { Velocity of light }
\end{aligned}
$$

$v_{g} \longrightarrow$ Group velocity
9.90 Option (A) is correct.

In a wave guide dominant gives lowest cut-off frequency and hence the highest cut-off wavelength.
9.91 Option (A) is correct.

$$
\begin{aligned}
& & \left|I_{c}\right| & =\left|I_{d}\right| \\
\text { or } & |\sigma E| & =|j \omega \in E| & \sigma \\
\text { or } & & =2 \pi f \varepsilon_{o} \varepsilon_{r} & \omega=2 \pi f \text { and } \varepsilon=\varepsilon_{r} \varepsilon_{0} \\
& \text { or } & f & =\frac{\sigma}{2 \pi \times \varepsilon_{o} \varepsilon_{r}}=\frac{2 \sigma}{4 \pi \varepsilon_{o} \varepsilon_{r}}=\frac{9 \times 10^{9} \times 2 \times 10^{-2}}{4} \\
\text { or } & f & =45 \times 10^{6}=45 \mathrm{MHz} &
\end{aligned}
$$

$$
\text { or } \quad|\sigma E|=|j \omega \in E|
$$

9.92 Option (B) is correct.

		VSWR	$=\frac{1+\Gamma}{1-\Gamma}$
	or	3	$=\frac{1+\Gamma}{1-\Gamma}$
	or	Γ	$=0.5$
Now	$\frac{P_{r}}{P_{i}}$	$=\Gamma^{2}=0.25$	

Thus 25% of incident power is reflected.
Option (A) is correct.
We have

$$
\begin{aligned}
\lambda & =492 \mathrm{~m} \\
& =124 \mathrm{~m} \approx \frac{\lambda}{4}
\end{aligned}
$$

It is a quarter wave monopole antenna and radiation resistance is 25Ω.

Option (C) is correct.
The array factor is

$$
\begin{aligned}
\psi & =\beta d \cos \theta+\delta \\
\text { where } \quad d & =\frac{\lambda}{4}
\end{aligned}
$$

Distance between elements

GATE Electronics \& Communication by RK Kanodia
 Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$
\psi=0
$$

Because of end fire

$$
\theta=60^{\circ}
$$

Thus

$$
0=\frac{2 \pi}{\lambda} \times \frac{\lambda}{4} \cos 60^{\circ}+\delta=\frac{\pi}{2} \times \frac{1}{2}+\delta
$$

or

$$
\delta=-\frac{\pi}{4}
$$

Option (B) is correct

$$
Z_{o}=\sqrt{Z_{O C} \cdot Z_{S C}}=\sqrt{100 \times 25}=10 \times 5=50 \Omega
$$

Option (C) is correct.
As the impedance of perfect conductor is zero, electric field is minimum and magnetic field is maximum at the boundary.

Option (B) is correct.

$$
B W \propto \frac{1}{(\text { Diameter })}
$$

As diameter increases Bandwidth decreases.
Option (C) is correct.
The fig is as shown below :

As per snell law

$$
\begin{aligned}
\frac{\sin \theta_{t}}{\sin \theta_{i}} & =\sqrt{\frac{1}{\varepsilon_{r}}} \\
\frac{\sin 30^{\circ}}{\sin 45^{\circ}} & =\frac{1}{\sqrt{\varepsilon_{r}}} \\
\frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}} & =\frac{1}{\sqrt{\varepsilon_{r}}}
\end{aligned}
$$

or
or $\quad \varepsilon_{r}=2$
9.99 Option (C) is correct.

Cutoff frequency

$$
f_{c}=\frac{v_{p}}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}
$$

For rectangular waveguide dominant mode is $T E_{01}$
Thus

$$
v_{p}=3 \times 10^{8}
$$

$$
f_{c}=\frac{v_{p}}{2 a}=\frac{3 \times 10^{8}}{2 \times 10^{-2}}=15 \times 10^{9} \quad \text { For air }
$$

$$
=15 \mathrm{GHz}
$$

Option (B) is correct.
Phase Velocity

$$
\begin{aligned}
& \beta=\frac{2 \pi}{\lambda}=\omega \sqrt{\mu \varepsilon} \\
& \lambda=\frac{2 \pi}{\omega \sqrt{\mu \varepsilon}} \\
& \lambda \propto \frac{1}{\sqrt{\varepsilon}} \\
& \frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}}}
\end{aligned}
$$

we get
9.101 Option (D) is correct.

$$
\begin{aligned}
\left(\frac{\lambda}{2}\right) d & =l^{2} \\
\lambda & =\frac{c}{f}=\frac{3 \times 10^{8}}{4 \times 10^{9}}=\frac{3}{40} \mathrm{~m} \\
\left(\frac{3}{40 \times 2}\right) d & =(2.4)^{2} \\
d & =\frac{80 \times(2.4)^{2}}{3} \approx 150 \mathrm{~m}
\end{aligned}
$$

9.102 Option (C) is correct.

We know that for a monopole its electric field varies inversely with r^{2} while its potential varies inversely with r. Similarly for a dipole its electric field varies inversely as r^{3} and potential varies inversely as r^{2}.
In the given expression both the terms a $\left(\frac{1}{r^{-1}}+\frac{1}{r^{-2}}\right)$ are present, so this potential is due to both monopole \& dipole.
9.103 Option (D) is correct.

In $T E$ mode $E_{z}=0$, at all points within the wave guide. It implies that electric field vector is always perpendicular to the waveguide axis. This is not possible in semi-infine parallel plate wave guide.
Option (A) is correct.
9.105 Option (C) is correct.

