GATE

ELECTRONICS & COMMUNICATION

Topicwise Solved Paper

Year 2013- 1996

By RK Kanodia & Ashish Murolia

For more GATE Resources, Mock Test and Study material

Join the Community

https://www.fb.com/GateExamPortal

ENGINEERING MATHEMATICS

2013

ONE	MAR

1.1	The maximum	value of θ	until	which	the	approximation $\sin \theta \approx \theta$	
	holds to within	10% error	is				
	(A) 10°			(B)	18°		

(D) 90°

.2	The minimum eigen value of the following matrix is
	5 12 7

2 7 5	
(A) 0	(B) 1
(C) 2	(D) 3

- 1.3 A polynomial $f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x a_0$ with all coefficients positive has
 - (A) no real roots
 - (B) no negative real root
 - (C) odd number of real roots
 - (D) at least one positive and one negative real root

2013

(C) 50°

1.:

TWO MARKS

ONE MARK

Let A be an $m \times n$ matrix and B an $n \times m$ matrix. It is given that determinant $(I_m + AB) =$ determinant $(I_n + BA)$, where I_k is the $k \times k$ identity matrix. Using the above property, the determinant of the matrix given below is $[2 \ 1 \ 1 \ 1]$

$1 \ 2 \ 1 \ 1$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 1 1 2	
L .	(B) 5
(A) 2	(D) 0
(C) 8	(D) 16

2012

1.5

1.6

With initial condition x(1) = 0.5, the solution of the differential equation

 $t\frac{dx}{dt} + x = t, \text{ is}$ (A) $x = t - \frac{1}{2}$ (B) $x = t^2 - \frac{1}{2}$ (C) $x = \frac{t^2}{2}$ (D) $x = \frac{t}{2}$ (D) $x = \frac{t}{2}$ Given $f(z) = \frac{1}{z+1} - \frac{2}{z+3}$.
If C is a counter clockwise path in the z-plane such that |z+1| = 1, the value of $\frac{1}{2\pi j} \oint_C f(z) dz$ is
(A) -2(B) -1(C) 1
(D) 2
If $x = \sqrt{-1}$, then the value of x^x is

1.7 If
$$x = \sqrt{-1}$$
, then the value of x^x is
(A) $e^{-\pi/2}$ (B) $e^{\pi/2}$

TWO MARKS

Consider the differential equation $\begin{aligned} \frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} + y(t) &= \delta(t) \\ \text{with } y(t)\big|_{t=0^-} = -2 \text{ and } \frac{dy}{dt}\big|_{t=0^-} = 0 \end{aligned}$ The numerical value of $\frac{dy}{dt}\Big|_{t=0^+}$ is (A) -2 (B) -1 (C) 0 (D) 1 The direction of vector \boldsymbol{A} is radially outward from the origin, with $|\boldsymbol{A}| = kr^n$. where $r^2 = x^2 + y^2 + z^2$ and k is a constant. The value of

n for which $\nabla \cdot \boldsymbol{A} = 0$ is(A) -2(B) 2(C) 1(D) 0

1.10 A fair coin is tossed till a head appears for the first time. The

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

probability that the number of required tosses is odd, is

 $\begin{array}{cccc} (A) \ 1/3 & (B) \ 1/2 \\ (C) \ 2/3 & (D) \ 3/4 \end{array}$

The maximum value of $f(x) = x^3 - 9x^2 + 24x + 5$ in the interval [1,6]

Given that

is

1.11

1.12

(C) x

2012

1.8

1.9

$$\boldsymbol{A} = \begin{bmatrix} -5 & -3\\ 2 & 0 \end{bmatrix} \text{ and } \boldsymbol{I} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \text{ the value of } A^3 \text{ is}$$
(A) $15\boldsymbol{A} + 12\boldsymbol{I}$
(B) $19\boldsymbol{A} + 30\boldsymbol{I}$
(C) $17\boldsymbol{A} + 15\boldsymbol{I}$
(D) $17\boldsymbol{A} + 21\boldsymbol{I}$

2011

ONE MARK

Consider a closed surface S surrounding volume V. If \vec{r} is the position vector of a point inside S, with \hat{n} the unit normal on S, the value of the integral $\iint_{S} 5\vec{r} \cdot \hat{n} \, dS$ is

$$(A) 3V (B) 5V$$

(C) 10V (D) 15V

1.14 The solution of the differential equation $\frac{dy}{dx} = ky, y(0) = c$ is (A) $x = ce^{-ky}$ (B) $x = ke^{cy}$ (C) $y = ce^{kx}$ (D) $y = ce^{-kx}$

(C)
$$4/5$$
 (D) 1

- A numerical solution of the equation $f(x) + \sqrt{x-3} = 0$ can be 1.16 obtained using Newton- Raphson method. If the starting value is x = 2 for the iteration, the value of x that is to be used in the next step is (A) 0.306(B) 0.739 (C) 1.694 (D) 2.306
- The system of equations 1.17

2011

x + y + z = 6x + 4y + 6y = 20

 $x + 4y + \lambda z = \mu$

- has NO solution for values of λ and μ given by (A) $\lambda = 6, \ \mu = 20$ (B) $\lambda = 6, \ \mu \neq 20$ (D) $\lambda \neq 6, \ \mu = 20$ (C) $\lambda \neq 6, \ \mu = 20$
- A fair dice is tossed two times. The probability that the second toss 1.18 results in a value that is higher than the first toss is (A) 2/36(B) 2/6

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(C) 5/12

2010

1.21

(D) 1/2

ONE MARKS

1.25

1.26

2009

1.28

TWO MARKS

1.22

- The eigen values of a skew-symmetric matrix are 1.19 (A) always zero (B) always pure imaginary (C) either zero or pure imaginary (D) always real
- The trigonometric Fourier series for the waveform f(t) shown below 1.20 contains

(A) only cosine terms and zero values for the dc components

(B) only cosine terms and a positive value for the dc components

(C) only cosine terms and a negative value for the dc components

(D) only sine terms and a negative value for the dc components

A function n(x) satisfied the differential equation

$$\frac{d^2 n(x)}{dx^2} - \frac{n(x)}{L^2} = 0$$

where L is a constant. The boundary conditions are : n(0) = Kand $n(\infty) = 0$. The solution to this equation is

(A)
$$n(x) = K \exp(x/L)$$

(B) $n(x) = K \exp(-x/\sqrt{L})$
(C) $n(x) = K^2 \exp(-x/L)$
(D) $n(x) = K \exp(-x/L)$

2010	TWO MARKS
If $e^y = x^{1/x}$, then y has a	
(A) maximum at $x = e$	(B) minimum at $x = e$
(C) maximum at $x = e^{-1}$	(D) minimum at $x = e^{-1}$
A.C. · · · · 1 · 1 · 1	

A fair coin is tossed independently four times. The probability of the 1.23 event "the number of time heads shown up is more than the number of times tail shown up" (D) 1 / 9

If $\vec{A} = xy\hat{a}_x + x^2\hat{a}_y$, then $\oint \vec{A} \cdot d\vec{l}$ over the path shown in the figure 1.24

(B) $\frac{2}{\sqrt{3}}$ (C) 1(D) $2\sqrt{3}$

The residues of a complex fu $x(z) = \frac{1-z}{z(z-1)}$	
at its poles are	
(A) $\frac{1}{2}, -\frac{1}{2}$ and 1	(B) $\frac{1}{2}, -\frac{1}{2}$ and -1
(C) $\frac{1}{2}$, 1 and $-\frac{3}{2}$	(D) $\frac{1}{2}, -1$ and $\frac{3}{2}$
Consider differential equation	on $\frac{dy(x)}{dx} - y(x) = x$, with the i

initial dxcondition y(0) = 0. Using Euler's first order method with a step size of 0.1, the value of y(0.3) is

- (B) 0.031 (A) 0.01 (C) 0.0631 (D) 0.1
- Given $f(t) = L^{-1} \left[\frac{3s+1}{s^3 + 4s^2 + (k-3)s} \right]$. If $\lim_{t \to \infty} f(t) = 1$, then the value 1.27 of k is (A) 1(B) 2 (C) 3 (D) 4

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

The order of the differential equation $\frac{d^2y}{dt^2} + \left(\frac{dy}{dt}\right)^3 + y^4 = e^{-t}$ is(A) 1 (B) 2 (C) 3(D) 4

A fair coin is tossed 10 times. What is the probability that only the 1.29 first two tosses will yield heads?

(A) $\left(\frac{1}{2}\right)^2$	(B) ${}^{10}C_2 \left(\frac{1}{2}\right)^2$
$(\alpha) (1)^{10}$	(r) 10 $\sim (1)^{10}$

ONE MARK

Page 2

(D) ${}^{10}C_2\left(\frac{1}{2}\right)^1$ (C) $\left(\frac{1}{2}\right)$

30 If
$$f(z) = c_0 + c_1 z^{-1}$$
, then $\oint_{\text{unit circle}} \frac{1 + f(z)}{z} dz$ is given by
(A) $2\pi c_1$
(B) $2\pi (1 + c_0)$
(C) $2\pi j c_1$
(D) $2\pi (1 + c_0)$

2009

TWO MARKS

1.38

1.39

2008

The Taylor series expansion of $\frac{\sin x}{x-\pi}$ at $x = \pi$ is given by 1.31

(A)
$$1 + \frac{(x-\pi)^2}{3!} + \dots$$
 (B) $-1 - \frac{(x-\pi)^2}{3!} + \dots$
(C) $1 - \frac{(x-\pi)^2}{3!} + \dots$ (D) $-1 + \frac{(x-\pi)^2}{3!} + \dots$

Match each differential equation in Group I to its family of solution 1.32 curves from Group II Crown II

Group I	Group II
A. $\frac{dy}{dx} = \frac{y}{x}$	1. Circles
B. $\frac{dy}{dx} = -\frac{y}{x}$	2. Straight lines
C. $\frac{dy}{dx} = \frac{x}{y}$	3. Hyperbolas
D. $\frac{dy}{dx} = -\frac{x}{y}$	
(A) $A - 2, B - 3, C - 3, D - 1$	
(B) $A - 1, B - 3, C - 2, D - 1$	
(C) $A - 2, B - 1, C - 3, D - 3$	
(D) $A - 3, B - 2, C - 1, D - 2$	

The Eigen values of following matrix are 1.33

$$\begin{bmatrix} -1 & 3 & 5 \\ -3 & -1 & 6 \\ 0 & 0 & 3 \end{bmatrix}$$
(A) 3, 3 + 5*j*, 6 - *j*
(B) -6 + 5*j*, 3 + *j*, 3 - *j*
(C) 3 + *j*, 3 - *j*, 5 + *j*
(D) 3, -1 + 3*j*, -1 - 3*j*

2008

ONE MARKS

1.42

1.43

All the four entries of the 2×2 matrix $P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$ are nonzero, 1.34 and one of its eigenvalue is zero. Which of the following statements is true?