A scalar wave equation must satisfy following relation

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial t^{2}}-\mu^{2} \frac{\partial^{2} E}{\partial z^{2}}=0 \tag{1}
\end{equation*}
$$

Where

$$
\mu=\frac{\omega}{\beta} \text { (Velocity) }
$$

Basically ω is the multiply factor of t and β is multiply factor of z or x or y
In option (A)

$$
\begin{aligned}
& E=50 e^{j(\omega t-3 z)} \\
& \mu=\frac{\omega}{\beta}=\frac{\omega}{3}
\end{aligned}
$$

We can see that equations in option (C) does not satisfy equation (1)
9.106 Option (B) is correct

We know that distance between two adjacent voltage maxima is equal to $\lambda / 2$, where λ is wavelength.

$$
\begin{aligned}
\frac{\lambda}{2} & =27.5-12.5 \\
\lambda & =2 \times 15=30 \mathrm{~cm} \\
v & =\frac{C}{\lambda}=\frac{3 \times 10^{10}}{30}=1 \mathrm{GHz}
\end{aligned}
$$

Frequency
Option (D) is correct.
Power received by antenna

$$
P_{R}=\frac{P_{T}}{4 \pi r^{2}} \times(\text { apeture })=\frac{251 \times 500 \times 10^{-4}}{4 \times \pi \times(100)^{2}}=100 \mu \mathrm{~W}
$$

9.108 Option (C) is correct.

Electrical path length $=\beta l$
Where

$$
\beta=\frac{2 \pi}{\lambda}, \quad l=50 \mathrm{~cm}
$$

We know that

$$
\begin{aligned}
& \qquad \begin{aligned}
\lambda= & \frac{v}{f}=\frac{1}{f} \times \frac{1}{\sqrt{L C}} \\
= & \frac{1}{25 \times 10^{6}} \times \frac{1}{\sqrt{10 \times 10^{-6} \times 40 \times 10^{-12}}} \\
= & \frac{5 \times 10^{7}}{25 \times 10^{6}}=2 \mathrm{~m} \\
\text { Electric path length } & =\frac{2 \pi}{5} \times 50 \times 10^{-2}=\frac{\pi}{2} \text { radian }
\end{aligned}
\end{aligned}
$$

Option (D) is correct.
In a lossless dielectric $(\sigma=0)$ median, impedance is given by

$$
\begin{aligned}
\eta & =\sqrt{\frac{\mu}{\varepsilon}} \angle 0^{\circ}=\sqrt{\frac{\mu_{0} \mu_{r}}{\varepsilon_{0} \varepsilon_{r}}}=120 \pi \times \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}} \\
& =120 \pi \times \sqrt{\frac{2}{8}}=188.4 \Omega
\end{aligned}
$$

9.110 Option (D) is correct.

Impedance is written as

$$
\eta=\sqrt{\frac{j \omega \mu}{\sigma+j \omega \varepsilon}}
$$

Copper is good conductor i.e. $\sigma \gg \omega \varepsilon$
So $\quad \eta=\sqrt{\frac{j \omega \mu}{\sigma}}=\sqrt{\frac{\omega \mu}{\sigma}} \angle 45^{\circ}$
Impedance will be complex with an inductive component.
9.111 Option (A) is correct.

This equation is based on ampere's law as we can see

$$
\begin{aligned}
& \oint_{l} H \cdot d l=I_{\text {enclosed }} \quad(\text { ampere's law }) \\
& \oint_{l} H \cdot d l=\int_{s} J d s
\end{aligned}
$$

Applying curl theorem

$$
\begin{aligned}
\int_{s}(\nabla \times H) \cdot d s & =\int_{s} J d s \\
\nabla \times H & =J
\end{aligned}
$$

then it is modified to

$$
\nabla \times H=J+\frac{\partial D}{\partial t} \quad \text { Based on continuity equation }
$$

Option (A) is correct.
Option (B) is correct.
Option (B) is correct.
Propagation constant

$$
r=\alpha+i \beta=0.1 \pi+j 0.2 \pi
$$

here $\quad \beta=\frac{2 \pi}{\lambda}=0.2 \pi$

$$
\lambda=\frac{2}{0.2}=10 \mathrm{~m}
$$

9.115 Option (C) is correct.

The depth of penetration or skin depth is defined as -

$$
\begin{aligned}
& \delta=\frac{1}{\sqrt{\pi f \mu \sigma}} \\
& \delta \propto \frac{1}{\sqrt{f}} \propto \sqrt{\lambda}
\end{aligned}
$$

so depth increases with increasing in wavelength.
9.116 Option (A) is correct.

Given

$$
\begin{equation*}
E(z, t)=E_{o} e^{j(\omega t+\beta z)} \vec{a}_{x}+\varepsilon_{0} e^{j(\omega t+\beta z)} \vec{a}_{y} \tag{1}
\end{equation*}
$$

Generalizing

$$
\begin{equation*}
E(z)=\vec{a}_{x} E_{1}(z)+\vec{a}_{y} E_{2}(z) \tag{2}
\end{equation*}
$$

Comparing (1) and (2) we can see that $E_{1}(z)$ and $E_{2}(z)$ are in space quadrature but in time phase, their sum E will be linearly polarized

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

along a line that makes an angle ϕ with x-axis as shown below.
9.117 Option (C) is correct.

$$
\vec{H}=\frac{1}{\mu} \vec{\nabla} \times \vec{A}
$$

where \vec{A} is auxiliary potential function.
So

$$
\begin{aligned}
\nabla \cdot H & =\nabla \cdot(\nabla \times A)=0 \\
\nabla \times H & =\nabla \times(\nabla \times A) \neq 0
\end{aligned}
$$

9.118 Option (D) is correct.

Radiation resistance of a circular loop is given as

$$
\begin{aligned}
R_{r} & =\frac{8}{3} \eta \pi^{3}\left[\frac{N \Delta S}{\lambda^{2}}\right] \\
R_{x} & \propto N^{2} N \rightarrow \text { no. of turns } \\
\text { So, } \quad R_{r 2} & =N^{2} \times R_{r 1} \\
& =(5)^{2} \times 0.01=0.25 \Omega
\end{aligned}
$$

9.119 Option (C) is correct.

We have
Aperture Area $\quad=\frac{\text { Power Re ceived }}{\text { Polynting vector of incident wave }}$

$$
A=\frac{W}{P}
$$

$P=\frac{E^{2}}{\eta_{0}} \eta_{0}=120 \pi$ is intrinsic impedance
of space

$$
\begin{aligned}
& \text { So } \begin{aligned}
=\frac{2 \times 10^{-6}}{\left(\frac{E^{2}}{\eta_{0}}\right)}=\frac{2 \times 10^{-6}}{\left(20 \times 10^{-3}\right)^{2}} & \times 120 \times 3.14 \\
& =\frac{2 \times 10^{-6} \times 12 \times 3.14}{400 \times 10^{-6}}=1.884 \mathrm{~m}^{2}
\end{aligned}
\end{aligned}
$$

9.120 Option (B) is correct.

Maximum usable frequency

$$
\begin{aligned}
& f_{m}=\frac{f_{o}}{\sin A_{e}} \\
& f_{m}=\frac{8 \mathrm{MHz}}{\sin 60^{\circ}}=\frac{8}{\left(\frac{\sqrt{3}}{2}\right)}=\frac{16}{\sqrt{3}} \mathrm{MHz}
\end{aligned}
$$

Option (D) is correct.
When a moving circuit is put in a time varying magnetic field educed emf have two components. One for time variation of B and other turn motion of circuit in B.

Option (A) is correct.

$$
\text { Far field } \propto \frac{1}{r}
$$

9.123 Option (B) is correct.

$$
\left|Z_{\text {in }}\right|_{\min }=\frac{Z_{0}}{S}
$$

where $S=$ standing wave ratio

$$
\begin{aligned}
S & =\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|} \\
\Gamma_{L} & =\text { reflection coefficient }
\end{aligned}
$$

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

$$
\begin{aligned}
\Gamma_{L} & =\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{100-50}{100+50}=\frac{50}{150}=\frac{1}{3} \\
S & =\frac{1+\frac{1}{3}}{1-\frac{1}{3}}=2 \\
\left|Z_{\text {in }}\right|_{\min } & =\frac{50}{2}=25 \Omega
\end{aligned}
$$

Option (A) is correct.
The cutoff frequency is given by

$$
f_{c}=\frac{\mu^{\prime}}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{2}\right)^{2}}
$$

Here $a<b$, so minimum cut off frequency will be for mode $T E_{01}$ $m=0, n=1$

$$
\begin{aligned}
f_{c} & =\frac{3 \times 10^{8}}{2 \times 2} \sqrt{\frac{1}{\left(10 \times 10^{-12}\right)}} \\
& =\frac{3 \times 10^{8}}{2 \times 2 \times 10 \times 10^{-2}}=0.75 \mathrm{GHz}
\end{aligned} \quad\left\{\begin{aligned}
\because \mu^{\prime} & =\frac{c}{2} \\
c & =3
\end{aligned}\right.
$$

Option (B) is correct.
Option (A) is correct.
For any transmission line we can write input impedance

$$
Z_{i n}=Z_{0}\left[\frac{Z_{L}+j Z_{0} \tanh l \gamma}{Z_{0}+j Z_{L} \tanh l \gamma}\right]
$$

Here given $Z_{L}=\infty$ (open circuited at load end)

SO

$$
Z_{i n}=Z_{0} \lim _{Z_{L} \rightarrow \infty}\left[\frac{1+\frac{j Z_{0} \tanh \gamma}{Z_{L}}}{\frac{Z_{0}}{Z_{L}}+j \tanh \gamma}\right]=\frac{Z_{0}}{j \tanh \gamma}
$$

Option (A) is correct.
We know that skin depth is given by

$$
s=\frac{1}{\sqrt{\pi f_{1} \mu \sigma}}=1 \times 10^{-2} \mathrm{~m}
$$

$$
\begin{array}{ll}
\text { or } & \frac{1}{\sqrt{\pi \times 10 \times 10^{6} \times \mu \sigma}}=10^{-2} \\
\text { or } & \mu \sigma=\frac{10^{-3}}{\pi}
\end{array}
$$

Now phase velocity at another frequency
9.128 Option (A) is correct.

Input impedance of a lossless transmission line is given by

$$
Z_{i n}=Z_{0}\left[\frac{Z_{L}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{L} \tan \beta l}\right]
$$

where

$$
Z_{0}=\text { Charateristic impedance of line }
$$

$Z_{L}=$ Load impedance

$$
\beta=\frac{2 \pi}{\lambda} \quad l=\text { length }
$$

so here

$$
\text { and } \quad Z_{0}=50 \Omega
$$

$$
\begin{aligned}
\beta l & =\frac{2 \pi}{\lambda} \frac{\lambda}{4}=\frac{\pi}{2} \\
Z_{L} & =0 \quad(\text { Short circuited }) \\
Z_{0} & =50 \Omega \\
Z_{i n} & =50\left[\frac{0+j 50 \tan \pi / 2}{50+j 0 \tan \pi / 2}\right]=\infty
\end{aligned}
$$

so
Thus infinite impedance, and current will be zero.
9.129 Option (B) is correct.

For lossless transmission line, we have

$$
\begin{equation*}
\text { Velocity } \quad V=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}} \tag{1}
\end{equation*}
$$

Characteristics impedance for a lossless transmission line

$$
\begin{equation*}
Z_{0}=\sqrt{\frac{L}{C}} \tag{2}
\end{equation*}
$$

From eqn. (1) and (2)

$$
V=\frac{1}{\sqrt{C}\left(Z_{0} \sqrt{C}\right)}=\frac{1}{Z_{0} C}
$$

9.130 Option (C) is correct.
9.131 Option (A) is correct.
9.132 Option (C) is correct.

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

Reflected power

$$
\begin{aligned}
E_{r} & =\Gamma E_{i} \quad E_{i} \rightarrow \text { Incident power } \\
\Gamma & =\text { Reflection coefficient } \\
\Gamma & =\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{1.5-1}{1.5+1}=\frac{1}{5} \\
\text { So } \quad E_{r} & =\frac{1}{5} \times E_{i} \\
\frac{E_{r}}{E_{i}} & =20 \%
\end{aligned}
$$