(A)
$$p_{11}p_{12} - p_{12}p_{21} = 1$$

(B) $p_{11}p_{22} - p_{12}p_{21} = -1$
(C) $p_{11}p_{22} - p_{12}p_{21} = 0$
(D) $p_{11}p_{22} + p_{12}p_{21} = 0$

$$_{1}p_{22} - p_{12}p_{21} = 0$$
 (D) $p_{11}p_{22} + p_{12}p_{21}$

The system of linear equations 1.35

$$4x + 2y = 7$$

$$2x + y = 6$$
 has

- (A) a unique solution
- (B) no solution
- (C) an infinite number of solutions
- (D) exactly two distinct solutions

The equation $\sin(z) = 10$ has 1.36

- (A) no real or complex solution
- (B) exactly two distinct complex solutions
 - (C) a unique solution
- (D) an infinite number of complex solutions
- For real values of x, the minimum value of the function 1.37

$f(x) = \exp(x) + \exp(-x)$ is	
(A) 2	(B) 1
(C) 0.5	(D) 0

Which of the following functions would have only odd powers of xin its Taylor series expansion about the point x = 0? (A) $\sin(r^3)$ (B) $\sin(x^2)$

(A)
$$\sin(x)$$
 (B) $\sin(x)$
(C) $\cos(x^3)$ (D) $\cos(x^2)$

Which of the following is a solution to the differential equation

$$\frac{dx(t)}{dt} + 3x(t) = 0$$
?
(A) $x(t) = 3e^{-t}$ (B) $x(t) = 2e^{-3t}$

(A)
$$x(t) = 3e$$

(B) $x(t) = 2e$
(C) $x(t) = -\frac{3}{2}t^2$
(D) $x(t) = 3t^2$

TWO MARKS

1.40 The recursion relation to solve $x = e^{-x}$ using Newton - Raphson method is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(A)
$$x_{n+1} = e^{-x_n}$$
 (B) $x_{n+1} = x_n - e^{-x_n}$
(C) $x_{n+1} = (1+x_n)\frac{e^{-x_n}}{1+e^{-x_n}}$ (D) $x_{n+1} = \frac{x_n^2 - e^{-x_n}(1-x_n) - 1}{x_n - e^{-x_n}}$

(B) $-\frac{1}{16}$

(D) $\frac{1}{32}$

The residue of the function
$$f(z) = \frac{1}{(z+2)^2(z-2)^2}$$
 at $z=2$ is

(A)
$$-\frac{1}{32}$$

(C) $\frac{1}{16}$

Consider the matrix
$$P = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$
. The value of e^p is
(A) $\begin{bmatrix} 2e^{-2} - 3e^{-1} & e^{-1} - e^{-2} \\ 2e^{-2} - 2e^{-1} & 5e^{-2} - e^{-1} \end{bmatrix}$
(B) $\begin{bmatrix} e^{-1} + e^{-1} & 2e^{-2} - e^{-1} \\ 2e^{-1} - 4e^2 & 3e^{-1} + 2e^{-2} \end{bmatrix}$
(C) $\begin{bmatrix} 5e^{-2} - e^{-1} & 3e^{-1} - e^{-2} \\ 2e^{-2} - 6e^{-1} & 4e^{-2} + 6^{-1} \end{bmatrix}$
(D) $\begin{bmatrix} 2e^{-1} - e^{-2} & e^{-1} - e^{-2} \\ -2e^{-1} + 2e^{-2} - e^{-1} + 2e^{-2} \end{bmatrix}$

In the Taylor series expansion of $\exp(x) + \sin(x)$ about the point $x = \pi$, the coefficient of $(x - \pi)^2$ is

(A)
$$\exp(\pi)$$
 (B) $0.5 \exp(\pi)$

(C)
$$\exp(\pi) + 1$$
 (D) $\exp(\pi) - 1$

The value of the integral of the function $g(x,y) = 4x^3 + 10y^4$ along 1.44 the straight line segment from the point (0,0) to the point (1,2) in the x - y plane is (A) 33 (B) 35

(C) 40 (D) 56

Consider points P and Q in the x - y plane, with P = (1,0) and 1.45 Q = (0,1). The line integral $2 \int_{P}^{Q} (x dx + y dy)$ along the semicircle with the line segment PQ as its diameter

(A) is
$$-1$$

(B) is
$$0$$

(C) is 1

(D) depends on the direction (clockwise or anit-clockwise) of the semicircle

2007

ONE MARK

The following plot shows a function which varies linearly with x. 1.46 The value of the integral $I = \int_{1}^{2} y dx$ is

y 3-	-
$\begin{array}{c} 2 \\ 1 \\ -1 \\ 1 \\ 2 \\ 3 \end{array} x$	
(A) 1.0 (C) 4.0	(B) 2.5(D) 5.0

For $|x| \ll 1$, coth (x) can be approximated as 1.47 (A) x(B) x^2

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(D) $\frac{1}{r^2}$

(C)
$$\frac{1}{r}$$

$\lim_{\theta \to 0} \frac{\sin\left(\frac{\theta}{2}\right)}{\theta} \text{ is }$	
(A) 0.5	(B) 1
(C) 2	(D) not defined

- Which one of following functions is strictly bounded? 1.49 (A) $1/x^2$ (B) e^x (C) x^2 (D) e^{-x^2}
- For the function e^{-x} , the linear approximation around x = 2 is 1.50 (A) $(3-x)e^{-2}$ (B) 1 - x(D) e^{-2} (C) $[3+3\sqrt{2}-(1-\sqrt{2})x]e^{-2}$

2007

TWO MARKS

- The solution of the differential equation $k^2 \frac{d^2 y}{dx^2} = y y_2$ under the 1.51 boundary conditions
 - (i) $y = y_1$ at x = 0 and

(ii) $y = y_2$ at $x = \infty$, where k, y_1 and y_2 are constants, is

(A)
$$y = (y_1 - y_2) \exp\left(-\frac{x}{k^2}\right) + y_2$$
 (B) $y = (y_2 - y_1) \exp\left(-\frac{x}{k}\right) + y_1$
(C) $y = (y_1 - y_2) \sinh\left(\frac{x}{k}\right) + y_1$ (D) $y = (y_1 - y_2) \exp\left(-\frac{x}{k}\right) + y_2$

The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton 1.52 - Raphson method. If x = 2 is taken as the initial approximation of the solution, then next approximation using this method will be $(\Lambda) \circ \langle 0 \rangle$

(A)
$$2/3$$
 (B) $4/3$
(C) 1 (D) $3/2$

(D) 3/2 (\mathbf{O}) I

Three functions $f_1(t), f_2(t)$ and $f_3(t)$ which are zero outside the interval 1.53 [0, T] are shown in the figure. Which of the following statements is correct?

- (B) $f_1(t)$ and $f_2(t)$ are orthogonal (C) $f_2(t)$ and $f_3(t)$ are orthogonal D) $f_1(t)$ and $f_2(t)$ are orthonormal
- If the semi-circular control D of radius 2 is as shown in the figure, 1.54 then the value of the integral $\oint_{D} \frac{1}{(s^2-1)} ds$ is

(A) $j\pi$ (B) $-j\pi$ (C) $-\pi$ (D) π

It is given that $X_1, X_2...X_M$ at M non-zero, orthogonal vectors. 1.55 The dimension of the vector space spanned by the 2M vectors $X_1, X_2, \dots, X_M, -X_1, -X_2, \dots -X_M$ is

$$A) 2M (B) M$$

(C) M

(D) dependent on the choice of X_1, X_2, \dots, X_M

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

- Consider the function $f(x) = x^2 x 2$. The maximum value of f(x)1.56 in the closed interval [-4, 4] is (A) 18 (B) 10 (C) - 225(D) indeterminate
- An examination consists of two papers, Paper 1 and Paper 2. The 1.57 probability of failing in Paper 1 is 0.3 and that in Paper 2 is 0.2. Given that a student has failed in Paper 2, the probability of failing in Paper 1 is 0.6. The probability of a student failing in both the papers is

(A) 0.5	(B) 0.18
(C) 0.12	(D) 0.06

ONE MARK

	2006	ONE MA	NRK
1.58	The rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ is		
	(A) 0 l (B) 1		
	(C) 2 (D) 3		
1.59	$\nabla \times \nabla \times P$, where <i>P</i> is a vector, is equal to		
	(A) $P \times \nabla \times P - \nabla^2 P$		
	(B) $\nabla^2 P + \nabla (\nabla \times P)$		
	(C) $\nabla^2 P + \nabla \times P$		
	(D) $\nabla (\nabla \cdot P) - \nabla^2 P$		
1.60	$\iint_{(A)} (\nabla \times P) \cdot ds, \text{ where } P \text{ is a vector, is equal to}$		
	(B) $\oint \nabla \times \nabla \times P \cdot dl$		
	(C) $\oint \nabla \times P \cdot dl$		
	(D) $\iiint \nabla \cdot Pdv$		
1.61	A probability density function is of the form $p(x) = Ke^{-\alpha x }, x \in (-\infty, \infty)$		
	The value of K is $p(x) = mc$, $x \in (-, -, -)$		
	(A) 0.5 (B) 1		
	(C) 0.5α (D) α		
1.62	A solution for the differential equation $\dot{x}(t) + 2x(t)$	$(t) = \delta(t)$	with

 $=\delta(t)$ with 1.6 initial condition $x(0^{-}) = 0$ is (A) $e^{-2t}u(t)$ (B) $e^{2t}u(t)$ (C) $e^{-t}u(t)$ (D) $e^t u(t)$

2006

TWO MARKS

The eigenvalue and the corresponding eigenvector of 2×2 matrix 1.63 are given by **D**:

Eigenvalue	Eigenvector
$\lambda_1 = 8$	$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
$\lambda_2 = 4$	$v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
The matrix is	[4 6]
$(A)\begin{bmatrix} 6 & 2\\ 2 & 6 \end{bmatrix}$	$(B)\begin{bmatrix} 4 & 6\\ 6 & 4 \end{bmatrix}$
$(C)\begin{bmatrix} 2 & 4\\ 4 & 2 \end{bmatrix}$	$(D)\begin{bmatrix} 4 & 8\\ 8 & 4 \end{bmatrix}$

For the function of a complex variable $W = \ln Z$ (where, W = u + iv1.64 and Z = x + jy, the u = constant lines get mapped in Z - plane as(A) set of radial straight lines (B) set of concentric circles (C) set of confocal hyperbolas (D) set of confocal ellipses

1.65	The value of the constant integra	al $\oint \frac{1}{z^2 + 4} dz$ is positive sense is	1.71
	(A) $\frac{j\pi}{2}$	al $\oint_{\substack{ z-j =2\\(B)}-\frac{\pi}{2}} \frac{1}{z^2+4} dz$ is positive sense is	
	(C) $-\frac{j\pi}{2}$	(D) $\frac{\pi}{2}$	
1.66	The integral $\int_{-\pi}^{\pi} \sin^3\theta d\theta$ is given	by	1.72