9.133 Option (B) is correct.

We have maximum usable frequency formulae as

$$
f_{m}=\frac{f_{0}}{\sin A_{e}}
$$

$$
\begin{aligned}
& f_{2}=1000 \mathrm{MHz} \text { is } \\
& V=\sqrt{\frac{4 \pi f_{2}}{\mu \sigma}} \\
& \mu \sigma=\frac{10^{-3}}{\pi} \text { in above equation } \\
& \text { V } \\
& =\sqrt{\frac{4 \times \pi \times 1000 \times 10^{6} \times \pi}{10^{-3}}} \simeq 6 \times 10^{6} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
20 \times 10^{6} & =\frac{10 \times 10^{6}}{\sin A_{e}} \\
\sin A_{e} & =\frac{1}{2} \\
A_{e} & =30^{\circ}
\end{aligned}
$$

9.134 Option (C) is correct.
${ }^{9.135}$ Option (A) is correct.
Skin depth $\quad \delta=\frac{1}{\sqrt{\pi j \mu \sigma}}$
Putting the given value

$$
\delta=\frac{1}{\sqrt{3.14 \times 1 \times 10^{9} \times 4 \pi \times 10^{-7} \times 10^{6}}}
$$

*

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
www.nodia.co.in

GENERAL APTITUDE

YEAR 2013

ONE MARK
10.1 Choose the grammatically CORRECT sentence:
(A) Two and two add four
(B) Two and two become four
(C) Two and two are four
(D) Two and two make four
10.2 Statement: You can always give me a ring whenever you need. Which one of the following is the best inference from the above statement?
(A) Because I have a nice caller tune.
(B) Because I have a better telephone facility
(C) Because a friend in need is a friend indeed

GATE Electronics \& Communication

by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in
(D) Because you need not pay towards the telephone bills when you give me a ring
10.3 In the summer of 2012, in New Delhi, the mean temperature of Monday to Wednesday was $41^{\circ} \mathrm{C}$ and of Tuesday to Thursday was $43^{\circ} \mathrm{C}$. If the temperature on Thursday was 15% higher than that of Monday, then the temperature in ${ }^{\circ} \mathrm{C}$ on Thursday was
(A) 40
(B) 43
(C) 46
(D) 49
10.4 Complete the sentence: Dare \qquad mistakes.
(A) commit
(B) to commit
(C) committed
(D) committing
10.5 They were requested not to quarrel with others.

Which one of the following options is the closest in meaning to the word quarrel?
(A) make out
(B) call out
(C) dig out
(D) fall out
10.1 Option (D) is correct.

They were requested not to quarrel with others.
Quarrel has a similar meaning to 'fall out'

YEAR 2013

TWO MARKS

10.6 A car travels 8 km in the first quarter of an hour, 6 km in the second quarter and 16 km in the third quarter. The average speed of the car in km per hour over the entire journey is
(A) 30
(B) 36
(C) 40
(D) 24
10.7 Find the sum to n terms of the series $10+84+734+\ldots$
(A) $\frac{9\left(9^{n}+1\right)}{10}+1$
(B) $\frac{9\left(9^{n}-1\right)}{8}+1$
(C) $\frac{9\left(9^{n}-1\right)}{8}+n$
(D) $\frac{9\left(9^{n}-1\right)}{8}+n^{2}$
10.8 Statement: There were different streams of freedom movements in colonial India carried out by the moderates, liberals, radicals, socialists, and so on.
Which one of the following is the best inference from the above statement?
(A) The emergence of nationalism in colonial India led to our Independence
(B) Nationalism in India emerged in the context of colonialism
(C) Nationalism in India is homogeneous
(D) Nationalism in India is heterogeneous
10.9 The set of values of p for which the roots of the equation $3 x^{2}+2 x+p(p-1)=0$ are of opposite sign is
(A) $(-\infty, 0)$
(B) $(0,1)$
(C) $(1, \infty)$
(D) $(0, \infty)$
10.10 What is the chance that a leap year, selected at random, will contain 53 Sundays?
(A) $2 / 7$
(B) $3 / 7$
(C) $1 / 7$
(D) $5 / 7$

2012

ONE MARK
${ }^{10.11}$ If $(1.001)^{1259}=3.52$ and $(1.001)^{2062}=7.85$, then $(1.001)^{3321}$
(A) 2.23
(B) 4.33
(C) 11.37
(D) 27.64
10.12 Choose the most appropriate alternate from the options given below to complete the following sentence :
If the tired soldier wanted to lie down, he \qquad .the mattress out on the balcony.
(A) should take
(B) shall take
(C) should have taken
(D) will have taken
10.13 Choose the most appropriate word from the options given below to complete the following sentence :
Give the seriousness of the situation that he had to face, his........ was impressive.
(A) beggary
(B) nomenclature
(C) jealousy
(D) nonchalance
10.14 Which one of the following options is the closest in meaning to the

For more GATE Resources, Mock Test and Study material join the community http:/lwww.facebook.com/gateec2014

word given below ?

Latitude

(A) Eligibility
(B) Freedom
(C) Coercion
(D) Meticulousness

One of the parts (A, B, C, D) in the sentence given below contains an ERROR. Which one of the following is INCORRECT ?
I requested that he should be given the driving test today instead of tomorrow.
(A) requested that
(B) should be given
(C) the driving test
(D) instead of tomorrow

2012

TWO MARKS

10.16 One of the legacies of the Roman legions was discipline. In the legious, military law prevailed and discipline was brutal. Discipline on the battlefield kept units obedient, intact and fighting, even when the odds and conditions were against them.
Which one of the following statements best sums up the meaning of the above passage ?
(A) Through regimentation was the main reason for the efficiency of the Roman legions even in adverse circumstances.
(B) The legions were treated inhumanly as if the men were animals
(C) Disciplines was the armies inheritance from their seniors
(D) The harsh discipline to which the legions were subjected to led to the odds and conditions being against them.
10.17 Raju has 14 currency notes in his pocket consisting of only Rs. 20 notes and Rs. 10 notes. The total money values of the notes is Rs. 230. The number of Rs. 10 notes that Raju has is
(A) 5
(B) 6
(C) 9
(D) 10
10.18 There are eight bags of rice looking alike, seven of which have equal weight and one is slightly heavier. The weighing balance is of unlimited capacity. Using this balance, the minimum number of weighings required to identify the heavier bag is
(A) 2
(B) 3
(C) 4
(D) 8
10.19 The data given in the following table summarizes the monthly budget of an average household.