1.66 J_0 (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{4}{3}$ (D) $\frac{8}{3}$

-			
1.67	Three companies X, Y	and Z supply compute	rs to a university. The

th	nose being defective a	re tabulated below	
	Company	% of Computer Sup- plied	Probability of being supplied defective
	X	60%	0.01
	Y	30%	0.02
	Z	10%	0.03

percentage of computers supplied by them and the probability of

Given that a computer is defective, the probability that was supplied by Y is

(A) 0.1	(B) 0.2
(C) 0.3	(D) 0.4

For the matrix $\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$ the eigenvalue corresponding to the eigenvector $\begin{bmatrix} 101 \\ \vdots \end{bmatrix}$ 1.68 101 is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(A) 2	(B) 4
(C) 6	(D) 8

For the differential equation $\frac{d^2y}{dx^2} + k^2y = 0$ the boundary conditions 1.69 are

(i) y = 0 for x = 0 and (ii) y = 0 for x = a

The form of non-zero solutions of y (where m varies over all integers) are

(A)
$$y = \sum_{m} A_{m} \sin \frac{m\pi x}{a}$$
 (B) $y = \sum_{m} A_{m} \cos \frac{m\pi x}{a}$
(C) $y = \sum_{m} A_{m} x^{\frac{m\pi}{a}}$ (D) $y = \sum_{m} A_{m} e^{-\frac{m\pi x}{a}}$

As x increased from $-\infty$ to ∞ , the function $f(x) = \frac{e^x}{1 + e^x}$ 1.70

- (A) monotonically increases
- (B) monotonically decreases
- (C) increases to a maximum value and then decreases
- (D) decreases to a minimum value and then increases

2005

The following differential equation has

$$3\left(\frac{d^2y}{dt^2}\right) + 4\left(\frac{dy}{dt}\right)^3 + y^2 + 2 = x$$

(A) degree = 2, order = 1(B) degree = 1, order = 2(C) degree = 4, order = 3(D) degree = 2, order = 3

.72 A fair dice is rolled twice. The probability that an odd number will follow an even number is $(\Lambda) 1/2$ (B) 1/6

$$\begin{array}{c} (A) & 1/2 \\ (C) & 1/3 \end{array} \qquad \qquad (D) & 1/4 \\ \end{array}$$

(D) $y = e^{-2x} + e^{-3x}$

2005

1.73

TWO MARKS

1.78

1.79

- In what range should $\operatorname{Re}(s)$ remain so that the Laplace transform of 1.80 1.74 the function $e^{(a+2)t+5}$ exits.
 - (A) $\operatorname{Re}(s) > a+2$
 - (B) $\operatorname{Re}(s) > a + 7$
 - (C) Re(s) < 2
 - (D) $\operatorname{Re}(s) > a + 5$
- 1.75 The derivative of the symmetric function drawn in given figure will look like

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

1.76

1.77

(C) $\begin{bmatrix} 2\\ -1 \end{bmatrix}$

(C) -

Match the following and choose the correct combination: Group I Group 2

- E. Newton-Raphson method
- F. Runge-kutta method
- G. Simpson's Rule
- H. Gauss elimination
- 4. Numerical integration 5. Interpolation 6. Calculation of Eigenvalues (B) E - 1, F - 6, G - 4, H - 3(A) E - 6, F - 1, G - 5, H - 3(C) E - 1, F - 3, G - 4, H - 2 (D) E - 5, F - 3, G - 4, H - 1Given the matrix $\begin{bmatrix} -4 & 2\\ 4 & 3 \end{bmatrix}$, the eigenvector is (A) $\begin{bmatrix} 3\\ 2 \end{bmatrix}$ (B) $\begin{bmatrix} 4\\ 3 \end{bmatrix}$

(D) $\begin{vmatrix} -1\\2 \end{vmatrix}$

equations

equations

1. Solving nonlinear equations

2. Solving linear simultaneous

3. Solving ordinary differential

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

SOLUTIONS

Option (B) is correct. 1.1

Here, as we know

$$\lim_{\theta \to 0} \sin \theta \approx 0$$

but for 10% error, we can check option (B) first,

$$\theta = 18^{\circ} = 18^{\circ} \times \frac{\pi}{180^{\circ}} = 0.314$$
$$\sin \theta = \sin 18^{\circ} = 0.309$$
% error = $\frac{0.314 - 0.309}{0.309} \times 100\% = 0.49\%$

Now, we check it for $\theta = 50^{\circ}$

$$\theta = 50^{\circ} = 50^{\circ} \times \frac{\pi}{180^{\circ}} = 0.873$$
$$\sin \theta = \sin 50^{\circ} = 0.77$$
\% error $= \frac{0.77 - 0.873}{0.873} = -12.25\%$

so, the error is more than 10%. Hence, for error less than 10%, $\theta = 18^{\circ}$ can have the approximation

 $\sin\theta \approx \theta$

Option (A) is correct.

1.2

1.3

For, a given matrix [A] the eigen value is calculated as

$$|A - \lambda I| = 0$$

where λ gives the eigen values of matrix. Here, the minimum eigen value among the given options is

 $\lambda = 0$

We check the characteristic equation of matrix for this eigen value

$$|A - \lambda I| = |A| \qquad (\text{for } \lambda = 0)$$
$$= \begin{vmatrix} 3 & 5 & 2 \\ 5 & 12 & 7 \\ 2 & 7 & 5 \end{vmatrix}$$
$$= 3(60 - 49) - 5(25 - 14) + 2(35 - 24)$$
$$= 33 - 55 + 22$$
$$= 0$$

Hence, it satisfied the characteristic equation and so, the minimum eigen value is

 $\lambda = 0$

Option (D) is correct. Given, the polynomial

$$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x - a_0$$

Since, all the coefficients are positive so, the roots of equation is given by

$$f(x) = 0$$

It will have at least one pole in right hand plane as there will be least one sign change from (a_1) to (a_0) in the Routh matrix 1st column. Also, there will be a corresponding pole in left hand plane i.e.; at least one positive root (in R.H.P)and at least one negative root (in L.H.P)Rest of the roots will be either on imaginary axis or in L.H.P

Option (B) is correct. 1.4

Consider the given matrix be

Hence, we get

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

Therefore,

 \Rightarrow

Integrating factor,

Solution has the form,

1.5

Therefore,

$$BA = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 4$$
From the given property

$$Det (I_m + AB) = Det (I_m + BA)$$

$$\Rightarrow \qquad Det \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix} = Det \begin{cases} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + 4$$

$$= 1 + 4$$

= 5

Note : Determinant of identity matrix is always 1. Option (D) is correct.

$$t\frac{dx}{dt} + x = t$$

$$\frac{dx}{dt} + \frac{x}{t} = 1$$

$$\frac{dx}{dt} + Px = Q \text{ (General form)}$$

$$IF = e^{\int_{P^{dt}}} = e^{\ln t} = e^{\ln t} = t$$

$$x \times IF = \int (Q \times IF) dt + C$$
$$x \times t = \int (1) (t) dt + C$$

1]

Taking the initial condition,

x(1) = 0.5 $0.5 = \frac{1}{2} + C \quad \Rightarrow \quad C = 0$ $xt = \frac{t^2}{2} \Rightarrow x = \frac{t}{2}$

 $xt = \frac{t^2}{2} + C$

So,

1.6

Option (C) is correct.

$$f(z) = \frac{1}{z+1} - \frac{2}{z+3}$$

 $\frac{1}{2\pi i} \oint_{\alpha} f(z) dz =$ sum of the residues of the poles which lie inside the given closed region.

$$C \Rightarrow |z+1| = 1$$

Only pole $z = -1$ inside the circle, so residue at $z = -1$ is.
$$f(z) = -z + 1$$

$$= \lim_{z \to -1} \frac{(z+1)(-z+1)}{(z+1)(z+3)} = \frac{2}{2} = 1$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

 $\frac{1}{2\pi i} \oint_C f(z) \, dz = 1$

Option (A) is correct. 1.7

 $x = \sqrt{-1} = i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$

 $x = e^{i\frac{\pi}{2}}$

So,

So

$$x^{x} = \left(e^{i\frac{\pi}{2}}\right)^{x} \Rightarrow \left(e^{i\frac{\pi}{2}}\right)^{i} = e^{-\frac{\pi}{2}}$$

Option (D) is correct. 1.8

$$\frac{d^2y(t)}{dt^2} + \frac{2dy(t)}{dt} + y(t) = \delta(t)$$

By taking Laplace transform with initial conditions

$$\begin{cases} s^2 Y(s) - sy(0) - \frac{dy}{dt} \Big|_{t=0} \end{bmatrix} + 2 [sy(s) - y(0)] + Y(s) = 1 \\ \Rightarrow \qquad [s^2 Y(s) + 2s - 0] + 2 [sY(s) + 2] + Y(s) = 1 \\ Y(s) [s^2 + 2s + 1] = 1 - 2s - 4 \\ Y(s) = \frac{-2s - 3}{s^2 + 2s + 1} \end{cases}$$

We know that, If,
$$y(t) \xleftarrow{\mathcal{L}} Y(s)$$

then,
$$\frac{dy(t)}{dt} \xleftarrow{\mathcal{L}} sY(s) - y(0)$$

then,

So,

$$sY(s) - y(0) = \frac{(-2s - 3)s}{(s^2 + 2s + 1)} + 2$$

$$= \frac{-2s^2 - 3s + 2s^2 + 4s + 2}{(s^2 + 2s + 1)}$$
$$sY(s) - y(0) = \frac{s+2}{(s+1)^2} = \frac{s+1}{(s+1)^2} + \frac{1}{(s+1)^2}$$
$$= \frac{1}{s+1} + \frac{1}{(s+1)^2}$$

Taking inverse Laplace transform

$$egin{array}{ll} rac{dy(t)}{dt} &= e^{-t}u(t) + te^{-t}u(t) \ rac{dy}{dt}\Big|_{t=0^+} &= e^0 + 0 = 1 \end{array}$$

Option (A) is correct. Divergence of \boldsymbol{A} in spherical coordinates is given as

$$\nabla \cdot \boldsymbol{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) = \frac{1}{r^2} \frac{\partial}{\partial r} (kr^{n+2})$$
$$= \frac{k}{r^2} (n+2) r^{n+1}$$
$$= k(n+2) r^{n-1} = 0 \quad \text{(given)}$$
$$n+2 = 0 \quad \Rightarrow \quad n = -2$$

Option (C) is correct.

At $t = 0^+$,

1.9

1.10

1.11

Probability of appearing a head is 1/2. If the number of required tosses is odd, we have following sequence of events.

Probability

Option (B) is correct.