Category	Amount (Rs.)
Food	4000
Clothing	1200
Rent	2000
Savings	1500
Other Expenses	1800

The approximate percentages of the monthly budget NOT spent on savings is
(A) 10%
(B) 14%
(C) 81%
(D) 86%
${ }_{10.20} \quad A$ and B are friends. They decide to meet between 1 PM and 2 PM on a given day. There is a conditions that whoever arrives first will not wait for the other for more than 15 minutes. The probability that they will meet on that days is
(A) $1 / 4$
(B) $1 / 16$
(C) $7 / 16$
(D) $9 / 16$

2011

ONE MARK
10.21 There are two candidates P and Q in an election. During the campaign, 40% of voter promised to vote for P, and rest for Q . However, on the day of election 15% of the voters went back on their promise to vote for P and instead voted for $Q .25 \%$ of the voter went back on their promise to vote for Q and instead voted for P. Suppose, P lost by 2 votes, then what was the total number of voters ?
(A) 100
(B) 110
(C) 90
(D) 95
10.22 The question below consists of a pair of related words followed by four pairs of words. Select the pair that best expresses the relations in the original pair :
Gladiator : Arena
(A) dancer : stage
(B) commuter : train
(C) teacher : classroom
(D) lawyer : courtroom
10.23 Choose the most appropriate word from the options given below to complete the following sentence :
Under ethical guidelines recently adopted by the Indian Medical Association, human genes are to be manipulated only to correct diseases for which. \qquad ..treatments are unsatisfactory.
(A) similar
(B) most
(C) uncommon
(D) available
10.24 Choose the word from the from the options given below that is most opposite in meaning to the given word :
Frequency
(A) periodicity
(B) rarity
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy
www.nodia.co.in
(C) gradualness
(D) persistency
10.25 Choose the most appropriate word from the options given below to complete the following sentence :
It was her view that the country's had been \qquad by foreign techno-crafts, so that to invite them to come back would be coun-ter-productive.
(A) identified
(B) ascertained
(C) exacerbated
(D) analysed

2011
TWO MARKS
10.26 The fuel consumed by a motor cycle during a journey while travelling at various speed is indicated in the graph below.

The distance covered during four laps of the journey are listed in the table below

Lap	Distance (km)	Average speed (km/hour)
P	15	15
Q	75	45
R	40	75
S	10	10

From the given data, we can conclude that the fuel consumed per kilometre was least during the lap
(A) P
(B) Q
(C) R
(D) S
10.27 The horse has played a little known but very important role in the field of medicine. Horses were injected with toxins of disease until their blood build up immunities. Then a serum was made from their blood. Serums to fight with diphteria and tetanus were developed this way.
It can be inferred from the passage, that horses were
(A) given immunity to diseases
(B) generally quite immune to diseases
(C) given medicines to fight toxins
(D) given diphtheria and tetanus serums
10.28 The sum of n terms of the series $4+44+444+\ldots \ldots .$.
(A) $(4 / 81)\left[10^{n+1}-9 n-1\right]$
(B) $(4 / 81)\left[10^{n-1}-9 n-1\right]$
(C) $(4 / 81)\left[10^{n+1}-9 n-10\right]$
(D) $(4 / 81)\left[10^{n}-9 n-10\right]$
10.29 Given that $f(y)=|y| / y$, and q is any non-zero real number, the value of $|f(q)-f(-q)|$ is

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(A) 0
(B) -1
(C) 1
(D) 2
10.30 Three friends R, S and T shared toffee from a bowl. R took $1 / 3^{\text {rd }}$ of the toffees, but returned four to the bowl. S took $1 / 4^{\text {th }}$ of what was left but returned three toffees to the bowl. T took half of the remainder but returned two back into the bowl. If the bowl had 17 toffees left, how many toffees were originally there in the bowl ?
(A) 38
(B) 31
(C) 48
(D) 41

2010

ONE MARK
10.31 Which of the following options is the closest in meaning to the word below?
Circuitous
(A) Cyclic
(B) Indirect
(C) Confusing
(D) Crooked
10.32 The question below consist of a pair of related words followed by four pairs of words. Select the pair that best expresses the relation in the original pair.
Unemployed : Worker
(A) Fallow : Land
(B) Unaware : Sleeper
(C) Wit : Jester
(D) Renovated: House
10.33 Choose the most appropriate word from the options given below to complete the following sentence :
If we manage to our natural resources, we would leave a better planet for our children.
(A) unhold
(B) restrain
(C) cherish
(D) conserve
10.34 Choose the most appropriate word from the options given below to complete the following sentence:
His rather casual remarks on politics \qquad .his lack of seriousness about the subject.
(A) masked
(B) belied
(C) betrayed
(D) suppressed
${ }_{10.35} 25$ persons are in a room 15 of them play hockey, 17 of them play football and 10 of them play hockey and football. Then the number of persons playing neither hockey nor football is
(A) 2
(B) 17
(C) 13
(D) 3
10.36 Modern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare ; and regretfully, their exist people in military establishments who think that chemical agents are useful fools for their cause.
Which of the following statements best sums up the meaning of the above passage?
(A) Modern warfare has resulted in civil strife.
(B) Chemical agents are useful in modern warfare.
(C) Use of chemical agents in ware fare would be undesirable.
(D) People in military establishments like to use chemical agents in war.
10.37 If $137+276=435$ how much is $731+672$?
(A) 534
(B) 1403
(C) 1623
(D) 1531
10.38 5 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall ?
(A) 20 days
(B) 18 days
(C) 16 days
(D) 15 days
${ }^{10.39}$ Given digits $2,2,3,3,3,4,4,4$, 4 how much distinct 4 digit numbers greater than 3000 can be formed ?
(A) 50
(B) 51
(C) 52
(D) 54
10.40 Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

and sisters.) All were born on $1^{\text {st }}$ January. The age difference between any two successive siblings (that is born one after another) is less than 3 years. Given the following facts :

1. Hari's age + Gita's age $>$ Irfan's age + Saira's age.
2. The age difference between Gita and Saira is 1 year. However, Gita is not the oldest and Saira is not the youngest.
3. There are no twins.