H, TTH, TTTTH,....

$$P = \frac{1}{2} + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^5 + \dots$$

$$P = \frac{\frac{1}{2}}{1 - \frac{1}{4}} = \frac{2}{3}$$

$$f(x) = x^{3} - 9x^{2} + 24x + 5$$

$$\frac{df(x)}{dx} = 3x^{2} - 18x + 24 = 0$$

$$\Rightarrow \qquad \frac{df(x)}{dx} = x^{2} - 6x + 8 = 0 \qquad x = 4, x = 2$$

$$\frac{d^{2}f(x)}{dx^{2}} = 6x - 18$$
For $x = 2$, $\frac{d^{2}f(x)}{dx^{2}} = 12 - 18 = -6 < 0$
So at $x = 2$ f(x) will be maximum

So at x = 2, f(x) will be maximum

$$f(x)\big|_{\max} = (2)^3 - 9(2)^2 + 24(2) + 5$$

= 8 - 36 + 48 + 5 = 25

Characteristic equation.

$$\begin{vmatrix} \mathbf{A} - \lambda \mathbf{I} \end{vmatrix} = 0$$
$$\begin{vmatrix} -5 - \lambda & -3 \\ 2 & -\lambda \end{vmatrix} = 0$$
$$5\lambda + \lambda^2 + 6 = 0$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$\lambda^2 + 5\lambda + 6 = 0$$

Since characteristic equation satisfies its own matrix, so
$$A^2 + 5A + 6 = 0 \Rightarrow A^2 = -5A - 6I$$

Multiplying with A
$$A^3 + 5A^2 + 6A = 0$$

$$A^3 + 5(-5A - 6I) + 6A = 0$$

$$\boldsymbol{A}^3 = 19\boldsymbol{A} + 30\boldsymbol{I}$$

Option (D) is correct. 1.13

> From Divergence theorem, we have $\iiint \vec{\nabla} \cdot \vec{A} \, dv = \oint \vec{A} \cdot \hat{n} \, ds$

The position vector

$$\vec{r} = (\hat{u}_x x + \hat{u}_y y + \hat{u}_z z)$$
Here, $\vec{A} = 5\vec{r}$, thus

$$\nabla \cdot \vec{A} = \left(\hat{u}_x \frac{\partial}{\partial x} + \hat{u}_y \frac{\partial}{\partial y} + \hat{u}_z \frac{\partial}{\partial z}\right) \cdot (\hat{u}_x x + \hat{u}_y y + \hat{u}_z z)$$

$$= \left(\frac{dx}{dx} + \frac{dy}{dy} + \frac{dz}{dz}\right) 5 = 3 \times 5 = 15$$
So, $\iint_{\mathbf{0}} 5\vec{r} \cdot \hat{n} \, ds = \iiint_{\mathbf{1}} 15 \, dv = 15 \, V$
Option (C) is correct.
We have $\frac{dy}{dx} = ky$
Integrating $\int \frac{dy}{y} = \int k \, dx + A$
or $\ln y = kx + A$
Since $y(0) = c$ thus $\ln c = A$
So, we get, $\ln y = kx + \ln c$
or $\ln y = \ln e^{kx} + \ln c$
or $y = ce^{kx}$
Option (A) is correct.
C R Integrals is $\int_{c} \frac{-3z+4}{z^2+4z+5} dz$ where C is circle $|z| = 1$
 $\int_{c} f(z) dz = 0$ if poles are outside C.
Now $z^2 + 4z + 5 = 0$
 $(z+2)^2 + 1 = 0$
Thus $z_{1,2} = -2 \pm j \Rightarrow |z_{1,2}| > 1$
So poles are outside the unit circle.
Option (C) is correct.
We have $f(x) = x + \sqrt{x} - 3 = 0$
 $f'(x) = 1 + \frac{1}{2\sqrt{x}}$
Substituting $x_0 = 2$ we get

 $f'(x_0) = 1.35355$ and $f(x_0) = 2 + \sqrt{2} - 3 = 0.414$ Newton Raphson Method

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Substituting all values we have

$$x_1 = 2 - \frac{0.414}{1.3535} = 1.694$$

1.17 Option (B) is correct.

1.14

1.15

1.16

Writing A: B we have

Apply
$$R_3 \rightarrow R_3 - R_2$$

$$\begin{bmatrix} 1 & 1 & 1 & : & 6 \\ 1 & 4 & 6 & : & 20 \\ 1 & 4 & \lambda & : & \mu \end{bmatrix}$$

For equation to have solution, rank of A and A: B must be same. Thus for no solution; $\lambda = 6, \mu \neq 20$

1.18 Option (C) is correct.

Total outcome are 36 out of which favorable outcomes are : (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6);(3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6) which are 15.

Thus
$$P(E) = \frac{\text{No. of favourable outcomes}}{\text{No. of total outcomes}} = \frac{15}{36} = \frac{5}{12}$$

1.19 Option (C) is correct.

Eigen value of a Skew-symmetric matrix are either zero or pure imaginary in conjugate pairs.

1.20 Option (C) is correct.

For a function x(t) trigonometric fourier series is

Where,

$$A_n = \frac{2}{T_0} \int_{T_0} x(t) \cos n\omega t \, dt$$
$$B_n = \frac{2}{T_0} \int_{\sigma} x(t) \sin n\omega t \, dt$$

 $x(t) = A_o + \sum_{n=1}^{\infty} [A_n \cos n\omega t + B_n \sin n\omega t]$

 $A_o = \frac{1}{T_o} \int x(t) dt \ T_o \to \text{fundamental period}$

For an even function $x(t), B_n = 0$

Since given function is even function so coefficient $B_n = 0$, only cosine

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

and constant terms are present in its fourier series representation. Constant term :

$$A_{0} = \frac{1}{T} \int_{-T/4}^{3T/4} x(t) dt = \frac{1}{T} \left[\int_{-T/4}^{T/4} A dt + \int_{T/4}^{3T/4} - 2A dt \right]$$
$$= \frac{1}{T} \left[\frac{TA}{2} - 2A \frac{T}{2} \right] = -\frac{A}{2}$$

Constant term is negative.

Given differential equation
$$\frac{d^2 n(x)}{dx^2} - \frac{n(x)}{L^2} = 0$$

Let
$$n(x) = Ae^{x}$$

So,
$$A\lambda^2 e^{\lambda x} - \frac{Ae^{\lambda x}}{L^2}$$

$$\lambda^2 - \frac{1}{L^2} = 0 \Rightarrow \lambda = \pm \frac{1}{L}$$

= 0

Boundary condition, $n(\infty) = 0$ so take $\lambda = -\frac{1}{L}$

$$egin{aligned} n(x) &= A e^{-rac{x}{L}} \ n(0) &= A e^0 = K \Rightarrow A = K \ n(x) &= K e^{-(x/L)} \end{aligned}$$

1.22 Option (A) is correct.

So,

Given that

$$e^y = x^{\frac{1}{x}}$$

or
 $\ln e^y = \ln x^{\frac{1}{x}}$
or
 $y = \frac{1}{x} \ln x$

Now
$$\frac{dy}{dx} = \frac{1}{x}\frac{1}{x} + \ln x(-x^{-\frac{1}{x^2}}) = \frac{1}{x^2} - \frac{\ln}{x^2}$$

For maxima and minima :

$$\frac{dy}{dx} = \frac{1}{x^2}(1 - \ln x) = 0$$
$$\ln x = 1 \rightarrow x = e^1$$

Now

$$= -\frac{2}{x^2} + \frac{2\ln x}{x^3} - \frac{1}{x^3}$$
$$\frac{d^2 x}{dy^2}\Big|_{\text{at } x = e^1} = \frac{-2}{e^2} + \frac{2}{e^3} - \frac{1}{e^3} < 0$$

So, y has a maximum at $x = e^{-x}$

Option (D) is correct. 1.23

According to given condition head should comes 3 times or 4 times

$$P(\text{Heads comes 3 times or 4 times}) = {}^{4}C_{4}\left(\frac{1}{2}\right)^{4} + {}^{4}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)$$

 $\frac{d^2y}{dx^2} = -\frac{2}{x^3} - \ln x \left(-\frac{2}{x^3}\right) - \frac{1}{x^2} \left(\frac{1}{x}\right)$

 $= 1 \cdot \frac{1}{16} + 4 \cdot \frac{1}{8} \cdot \frac{1}{2} = \frac{5}{16}$

Option (C) is correct. 1.24

> $\tilde{A} = xy\hat{a}_x + x^2\hat{a}_y$ $\vec{d}l = dx\hat{a}_x + dy\hat{a}_y$ $\oint_C \vec{A} \cdot \vec{d}l = \oint_C (xy\hat{a}_x + x^2\hat{a}_y) \cdot (dx\hat{a}_x + dy\hat{a}_y)$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$= \oint_{C} (xydx + x^{2} dy)$$

= $\int_{1/\sqrt{3}}^{2/\sqrt{3}} xdx + \int_{2/\sqrt{3}}^{1/\sqrt{3}} 3xdx + \int_{1}^{3} \frac{4}{3} dy + \int_{3}^{1} \frac{1}{3} dy$
= $\frac{1}{2} \left[\frac{4}{3} - \frac{1}{3} \right] + \frac{3}{2} \left[\frac{1}{3} - \frac{4}{3} \right] + \frac{4}{3} [3 - 1] + \frac{1}{3} [1 - 3]$
= 1

Option (C) is correct. 1.25 Given function

Option (B) is correct.

$$X(z) = \frac{1 - 2z}{z(z - 1)(z - 2)}$$

Poles are located at z = 0, z = 1, and z = 2At Z = 0 residues is

 $R_0 = z \cdot X(z)|_{z=0} = \frac{1-2 \times 0}{(0-1)(0-2)} = \frac{1}{2}$ $R_1 = (Z-1) \cdot X(Z)|_{Z=1}$ at z=1, $=\frac{1-2\times 1}{1\,(1-2)}=1$ $R_2 = (z-2) \cdot X(z) \Big|_{z=2}$ At z=2, $=\frac{1-2\times 2}{2(2-1)}=-\frac{3}{2}$

1.26

Taking step size $h = 0.1, y(0) = 0$

x	y	$\frac{dy}{dx} = x + y$	$y_{i+1} = y_i + h \frac{dy}{dx}$	
0	0	0	$y_1 = 0 + 0.1(0) = 0$	1.32
0.1	0	0.1	$y_2 = 0 + 0.1(0.1) = 0.01$	
0.2	0.01	0.21	$y_3 = 0.01 + 0.21 \times 0.1 = 0.031$	
0.3	0.031			

From table, at x = 0.3, y(x = 0.3) = 0.031

Option (D) is correct. 1.27

Given that

$$f(t) = \mathcal{L}^{-1} \left[\frac{3s+1}{s^3 + 4s^2 + (K-3)s} \right]$$
$$\lim_{t \to \infty} f(t) = 1$$

By final value theorem

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) = 1$$

or
$$\lim_{s \to 0} \frac{s \cdot (3s+1)}{s^3 + 4s^2 + (K-3)s} = 1$$

or
$$\lim_{s \to 0} \frac{s(3s+1)}{s[s^2 + 4s + (K-3)]} = 1$$

$$\frac{1}{K-3} = 1$$

or
$$K = 4$$

Option (B) is correct.