In what order were they born (oldest first) ?
(A) HSIG
(B) SGHI
(C) IGSH
(D) IHSG

SOLUTIONS

10.1 Option (D) is correct

Two and two make four
Option (C) is correct.
You can always given me a ring whenever you need. Because a friend is need is a friend indeed
10.3 Option (C) is correct.

Let the temperature on Monday, Tuesday, Wednesday and Thursday be respectively as $T_{M}, T_{T U}, T_{W}, T_{T H}$
So, from the given data we have
and

$$
\begin{gather*}
\frac{T_{H}+T_{T U}+T_{W}}{3}=41 \tag{1}\\
\frac{T_{T U}+T_{W}+T_{T H}}{3}=43 \tag{2}
\end{gather*}
$$

also, as the temperature on Thursday was 15% higher than that of Monday
i.e.

$$
\begin{equation*}
T_{T H}=1.15 T_{M} \tag{3}
\end{equation*}
$$

solving eq (1), (2) and (3), we obtain

$$
T_{T H}=46^{\circ} \mathrm{C}
$$

10.4 Option (B) is correct.

Dare to commit mistakes
10.5 Option (D) is correct.

They were requested not to quarrel with others.
Quarrel has a similar meaning to 'fall out'
10.6 Option (C) is correct.

Given, the distance travelled by the car in each quarter intervals as

Distance	Time Duration
8 km	$\frac{1}{4} \mathrm{hr}$
6 km	$\frac{1}{4} \mathrm{hr}$
16 km	$\frac{1}{4} \mathrm{hr}$

Therefore, the total time taken $=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{3}{4} \mathrm{hr}$
Total distance travelled $=8+6+16=30 \mathrm{~km}$
Hence,

$$
\text { average speed }=\frac{\text { Total distance travelled }}{\text { Total time taken }}
$$

$$
=\frac{30}{3 / 4}=40 \mathrm{~km} / \mathrm{hr}
$$

10.7 Option (D) is correct.

It will be easy to check the options for given series. From the given series.

$$
10+84+734+\ldots \ldots
$$

We get

$$
\begin{aligned}
\text { Sum of } 1 \text { term } & =S_{1}=10 \\
\text { Sum of } 2 \text { terms } & =S_{2}=10+84=94 \\
\text { and sum of } 3 \text { terms } & =S_{3}=10+84+734=828
\end{aligned}
$$

Checking all the options one by one, we observe that only (D) option satisfies as

$$
\begin{array}{ll}
& S_{n}=\frac{9\left(9^{n}-1\right)}{8}+n^{2} \\
\text { so, } & S_{1} \frac{9\left(9^{2}-1\right)}{8}+2^{2}=10
\end{array}
$$

$$
S_{2}=\frac{9(9-1)}{8}+2^{2}=94
$$

S_{3}
$=\frac{9\left(9^{3}-1\right)}{8}+3^{2}=828$
10.8 Option (D) is correct.

Nationalism in India is heterogeneous
10.9 Option (B) is correct.

Given, the quadratic equation

$$
3 x^{2}+2 x+P(P-1)=0
$$

It will have the roots with opposite sign if

$$
P(P-1)<0
$$

So it can be possible only when

$$
\begin{array}{ll}
& P<0 \text { and } P-1>0 \\
\text { or } & P>0 \text { and } P-1<0
\end{array}
$$

The $1^{\text {st }}$ condition tends to no solution for P.
*
At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

Hence, from the second condition, we obtain

$$
0<P<1
$$

i.e., P is in the range $(0,1)$
10.10 Option (A) is correct.

In a leap year, there are 366 days $S o, 52$ weeks will have 52 saturdays and for remaining two days $(366-52 \times 7=2)$. We can have the following combinations

Saturday, Sunday
Sunday, Monday
Monday, Tuesday
Tuesday, Wednesday
Wednesday, Thursday
Thursday, Friday
Friday, Saturday
Out of these seven possibilities, only two consist a saturday. Therefore, the probability of saturday is given as

$$
P=\frac{2}{7}
$$

10.11 Option (D) is correct.

Let $\quad 1.001=x$
So in given data :

$$
\begin{aligned}
x^{1259} & =3.52 \\
x^{2062} & =7.85 \\
x^{3321} & =x^{1259+2062} \\
& =x^{1259} x^{2062} \\
& =3.52 \times 7.85 \\
& =27.64
\end{aligned}
$$

Again
10.12 Option (C) is correct.
10.13 Option (D) is correct.
10.14 Option (B) is correct.
10.15 Option (B) is correct.
10.16 Option (A) is correct.
10.17 Option (A) is correct.

Let no. of notes of Rs. 20 be x and no. of notes of Rs. 10 be y. Then from the given data.

$$
\begin{aligned}
x+y & =14 \\
20 x+10 y & =230
\end{aligned}
$$

Solving the above two equations we get

$$
x=9, y=5
$$

So, the no. of notes of Rs. 10 is 5 .
10.18 Option (A) is correct.

We will categorize the 8 bags in three groups as:
(i) $A_{1} A_{2} A_{3}$,
(ii) $B_{1} B_{2} B_{3}$,
(iii) $C_{1} C_{2}$

Weighting will be done as bellow :
$1^{\text {st }}$ weighting $\rightarrow A_{1} A_{2} A_{3}$ will be on one side of balance and $B_{1} B_{2} B_{3}$ on the other. It may have three results as described in the following cases.

Case 1: $\quad A_{1} A_{2} A_{3}=B_{1} B_{2} B_{3}$
GATE Electronics \& Communication by RK Kanodia
Now in 3 Volume
Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit WWW.nodia.co.in

This results out that either C_{1} or C_{2} will heavier for which we will have to perform weighting again.
$2^{\text {nd }}$ weighting $\rightarrow C_{1}$ is kept on the one side and C_{2} on the other.
if $\quad C_{1}>C_{2} \quad$ then C_{1} is heavier.

$$
C_{1}<C_{2} \quad \text { then } C_{2} \text { is heavier. }
$$

Case 2 :
$A_{1} A_{2} A_{3}>B_{1} B_{2} B_{3}$
it means one of the $A_{1} A_{2} A_{3}$ will be heavier So we will perform next weighting as:
$2^{\text {nd }}$ weighting $\rightarrow A_{1}$ is kept on one side of the balance and A_{2} on the other.
if $\quad A_{1}=A_{2} \quad$ it means A_{3} will be heavier

$$
A_{1}>A_{2} \quad \text { then } A_{1} \text { will be heavier }
$$

$$
A_{1}<A_{2} \quad \text { then } A_{2} \text { will be heavier }
$$

Case 3 :

$$
A_{1} A_{2} A_{3}<B_{1} B_{2} B_{3}
$$

This time one of the $B_{1} B_{2} B_{3}$ will be heavier, So again as the above case weighting will be done.
$2^{\text {nd }}$ weighting $\rightarrow B_{1}$ is kept one side and B_{2} on the other
if $\quad B_{1}=B_{2} \quad B_{3}$ will be heavier
$B_{1}>B_{2} \quad B_{1}$ will be heavier
$B_{1}<B_{2} \quad B_{2}$ will be heavier
So, as described above, in all the three cases weighting is done only two times to give out the result so minimum no. of weighting required $=2$.
10.19 Option (D) is correct.

$$
\text { Total budget }=4000+1200+2000+1500+1800
$$

$=10,500$
The amount spent on saving $=1500$
So, the amount not spent on saving

$$
=10,500-1500=9000
$$

So, percentage of the amount

$$
=\frac{9000}{10500} \times 100 \%=86 \%
$$

10.20 Option (S) is correct.

The graphical representation of their arriving time so that they met is given as below in the figure by shaded region.

So, the area of shaded region is given by

$$
\text { Area of } \square P Q R S \quad-(\text { Area of } \triangle E F Q+
$$

Area of $\Delta G S H)$

$$
\begin{aligned}
& =60 \times 60-2\left(\frac{1}{2} \times 45 \times 45\right) \\
& =1575
\end{aligned}
$$

So, the required probability $=\frac{1575}{3600}=\frac{7}{16}$
Option (A) is correct.
Let us assume total voters are 100. Thus 40 voter (i.e. 40%) promised to vote for P and 60 (rest 60%) promised to vote fore Q .
Now, 15% changed from P to Q (15% out of 40)

Changed voter from P to Q	$\frac{15}{100} \times 40=6$
Now Voter for P	$40-6=34$
Also, 25% changed form Q to P (out of 60%)	
Changed voter from Q to P	$\frac{25}{100} \times 60=15$
Now Voter for P	$34+15=49$

Thus P P got 49 votes and Q got 51 votes, and P lost by 2 votes, which is given. Therefore 100 voter is true value.
10.22 Option (A) is correct.

A gladiator performs in an arena. Commutators use trains. Lawyers

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

performs, but do not entertain like a gladiator. Similarly, teachers educate. Only dancers performs on a stage.
10.23 Option (D) is correct.

Available is appropriate because manipulation of genes will be done when other treatments are not useful.
10.24 Option (B) is correct.

Periodicity is almost similar to frequency. Gradualness means something happening with time. Persistency is endurance. Rarity is opposite to frequency.
10.25 Option (C) is correct.

The sentence implies that technocrats are counterproductive
(negative). Only (C) can bring the same meaning.
Option (B) is correct.
Since fuel consumption/litre is asked and not total fuel consumed, only average speed is relevant. Maximum efficiency comes at $45 \mathrm{~km} /$ hr, So least fuel consumer per litre in lap Q
10.27 Option (B) is correct.

Option B fits the sentence, as they built up immunities which helped humans create serums from their blood.
10.28 Option (C) is correct.

$$
\begin{aligned}
4+44+444+\ldots \ldots \ldots \ldots . & 4(1+11+111+\ldots \ldots) \\
& =\frac{4}{9}(9+99+999+\ldots \ldots \ldots \ldots)
\end{aligned}
$$

$$
=\frac{4}{9}[(10-1)+(100-1)+\ldots \ldots . .]
$$

$$
\begin{aligned}
& =\frac{4}{9}\left[10\left(1+10+10^{2}+10^{3}\right)-n\right] \\
& =\frac{4}{9}\left[10 \times \frac{10^{n}-1}{10-1}-n\right] \\
& =\frac{4}{81}\left[10^{n+1}-10-9 n\right]
\end{aligned}
$$

Option (D) is correct.

Now

$$
f(y)=\frac{|y|}{y}
$$

$$
f(-y)=\frac{|-y|}{y}=-f(y)
$$

or

$$
|f(q)-f(-q)|=|2 f(q)|=2
$$

Option (C) is correct.
Let total no of toffees be x. The following table shows the all calculations.