1.28

1.29

The highest derivative terms present in DE is of 2nd order.

Option (C) is correct. NT 1

Number of elements in sample space is
$$2^{10}$$
. Only one element $\{H, H, T, T, T, T, T, T, T, T, T\}$ is event. Thus probability is $\frac{1}{2^{10}}$

Option (C) is correct. 1.30

$$f(z) = c_0 + c_1 z^{-1}$$

$$f_1(z) = \frac{1 + f(z)}{z} = \frac{1 + c_0 + c_1 z^{-1}}{z} = \frac{z(1 + c_0) + c_1}{z^2}$$

Since $f_i(z)$ has double pole at z = 0, the residue at z = 0 is

Res
$$f_1(z)_{z=0} = \lim_{z \to 0} z^2 f_1(z) = \lim_{z \to 0} z^2 \left(\frac{z(1+c_0)+c_1}{z^2} \right) = c_1$$

Hence

$$\oint_{\text{mit circle}} f_{i}(z) dz = \oint_{\text{unit circle}} \frac{\left[1 + f(z)\right]}{z} dz = 2\pi j \text{ [Residue at } z = 0\text{]}$$
$$= 2\pi j c_{1}$$

1.31 Option (D) is correct.

We have
$$f(x) = \frac{\sin x}{x - x}$$

Substituting $x - \pi = y$, we get

$$f(y+\pi) = \frac{\sin(y+\pi)}{y} = -\frac{\sin y}{y} = \frac{-1}{y}(\sin y)$$
$$= \frac{-1}{y} \left(y - \frac{y^3}{3!} + \frac{y^5}{5!} - \dots\right)$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

or
$$f(y+\pi) = -1 + \frac{y^2}{3!} - \frac{y^4}{5!} + \dots$$

Substituting $x - \pi = y$ we get

$$f(x) = -1 + \frac{(x-\pi)^2}{3!} - \frac{(x-\pi)^4}{5!} + \dots$$

x

Option (A) is correct.

(A)
$$\frac{dy}{dx} = \frac{y}{x}$$

or
$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

 $\log y = \log x + \log c$ or

or
$$y = cx$$
 Straight Line
Thus option (A) and (C) may be correct.
(B) $\frac{dy}{dx} = -\frac{y}{x}$
or $\int \frac{dy}{y} = -\int \frac{dx}{x}$
or $\log y = -\log x + \log c$
or $\log y = \log \frac{1}{x} + \log c$
or $y = \frac{c}{x}$ Hyperbola

1.33 Option (D) is correct.

Sum of the principal diagonal element of matrix is equal to the sum of Eigen values. Sum of the diagonal element is -1 - 1 + 3 = 1. In only option (D), the sum of Eigen values is 1.

1.34 Option (C) is correct.

The product of Eigen value is equal to the determinant of the matrix. Since one of the Eigen value is zero, the product of Eigen value is zero, thus determinant of the matrix is zero.

Thus $p_{11}p_{22} - p_{12}p_{21} = 0$

1.35 Option (B) is correct.

The given system is $\begin{bmatrix}
4 & 2 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
7 \\
6
\end{bmatrix}$ We have $A = \begin{bmatrix}
4 \\
2
\end{bmatrix}$

we hav

1

and

 $A = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$ $|A| = \begin{vmatrix} 4 & 2 \\ 2 & 1 \end{vmatrix} = 0 \qquad \text{Rank of matrix } \rho(A) < 2$

Rank of matrix $\rho(C) = 2$

Now

Since $\rho(A) \neq \rho(C)$ there is no solution.

1.36 Option (A) is correct.

 $\sin z$ can have value between -1 to +1. Thus no solution.

 $C = \begin{bmatrix} 4 & 2 & | & 7 \\ 2 & 1 & | & 6 \end{bmatrix}$

1.37 Option (A) is correct.

We have $f(x) = e^x + e^{-x}$

For x > 0, $e^x > 1$ and $0 < e^{-x} < 1$

For x < 0, $0 < e^x < 1$ and $e^{-x} > 1$

Thus f(x) have minimum values at x = 0 and that is $e^0 + e^{-0} = 2$.

1.38 Option (A) is correct.

$$\sin x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$
$$\cos x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

Thus only $\sin(x^3)$ will have odd power of x.

1.39 Option (B) is correct.

We have $\frac{dx(t)}{dt} + 3x(t) = 0$ or (D+3)x(t) = 0Since m = -3, $x(t) = Ce^{-3t}$ Thus only (B) may be solution. 1.44

1.40 Option (C) is correct.

We have $x = e^{-x}$ or $f(x) = x - e^{-x}$ $f(x) = 1 + e^{-x}$ The Newton-Raphson iterative formula is

Now

Thus

 $x_{n+1} = x_n - \frac{x_n - e^{-x_n}}{1 + e^{-x_n}} = \frac{(1 + x_n) e^{-x_n}}{1 + e^{-x_n}}$

Option (A) is correct.

Res
$$f(z)_{z=a} = \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} [(z-a)^n f(z)]_{z=a}$$

Here we have n = 2 and a = 2

Thus Res
$$f(z)_{z=2} = \frac{1}{(2-1)!} \frac{d}{dz} \Big[(z-2)^2 \frac{1}{(z-2)^2 (z+2)^2} \Big]_{z=a}$$

$$= \frac{d}{dz} \Big[\frac{1}{(z+2)^2} \Big]_{z=a} = \Big[\frac{-2}{(z+2)^3} \Big]_{z=a}$$
$$= -\frac{2}{64} = -\frac{1}{22}$$

 $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$

 $f(x_n) = x_n - e^{-x_n}$

 $f(x_n) = 1 + e^{-x_n}$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store Click to Buy

e

$$\begin{split} {}^{P} &= L^{-1}[(sI - A)^{-1}] \\ &= L^{-1} \left(\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \right)^{-1} \\ &= L^{-1} \left(\begin{bmatrix} s & -1 \\ 2 & s + 3 \end{bmatrix}^{-1} \right) \\ &= L^{-1} \left(\begin{bmatrix} \frac{s+3}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ \frac{-2}{(s+1)(s+2)} & \frac{s}{(s+1)(s+2)} \end{bmatrix} \right) \\ &= \begin{bmatrix} 2e^{-1} - e^{-2} & e^{-1} - e^{-2} \\ -2e^{-1} + 2e^{-2} & -e^{-1} + 2e^{-2} \end{bmatrix} \end{split}$$

Option (B) is correct.

Taylor series is given as

$$f(x) = f(a) + \frac{x-a}{1!}f(a) + \frac{(x-a)^2}{2!}f'(a) + \dots$$

in

For $x = \pi$ we have

Thus Now

1.43

$$f(x) = f(\pi) + \frac{x - \pi}{1!} f(\pi) + \frac{(x - \pi)^2}{2!} f''(x).$$

$$f(x) = e^x + \sin x$$

$$f'(x) = e^x + \cos x$$

$$f'(x) = e^x - \sin x$$

$$f'(\pi) = e^\pi - \sin \pi = e^\pi$$

Thus the coefficient of $(x - \pi)^2$ is $\frac{J(\pi)}{2!}$

f

f

Option (A) is correct.

The equation of straight line from (0,0) to (1,2) is y = 2x. Now $g(x,y) = 4x^3 + 10y^4$ or, $g(x,2x) = 4x^3 + 160x^4$ Now $\int_0^1 g(x,2x) = \int_0^1 (4x^3 + 160x^4) dx$

$$= [x^4 + 32x^5]_0^1 = 33$$

Option (B) is correct. 1.45

$$I = 2\int_{P}^{Q} (xdx + ydy) = 2\int_{P}^{Q} xdx + 2\int_{P}^{Q} ydy$$
$$= 2\int_{1}^{0} xdx + 2\int_{0}^{1} ydy = 0$$

Option (B) is correct. 1.46 The given plot is straight line whose equation is

 $\frac{x}{-1} + \frac{y}{1} = 1$

y = x + 1

or

Now

$$I = \int_{1}^{2} y dx = \int_{1}^{2} (x+1) dx$$
$$= \left[\frac{(x+1)^{2}}{2}\right]^{2} = \frac{9}{2} - \frac{4}{2} = 2.5$$

Option (C) is correct. 1.47

$$\coth x = \frac{\cosh x}{\sinh x}$$

as $|x| \ll 1$, $\cosh x \approx 1$ and $\sinh x \approx x$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

 $\lim_{x \to 0} \frac{1}{x^2} = \infty$

 $\operatorname{coth} x \approx \frac{1}{x}$ Thus

Option (A) is correct. 1.48

$$\lim_{\theta \to 0} \frac{\sin\left(\frac{\theta}{2}\right)}{\theta} = \lim_{\theta \to 0} \frac{\sin\left(\frac{\theta}{2}\right)}{2\left(\frac{\theta}{2}\right)} = \frac{1}{2} \lim_{\theta \to 0} \frac{\sin\left(\frac{\theta}{2}\right)}{\left(\frac{\theta}{2}\right)} = \frac{1}{2} = 0.5$$

Option (D) is correct. 1.49

We have,

$$\lim_{x \to \infty} x^2 = \infty$$

$$\lim_{x \to \infty} e^{-x} = \infty$$

$$\lim_{x \to \infty} e^{-x^2} = 0$$

$$\lim_{x \to \infty} e^{-x^2} = 1$$
Thus e^{-x^2} is strictly bounded.

 $\lim_{x \to 0} e$ Option (A) is correct.

We have
$$f(x) = e^{-x} = e^{-(x-2)-2} = e^{-(x-2)}e^{-2}$$

= $\left[1 - (x-2) + \frac{(x-2)^2}{2!}...\right]e^{-2}$
= $\left[1 - (x-2)\right]e^{-2}$ Neglecting higher powers
= $(3-x)e^{-2}$

Option (D) is correct. 1.51

We have

 $d^2y \quad y \quad y_2$ dx^2 k^2

A.E.
$$D^2 - \frac{1}{k^2} = 0$$

or

or

1.50

C.F. =
$$C_1 e^{-\frac{x}{k}} + C_2 e^{\frac{x}{k}}$$

 $D = \pm \frac{1}{k}$

 $k^2 \frac{d^2 y}{dx^2} = y - y_2$

$$y = C_1 e^{-\frac{x}{k}} + C_2 e^{\frac{x}{k}} + y_2$$

P.I. $= \frac{1}{D^2 - \frac{1}{k^2}} \left(\frac{-y_2^2}{k^2}\right) = y_2$

From
$$u(0) = u_1$$
 we get

$$C_1 + C_2 = y_1 - y_2$$

From $y(\infty) = y_2$ we get that C_1 must be zero.
Thus $C_2 = y_1 - y_2$

$$y = (y_1 - y_2) e^{-\frac{x}{k}} + y_2$$

1.52 Option (B) is correct. We have

$$f(x) = x^{3} - x^{2} + 4x - 4$$
$$f(x) = 3x^{2} - 2x + 4$$

Taking
$$x_0 = 2$$
 in Newton-Raphosn method

$$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 2 - \frac{2^3 - 2^2 + 4(2) - 4}{3(2)^2 - 2(2) + 4} = \frac{4}{3}$$

Option (C) is correct. For

r two orthogonal signal
$$f(x)$$
 and $g(x)$

$$\int_{-\infty}^{+\infty} f(x) g(x) \, dx = 0$$

i.e. common area between f(x) and g(x) is zero.

Option (A) is correct. XX7 1 11 1

1.53

1.54

1.55

1.57

$$\oint_{D} \frac{1}{s^2 - 1} ds = 2\pi j \qquad \text{[sum of residues]}$$

Singular points are at $s = \pm 1$ but only s = +1 lies inside the given contour, Thus Residue at s = +1 is

$$\lim_{s \to 1} (s-1)f(s) = \lim_{s \to 1} (s-1)\frac{1}{s^2 - 1} = \frac{1}{2}$$
$$\oint_D \frac{1}{s^2 - 1} ds = 2\pi j \left(\frac{1}{2}\right) = \pi j$$

Option (C) is correct.

For two orthogonal vectors, we require two dimensions to define them and similarly for three orthogonal vector we require three dimensions to define them. 2M vectors are basically M orthogonal vector and we require M dimensions to define them.

Option (A) is correct. 1.56

 $f(x) = x^2 - x + 2$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$f'(x) = 2x - 1 = 0 \rightarrow x = \frac{1}{2}$$

 $f'(x) = 2$

Since f'(x) = 2 > 0, thus $x = \frac{1}{2}$ is minimum point. The maximum value in closed interval [-4,4] will be at x = -4 or x = 4Now maximum value

$$= \max[f(-4), f(4)] \\ = \max(18, 10) = 18$$

Option (C) is correct.

P(A) = 0.3Probability of failing in paper 1 is Possibility of failing in Paper 2 is P(B) = 0.2

Probability of failing in paper 1, when student has failed in paper 2 is $P(\frac{A}{B}) = 0.6$ We know that

$$P\left(\frac{A}{B}\right) = \frac{(P \cap B)}{P(B)}$$
$$P(A \cap B) = P(B)P\left(\frac{A}{B}\right) = 0.6 \times 0.2 = 0.12$$

Option (C) is correct. 1.58 We have

or

Since one full row is zero, $\rho(A) < 3$

Now
$$\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \neq 0$$
, thus $\rho(A) = 2$

Option (D) is correct. 1.59 The vector Triple Product is

> $A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$ $\nabla \times \nabla \times \boldsymbol{P} = \nabla (\nabla \cdot \boldsymbol{P}) - \boldsymbol{P} (\nabla \cdot \nabla)$ Thus $= \nabla (\nabla \cdot \boldsymbol{P}) - \nabla^2 \boldsymbol{P}$

We know

1.61

1.62

1.63

Option (A) is correct. 1.60 The Stokes theorem is

> $\iint (\nabla \times F) \cdot ds = \oint A \cdot dl$ Option (C) is correct.

 $\int_{-\infty}^{\infty} p(x) \, dx = 1$ $\int_{-\infty}^{\infty} K e^{-\alpha |x|} dx = 1$ Thus $\int_{-\infty}^{0} K e^{\alpha x} dx + \int_{0}^{\infty} K e^{-\alpha x} dx = 1$ or $\frac{K}{\alpha} [e^{\alpha x}]_{-\infty}^{0} + \frac{k}{(-\alpha)} [e^{-\alpha x}]_{0}^{\infty} = 1$ or $\frac{K}{\alpha} + \frac{K}{\alpha} = 1$

or

or

Option (A) is correct. We have $\dot{x}(t) + 2x(t) = s(t)$ Taking Laplace transform both sides sX(s) - x(0) + 2X(s) = 1sX(s) + 2X(s) = 1Since x(0) = 0or $X(s) = \frac{1}{s+2}$

Now taking inverse Laplace transform we have $x(t) = e^{-2t}u(t)$

Option (A) is correct. Sum of the Eigen values must be equal to the sum of element of principal diagonal of matrix.

 $K = \frac{\alpha}{2}$

Only matrix $\begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix}$ satisfy this condition.

Option (B) is correct. 1.64

> We have $W = \ln z$ $u + jv = \ln\left(x + jy\right)$ $e^{u+jv} = x+jy$ or $e^u e^{jv} = x + jy$ or $e^u(\cos v + j\sin v) = x + jy$

Now
$$x = e^u \cos v$$
 and $y = e^u \sin v$
Thus $x^2 + y^2 = e^{2u}$

Equation of circle

Option (D) is correct. 1.65

$$\oint_{|z-j|=2} \frac{1}{z^2+4} dz = \int_{|z-j|=2} \frac{1}{(z+2i)(z-2i)} dz$$

P(0,2) lies inside the circle |z-j|=2 and P(0,-2) does not lie. Thus By cauchy's integral formula

$$= 2\pi i \lim_{z \to 2i} (z - 2i) \frac{1}{(z + 2i)(z - 2i)} = \oint_C \frac{2\pi i}{2i + 2i} = \frac{\pi}{2}$$

Option (C) is correct. 1.66

Ι

$$I = \int_{0}^{\pi} \sin^{3}\theta \, d\theta$$

= $\int_{0}^{\pi} \left(\frac{3\sin\theta - \sin 3\theta}{4}\right) d\theta$ $\sin 3\theta = 3\sin\theta - 4\sin^{3}\theta$
= $\left[\frac{-3}{4}\cos\theta\right]_{0}^{\pi} = \left[\frac{\omega s 3\theta}{12}\right]_{0}^{\pi} = \left[\frac{3}{4} + \frac{3}{4}\right] - \left[\frac{1}{12} + \frac{1}{12}\right] = \frac{4}{3}$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Option (D) is correct. 1.67

Let $d \to \text{defective and } y \to \text{supply by } Y$

$$p\left(\frac{y}{d}\right) = \frac{P(y \cap d)}{P(d)}$$

$$P(y \cap d) = 0.3 \times 0.02 = 0.006$$

$$P(d) = 0.6 \times 0.1 + 0.3 \times 0.02 + 0.1 \times 0.03 = 0.015$$
(W) = 0.006

$$P\left(\frac{g}{d}\right) = \frac{0.000}{0.015} = 0.4$$

Option (C) is correct. 1.68

1.69

or

 $A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$ We have Now $[A - \lambda I][X] = 0$ $\begin{bmatrix} 4-\lambda & 2\\ 2 & 4-\lambda \end{bmatrix} \begin{bmatrix} 101\\ 101 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ or $(101)(4 - \lambda) + 2(101) = 0$ or $\lambda = 6$ or Option (A) is correct. $\frac{d^2y}{dx^2} + k^2y = 0$ We have $D^2y + k^2y = 0$ or $m^2 + k^2 = 0$ The AE is The solution of AE is $m = \pm ik$ Thus $y = A \sin kx + B \cos kx$ From x = 0, y = 0 we get B = 0 and x = a, y = 0 we get

or

$$A \sin ka = 0$$

$$\sin ka = 0$$

$$k = \frac{m\pi x}{a}$$
Thus

$$y = \sum_{m} A_{m} \sin\left(\frac{m\pi x}{a}\right)$$

Option (A) is correct. 1.70

 $f(x) = \frac{e^x}{1 + e^x}$ We have

For $x \to \infty$, the value of f(x) monotonically increases.

Option (B) is correct. 1.71

> Order is the highest derivative term present in the equation and degree is the power of highest derivative term. Order = 2, degree = 1

Option (D) is correct. 1.72

> Probability of coming odd number is $\frac{1}{2}$ and the probability of coming even number is $\frac{1}{2}$. Both the events are independent to each other, thus probability of coming odd number after an even number is $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

Option (B) is correct. 1.73

We have

 $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ $m^2 - 5m + 6 = 0$ The A.E. is m = 3, 2

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

Since Q = 0, thus

Thus only (B) may be correct.

Option (A) is correct. 1.74

The CF is

 $f(t) = e^{(a+2)t+5} = e^5 \cdot e^{(a+2)t}$ We have

Taking Laplace transform we get

$$F(s) = e^{5} \left[\frac{1}{s - (a+2)} \right]$$
 Thus $\operatorname{Re}(s) > (a+2)$

 $y_c = C_1 e^{3x} + C_2 e^{2x}$

 $y = C_1 e^{3x} + C_2 e^{2x}$

- Option (C) is correct. 1.75 For x > 0 the slope of given curve is negative. Only (C) satisfy this condition.
- Option (C) is correct. 1.76
 - Newton Raphson \rightarrow Method-Solving nonlinear eq.
 - Runge kutta Method \rightarrow Solving ordinary differential eq.
 - \rightarrow Numerical Integration

 $A = \begin{bmatrix} -4 & 2 \\ 4 & 3 \end{bmatrix}$

- \rightarrow Solving linear simultaneous eq.
- Option (C) is correct. 1.77

Gauss elimination

Simpson's Rule

We have

Characteristic equation is

	$ A - \lambda I = 0$
or	$\begin{vmatrix} 4-\lambda & 2\\ 4 & 3-\lambda \end{vmatrix} = 0$
or	$(-4-\lambda)(3-\lambda)-8=0$
or	$-12 + \lambda + \lambda^2 - 8 = 0$
or	$\lambda^2 + \lambda - 20 = 0$
or	$\lambda = -5,4$
Eigen vector	for $\lambda = -5$

Eigen values

 $(A - \lambda I) X_i = 0$ $\begin{bmatrix} 1 - (-5) & 2 \\ 4 & 8 - 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $R_2 - 4R_1$ $x_1 + 2x_2 = 0$

Let $-x_1 = 2 \Rightarrow x_2 = -1$,

Thus

Option (A) is correct.

We have

1.78

1.79

$$A = \begin{bmatrix} 2 & -0.1 \\ 0 & 3 \end{bmatrix} \text{ and } A^{-1} = \begin{bmatrix} \frac{1}{2} & a \\ 0 & b \end{bmatrix}$$
$$AA^{-1} = I$$

 $X = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

or

and

Now

or

2a - 0.1 = 0 and 3b = 1

Thus solving above we have $b = \frac{1}{3}$ and $a = \frac{1}{60}$

 $\begin{bmatrix} 2 & -0.1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & a \\ 0 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2a - 0.1b \\ 0 & 3b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Therefore
$$a+b = \frac{1}{3} + \frac{1}{60} = \frac{7}{20}$$

Option (A) is correct.