	Friend	Bowl Status
R	$=\frac{x}{3}-4$	$=\frac{2 x}{3}+4$
S	$=\frac{1}{4}\left[\frac{2 x}{3}+4\right]-3$	$=\frac{2 x}{3}+4-\frac{x}{6}+2$
$=\frac{x}{6}+1-3=\frac{x}{6}-2$	$=\frac{x}{2}+6$	
T	$=\frac{1}{2}\left(\frac{x}{2}+6\right)-2$	$=\frac{x}{2}+6-\frac{x}{4}-1$
	$=\frac{x}{4}+1$	$=\frac{x}{4}+5$

Now, $\quad \frac{x}{4}+5=17$
or

$$
\begin{aligned}
& \frac{x}{4}=17-5=12 \\
& x=12 \times 4=48
\end{aligned}
$$

Option (B) is correct.
Circuitous means round about or not direct. Indirect is closest in meaning to this circuitous
(A) Cyclic
: Recurring in nature
(B) Indirect
(C) Confusing
: Not direct
: lacking clarity of meaning
(D) Crooked
: set at an angle; not straight
10.32 Option (B) is correct.

A worker may by unemployed. Like in same relation a sleeper may be unaware.
10.33 Option (D) is correct.

Here conserve is most appropriate word.
Option (C) is correct.
Betrayed means reveal unintentionally that is most appropriate.
Option (D) is correct.
Number of people who play hockey $n(A)=15$
Number of people who play football $n(B)=17$
Persons who play both hockey and football $n(A \cap B)=10$
Persons who play either hockey or football or both :

$$
\begin{aligned}
n(A \cup B) & =n(A)+n(B)-n(A \cap B) \\
& =15+17-10=22
\end{aligned}
$$

Thus people who play neither hockey nor football $=25-22=3$
10.36 Option (D) is correct.
10.37 Option (C) is correct.

Since $7+6=13$ but unit digit is 5 so base may be 8 as 5 is the remainder when 13 is divided by 8 . Let us check.

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book
binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

WWW.nodia.co.in

137_{8}		731_{8}
$\frac{276_{8}}{435}$	Thus here base is 8. Now	$\underline{672_{8}}$
1623		

10.38 Option (D) is correct.

Let W be the total work.
Per day work of 5 skilled workers
Per day work of one skill worker
Similarly per day work of 1 semi-skilled workers $=\frac{W}{8 \times 25}=\frac{W}{200}$
Similarly per day work of one semi-skill worker $=\frac{W}{10 \times 30}=\frac{W}{300}$
Thus total per day work of 2 skilled, 6 semi-skilled and 5 unskilled workers is $=\frac{2 W}{100}+\frac{6 W}{200}+\frac{5 W}{300}=\frac{12 W+18 W+10 W}{600}=\frac{W}{15}$
Therefore time to complete the work is 15 days.
10.39 Option (B) is correct.

As the number must be greater than 3000 , it must be start with 3 or 4. Thus we have two case:
Case (1) If left most digit is 3 an other three digits are any of 2,2 , $3,3,4,4,4,4$.
(1) Using 2, 2, 3 we have $3223,3232,3322$ i.e. $\frac{3!}{2!}=3$ no.
(2) Using $2,2,4$ we have $3224,3242,3422$ i.e. $\frac{3!}{2!}=3$ no.
(3) Using $2,3,3$ we have $3233,3323,3332$ i.e. $\frac{3!}{2!}=3$ no.
(4) Using $2,3,4$ we have $3!=6$ no.
(5) Using $2,4,4$ we have $3244,3424,3442$ i.e. $\frac{3!}{2!}=3$ no.
(6) Using $3,3,4$ we have $3334,3343,3433$ i.e. $\frac{3 \text { ! }}{2!}=3$ no.
(7) Using $3,4,4$ we have $3344,3434,3443$ i.e. $\frac{3!}{2!}=3$ no.
(8) Using $4,4,4$ we have 3444 i.e. $\frac{3!}{3!}=1$ no.

Total 4 digit numbers in this case is
$1+3+3+3+6+3+3+3+1=25$
Case 2 : If left most is 4 and other three digits are any of $2,2,3,3$,
$3,4,4,4$.
(1) Using $2,2,3$ we have 4223, 4232, 4322 i.e. . $\frac{3!}{2!}=3$ no
(2) Using $2,2,4$ we have 4224,4242 , 4422 i.e. . $\frac{3!}{2!}=3$ no
(3) Using $2,3,3$ we have 4233, 4323, 4332 i.e. $\frac{3!}{2!}=3$ no
(4) Using $2,3,4$ we have i.e. . 3 ! $=6$ no
(5) Using $2,4,4$ we have $4244,4424,4442$ i.e. $\frac{3!}{2!}=3$ no
(6) Using $3,3,3$ we have 4333 i.e $\frac{3!}{3!}=1$. no.
(7) Using $3,3,4$ we have $4334,4343,4433$ i.e. . $\frac{3 \text { ! }}{2!}=3$ no

GATE Electronics \& Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in
(8) Using $3,4,4$ we have $4344,4434,4443$ i.e. $\frac{3!}{2!}=3$ no
(9) Using $4,4,4$ we have 4444 i.e. $\frac{3!}{3!}=1$. no

Total 4 digit numbers in 2 nd case
$=3+3+3+6+3+3+1+3+1=26$
Thus total 4 digit numbers using case (1) and case (2) is $=25+26=51$
10.40 Option (B) is correct.

Let H, G, S and I be ages of Hari, Gita, Saira and Irfan respectively. Now from statement (1) we have $H+G>I+S$
Form statement (2) we get that $G-S=1$ or $S-G=1$
As G can't be oldest and S can't be youngest thus either GS or SG possible.
From statement (3) we get that there are no twins
(A) HSIG : There is I between S and G which is not possible
(B) SGHI : $S G$ order is also here and
$S>G>H>I$ and $G+H>S+I$ which is possible.
(C) IGSH : This gives $I>G$ and $S>H$ and adding these both inequalities we have $I+S>H+G$ which is not possible.
(D) IHSG : This gives $I>H$ and $S>G$ and adding these both inequalities we have $I+S>H+G$ which is not possible.

[^0]: Consider