Gaussian PDF is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \qquad \text{for } -\infty \le x \le \infty$$

Substituting $\mu = 0$ and $\sigma = 2$ in above we get

 $\frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{x^2}{8}} dx = 1$

 $\int_{0}^{\infty} f(x) \, dx = 1$

$$\frac{1}{\sqrt{2\pi}2} \int_{-\infty}^{\infty} e^{-\frac{x^2}{8}} dx = 1$$
$$\frac{1}{\sqrt{2\pi}2} 2 \int_{0}^{\infty} e^{-\frac{x^2}{8}} dx = 1$$

or

or

Option (C) is correct. 1.80 From orthogonal matrix . . . *T*1

$$[AA^{T}] = I$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Since the inverse of I is I, thus $[AA^{T}]^{-1} = I^{-1} = I$

Page 14

Eigen vector

2013

2.2

ONE MARK

Consider a delta connection of resistors and its equivalent star 2.1 connection as shown below. If all elements of the delta connection are scaled by a factor k, k > 0, the elements of the corresponding star equivalent will be scaled by a factor of

Star equivalent will be	beated by a factor of
°°	°₩
$R_b $	$\begin{array}{c c} R_C \\ R_A \end{array} \qquad $
oo	oo
(A) k^2	(B) k
(C) $1/k$	(D) \sqrt{k}

The transfer function $\frac{V_2(s)}{V_1(s)}$ of the circuit shown below is $100 \ \mu F$ 10 kΩ **≥** $V_1(s)$ 100 μF **>** (A) $\frac{0.5s+1}{s+1}$ (B) $\frac{3s+6}{s+2}$ (C) $\frac{s+2}{s+1}$ (D) $\frac{s+1}{s+2}$

A source $v_s(t) = V \cos 100\pi t$ has an internal impedance of $(4 + j3)\Omega$ 2.3 . If a purely resistive load connected to this source has to extract the maximum power out of the source, its value in Ω should be (B) 4

(A) 3 (D) 7

(C) 5

2013

2.5

TWO MARKS

2.7

2.8

In the circuit shown below, if the source voltage $V_s = 100 \angle 53.13^{\circ} \text{V}$ 2.4 then the Thevenin's equivalent voltage in Volts as seen by the load resistance R_L is

The following arrangement consists of an ideal transformer and an attenuator which attenuates by a factor of 0.8. An ac voltage $V_{WX1} = 100 \text{ V}$ is applied across WX to get an open circuit voltage V_{YZ1} across YZ. Next, an ac voltage $V_{YZ2} = 100$ V is applied across YZ to get an open circuit voltage V_{WX2} across WX. Then, V_{YZ1}/V_{WX1} , V_{WX2}/V_{YZ2} are respectively,

(B) 100/100 and 80/100(D) 80/100 and 80/100

2.6

Three capacitors C_1 , C_2 and C_3 whose values are $10 \,\mu\text{F}$, $5 \,\mu\text{F}$, and $2\,\mu\text{F}$ respectively, have breakdown voltages of $10\,\text{V}$, $5\,\text{V}$ and $2\,\text{V}$ respectively. For the interconnection shown below, the maximum safe voltage in Volts that can be applied across the combination, and the corresponding total charge in μC stored in the effective capacitance across the terminals are respectively,

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

Common Data For Q. 8 and 9:

Consider the following figure

The current I_s in Amps in the voltage source, and voltage V_s in Volts across the current source respectively, are

(A) $13, -20$	(B) $8, -10$
(C) - 8,20	(D) $-13,20$

The current in the 1Ω resistor in Amps is (B) 3.33 (A) 2

(C) 10 (D) 12

Two magnetically uncoupled inductive coils have Q factors q_1 and q_2 2.9

at the chosen operating frequency. Their respective resistances are R_1 and R_2 . When connected in series, their effective Q factor at the same operating frequency is

(A) $q_1 + q_2$ (B) $(1/q_1) + (1/q_2)$ (C) $(q_1R_1 + q_2R_2)/(R_1 + R_2)$ (D) $(q_1R_2 + q_2R_1)/(R_1 + R_2)$

2012

ONE MARK

2.15

2.16

2011

^{2.10} In the following figure, C_1 and C_2 are ideal capacitors. C_1 has been charged to 12 V before the ideal switch S is closed at t = 0. The current i(t) for all t is

(A) zero

(B) a step function

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

(C) an exponentially decaying function (D) an impulse function

^{2.11} The average power delivered to an impedance $(4 - j3) \Omega$ by a current $5 \cos (100\pi t + 100)$ A is (A) 44.2 W (B) 50 W

(C) 62.5 W (D) 125 W

^{2.12} In the circuit shown below, the current through the inductor is

TWO MARKS

Assuming both the voltage sources are in phase, the value of R for which maximum power is transferred from circuit A to circuit B is

Common Data For Q. 48 and 49 :

With 10 V dc connected at port A in the linear nonreciprocal twoport network shown below, the following were observed :

- (i) 1Ω connected at port *B* draws a current of 3 A
- (ii) 2.5Ω connected at port *B* draws a current of 2 A

With 10 V dc connected at port A, the current drawn by 7 Ω connected at port B is

(A) 3/7 A	(B) $5/7 \text{A}$
(C) 1 A	(D) $9/7 A$

For the same network, with 6 V dc connected at port A, 1Ω connected at port B draws 7/3 A. If 8 V dc is connected to port A, the open circuit voltage at port B is

(A) 6 V	(B) $7 V$
(C) 8 V	(D) $9 V$

ONE MARK

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

^{2.17} In the circuit shown below, the Norton equivalent current in amperes with respect to the terminals P and Q is

In the circuit shown below, the value of R_L such that the power

(A) $(V_p/3)\cos(t/RC)$ (B) $(V_p/3)\sin(t/RC)$ (C) $(V_p/2)\cos(t/RC)$ (D) $(V_p/2)\sin(t/RC)$

2011

TWO MARKS

In the circuit shown below, the current I is equal to

(C)
$$2.8 \angle 0^{\circ} A$$
 (D) $3.2 \angle 0^{\circ} A$

^{2.21} In the circuit shown below, the network N is described by the following Y matrix:

In the circuit shown below, the initial charge on the capacitor is 2.5 mC, with the voltage polarity as indicated. The switch is closed at time t = 0. The current i(t) at a time t after the switch is closed is

2.22

(A) $i(t) = 15 \exp(-2 \times 10^{3} t) \text{ A}$ (B) $i(t) = 5 \exp(-2 \times 10^{3} t) \text{ A}$ (C) $i(t) = 10 \exp(-2 \times 10^{3} t) \text{ A}$ (D) $i(t) = -5 \exp(-2 \times 10^{3} t) \text{ A}$

2010

2.23

ONE MARK

For the two-port network shown below, the short-circuit admittance parameter matrix is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy www.nodia.co.in

(C)
$$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

2.24

2.25

2.26

 \mathbf{S}

 $(D) \begin{vmatrix} 4 & 2 \\ 2 & 4 \end{vmatrix} S$

For parallel RLC circuit, which one of the following statements is NOT correct ?

- (A) The bandwidth of the circuit decreases if R is increased
- (B) The bandwidth of the circuit remains same if L is increased
- (C) At resonance, input impedance is a real quantity
- (D) At resonance, the magnitude of input impedance attains its minimum value.

2010

TWO MARKS

In the circuit shown, the switch S is open for a long time and is closed at t = 0. The current i(t) for $t \ge 0^+$ is

(A)
$$i(t) = 0.5 - 0.125 e^{-1000t} A$$
 (B)
(C) $i(t) = 0.5 - 0.5 e^{-1000t} A$ (D)

(B) $i(t) = 1.5 - 0.125 e^{-1000t} A$ (D) $i(t) = 0.375 e^{-1000t} A$

The current I in the circuit shown is

GATE 2009

(D) 20 A

^{2.27} In the circuit shown, the power supplied by the voltage source is

ONE MARK

2.28 In the interconnection of ideal sources shown in the figure, it is known that the 60 V source is absorbing power.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in** battery deliver during this talk-time?

GATE 2009

2.31

TWO MARK

An AC source of RMS voltage 20 V with internal impedance $Z_s = (1+2j)\Omega$ feeds a load of impedance $Z_L = (7+4j)\Omega$ in the figure below. The reactive power consumed by the load is

(A) 8 VAR	(B) 16 VAR
(C) 28 VAR	(D) 32 VAR

^{2.32} The switch in the circuit shown was on position a for a long time, and is move to position b at time t = 0. The current i(t) for t > 0is given by

(A)
$$0.2e^{-125t}u(t)$$
 mA (B

(C) $0.2e^{-1250t}u(t)$ mA

(B)
$$20e^{-1250t}u(t)$$
 mA
(D) $20e^{-1000t}u(t)$ mA

2.33 In the circuit shown, what value of R_L maximizes the power delivered to R_L ?

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

 $I \bigoplus \begin{array}{c} 20 \text{ V} \\ + \\ 60 \text{ V} \\ \hline \\ 12 \text{ A} \end{array}$

Which of the following can be the value of the current source I?(A) 10 A(B) 13 A(C) 15 A(D) 18 A

If the transfer function of the following network is

2.29

2.30

The value of the load resistance R_L is (A) $\frac{R}{4}$ (B) $\frac{R}{2}$ (C) R (D) 2R

A fully charged mobile phone with a 12 V battery is good for a 10 minute talk-time. Assume that, during the talk-time the battery delivers a constant current of 2 A and its voltage drops linearly from 12 V to 10 V as shown in the figure. How much energy does the

- (B) $\frac{8}{3}\Omega$ (A) 2.4Ω
- (C) 4Ω (D) 6Ω

2.34 The time domain behavior of an RL circuit is represented by

$$L\frac{di}{dt} + Ri = V_0(1 + Be^{-Rt/L}\sin t)u(t).$$

For an initial current of $i(0) = \frac{V_0}{R}$, the steady state value of the current is given by

(A)
$$i(t) \rightarrow \frac{V_0}{R}$$

(B) $i(t) \rightarrow \frac{2V_0}{R}$
(C) $i(t) \rightarrow \frac{V_0}{R}(1+B)$
(D) $i(t) \rightarrow \frac{2V_0}{R}(1+B)$

GATE 2008

2.35

ONE MARK

TWO MARKS

In the following graph, the number of trees (P) and the number of cut-set (Q) are

(A)
$$P = 2, Q = 2$$

(B) $P = 2, Q = 6$
(C) $P = 4, Q = 6$
(D) $P = 4, Q = 10$

In the following circuit, the switch S is closed at t = 0. The rate of 2.36 change of current $\frac{di}{dt}(0^+)$ is given by

(A) 0
(C)
$$\frac{(R+R_s)I_s}{I}$$

GATE 2008

2.37

L

The Thevenin equivalent impedance Z_{th} between the nodes P and

(B) $\frac{R_s I_s}{L}$

(D) ∞

The driving point impedance of the following network is given by 2.38

- (D) $L = 0.1 \text{ H}, R = 2 \Omega, C = 5 \text{ F}$
- The circuit shown in the figure is used to charge the capacitor C2.39 alternately from two current sources as indicated. The switches S_1 and S_2 are mechanically coupled and connected as follows: For $2nT \le t \le (2n+1)T$, (n=0,1,2,..) S_1 to P_1 and S_2 to P_2 For $(2n+1) T \le t \le (2n+2) T$, $(n = 0, 1, 2, ...) S_1$ to Q_1 and S_2 to Q_2

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

Assume that the capacitor has zero initial charge. Given that u(t)is a unit step function, the voltage $v_c(t)$ across the capacitor is given by

(A)
$$\sum_{n=1}^{\infty} (-1)^n t u (t - nT)$$

(B) $u(t) + 2 \sum_{n=1}^{\infty} (-1)^n u (t - nT)$
(C) $t u(t) + 2 \sum_{n=1}^{\infty} (-1)^n u (t - nT) (t - nT)$
(D) $\sum_{n=1}^{\infty} [0.5 - e^{-(t - 2nT)} + 0.5e^{-(t - 2nT)} - T]$

Common Data For Q. 2.23 & 2.24 :

The following series RLC circuit with zero conditions is excited by a unit impulse functions $\delta(t)$.

TWO MARKS

2.40 For t > 0, the output voltage $v_C(t)$ is

(A)
$$\frac{2}{\sqrt{3}} \left(e^{\frac{-1}{2}t} - e^{\frac{\sqrt{3}}{2}t} \right)$$
 (B) $\frac{2}{\sqrt{3}} t e^{\frac{-1}{2}t}$
(C) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2}t} \cos\left(\frac{\sqrt{3}}{2}t\right)$ (D) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2}t} \sin\left(\frac{\sqrt{3}}{2}t\right)$

2.41 For t > 0, the voltage across the resistor is

(A)
$$\frac{1}{\sqrt{3}} \left(e^{\frac{\sqrt{3}}{2}t} - e^{-\frac{1}{2}t} \right)$$

(B) $e^{\frac{-1}{2}t} \left[\cos\left(\frac{\sqrt{3}}{2}t\right) - \frac{1}{\sqrt{3}} \sin\left(\frac{\sqrt{3}t}{2}\right) \right]$
(C) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2}t} \sin\left(\frac{\sqrt{3}t}{2}\right)$
(D) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2}t} \cos\left(\frac{\sqrt{3}}{2}t\right)$

Statement for linked Answers Questions 2.25 & 2.26:

A two-port network shown below is excited by external DC source. The voltage and the current are measured with voltmeters V_1, V_2

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

and ammeters. A_1, A_2 (all assumed to be ideal), as indicated

Under following conditions, the readings obtained are: (1) S_1 -open, S_2 - closed $A_1 = 0, V_1 = 4.5 \text{ V}, V_2 = 1.5 \text{ V}, A_2 = 1 \text{ A}$ (2) S_1 -open, S_2 - closed $A_1 = 4 \text{ A}, V_1 = 6 \text{ V}, V_2 = 6 \text{ V}, A_2 = 0$

2.42 The *z*-parameter matrix for this network is

(A) $\begin{bmatrix} 1.5 & 1. \\ 4.5 & 1. \end{bmatrix}$	5 5	(B) $\begin{bmatrix} 1.5 & 4.5 \\ 1.5 & 4.5 \end{bmatrix}$
(C) $\begin{bmatrix} 1.5 & 4. \\ 1.5 & 1. \end{bmatrix}$	5 5	(D) $\begin{bmatrix} 4.5 & 1.5 \\ 1.5 & 4.5 \end{bmatrix}$

2.43 The *h*-parameter matrix for this network is

GATE 2007

2.44

An independent voltage source in series with an impedance $Z_s = R_s + jX_s$ delivers a maximum average power to a load impedance Z_L when

$(\mathbf{A}) \ Z_L = R_s + jX_s$	(B) $Z_L = R_s$
(C) $Z_L = jX_s$	(D) $Z_L = R_s - jX_s$

2.45 The RC circuit shown in the figure is

(A) a low-pass filter

(C) a band-pass filter

- (B) a high-pass filter
- (D) a band-reject filter

GATE 2007

2.46

2.47

ONE MARK

Two series resonant filters are as shown in the figure. Let the 3-dB bandwidth of Filter 1 be B_1 and that of Filter 2 be B_2 . the value B_1 .

For the circuit shown in the figure, the Thevenin voltage and resistance looking into X - Y are

In the circuit shown, v_C is 0 volts at t = 0 sec. For t > 0, the capacitor current $i_C(t)$, where t is in seconds is given by

(B) $0.25 \exp(-25t)$ mA

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(C) $0.50 \exp(-12.5t)$ mA

(A) $0.50 \exp(-25t)$ mA

(D) $0.25 \exp(-6.25t)$ mA

In the ac network shown in the figure, the phasor voltage V_{AB} (in Volts) is

GATE 2006

TWO MARKS

A two-port network is represented by ABCD parameters given by

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

If port-2 is terminated by R_L , the input impedance seen at port-1 is given by

- (A) $\frac{A + BR_L}{C + DR_L}$ (B) $\frac{AR_L + C}{BR_L + D}$ (C) $\frac{DR_L + A}{BR_L + C}$ (D) $\frac{B + AR_L}{D + CR_L}$
- ^{2.51} In the two port network shown in the figure below, Z_{12} and Z_{21} and respectively

(A) r_e and βr_0	(B) 0 and $-\beta r_0$
(C) 0 and βr_o	(D) r_e and $-\beta r_0$

- ^{2.52} The first and the last critical frequencies (singularities) of a driving point impedance function of a passive network having two kinds of elements, are a pole and a zero respectively. The above property will be satisfied by
 - (A) RL network only
 - (C) LC network only (D) RC as well as RL networks

(B) RC network only

^{2.53} A 2 mH inductor with some initial current can be represented as shown below, where s is the Laplace Transform variable. The value of initial current is

In the figure shown below, assume that all the capacitors are initially uncharged. If $v_i(t) = 10u(t)$ Volts, $v_o(t)$ is given by

^{2.55} A negative resistance R_{neg} is connected to a passive network N ^{2.58} having driving point impedance as shown below. For $Z_2(s)$ to be positive real,

$(\mathbf{D}) | R_{\text{neg}} | \leq \angle Z_1(j\omega), \forall \omega$

(B) $|R_{\text{neg}}| \leq |Z_1(j\omega)|, \forall \omega$

GATE 2005

2.56

2.57

ONE MARK

The condition on R, L and C such that the step response y(t) in the figure has no oscillations, is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

The ABCD parameters of an ideal n:1 transformer shown in the figure are

The value of x will be

(A) n	(B) $\frac{1}{n}$
(C) n^2	(D) $\frac{1}{n^2}$

In a series RLC circuit, $R = 2 k\Omega$, L = 1 H, and $C = \frac{1}{400} \mu F$ The resonant frequency is (A) 2×10^4 Hz (B) $\frac{1}{\pi} \times 10^4$ Hz

(C) 10^4 Hz (D) $2\pi \times 10^6$	⁴ Hz
--------------------------------------	-----------------

The maximum power that can be transferred to the load resistor R_L from the voltage source in the figure is

(A) 1 W	(B) 10 W
(C) 0.25 W	(D) 0.5 W

- The first and the last critical frequency of an RC-driving point impedance function must respectively be
 - (A) a zero and a pole (B) a zero and a zero
 - (C) a pole and a pole (D) a pole and a zero

GATE 2005

TWO MARKS

2.65

2.66

For the circuit shown in the figure, the instantaneous current $i_1(t)$ is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

(A)
$$\frac{10\sqrt{3}}{2}/90^{\circ}$$
 A (B) $\frac{10\sqrt{3}}{2}/-90^{\circ}$ A
(C) $5/60^{\circ}$ A (D) $5/-60^{\circ}$ A

^{2.62} Impedance Z as shown in the given figure is

2.63

(C) $j19 \Omega$ (D) $j39 \Omega$ For the circuit shown in the figure, Thevenin's voltage and Thevenin's

(B) $j9 \Omega$

equivalent resistance at terminals a - b is

If $R_1 = R_2 = R_4 = R$ and $R_3 = 1.1R$ in the bridge circuit shown in

the figure, then the reading in the ideal voltmeter connected between a and b is

(A) 0.238 V	(B) $0.138 V$
(C) - 0.238 V	(D) 1 V

The h parameters of the circuit shown in the figure are

A square pulse of 3 volts amplitude is applied to C-R circuit shown in the figure. The capacitor is initially uncharged. The output voltage V_2 at time t = 2 sec is

GATE 2004

ONE MARK

2.67 Consider the network graph shown in the figure. Which one of the following is NOT a 'tree' of this graph ?

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

2.68

The equivalent inductance measured between the terminals 1 and 2 for the circuit shown in the figure is

(A)
$$L_1 + L_2 + M$$

(B) $L_1 + L_2 - M$
(C) $L_1 + L_2 + 2M$
(D) $L_1 + L_2 - 2M$

^{2.69} The circuit shown in the figure, with $R = \frac{1}{3}\Omega$, $L = \frac{1}{4}$ H and C = 3 F has input voltage $v(t) = \sin 2t$. The resulting current i(t) is

(A) $5\sin(2t+53.1^{\circ})$ (B) $5\sin(2t-53.1^{\circ})$ (C) $25\sin(2t+53.1^{\circ})$ (D) $25\sin(2t-53.1^{\circ})$

2.70 For the circuit shown in the figure, the time constant RC = 1 ms. The input voltage is $v_i(t) = \sqrt{2} \sin 10^3 t$. The output voltage $v_o(t)$ is equal to

- (A) $\sin(10^3 t 45^\circ)$ (B) $\sin(10^3 t + 45^\circ)$ (C) $\sin(10^3 t 53^\circ)$ (D) $\sin(10^3 t + 53^\circ)$
- For the R-L circuit shown in the figure, the input voltage $v_i(t) = u(t)$. The current i(t) is

GATE 2004

TWO MARKS

For the lattice shown in the figure, $Z_a = j2 \Omega$ and $Z_b = 2 \Omega$. The values of the open circuit impedance parameters $\begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}$ are

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

www.nodia.co.in

The circuit shown in the figure has initial current $i_L(0^-) = 1$ A through the inductor and an initial voltage $v_C(0^-) = -1$ V across the capacitor. For input v(t) = u(t), the Laplace transform of the current i(t) for $t \ge 0$ is

2.73

(A)
$$\frac{s}{s^2 + s + 1}$$

(B) $\frac{s + 2}{s^2 + s + 1}$
(C) $\frac{s - 2}{s^2 + s + 1}$
(D) $\frac{1}{s^2 + s + 1}$

2.74 The transfer function $H(s) = \frac{V_o(s)}{V_i(s)}$ of an *RLC* circuit is given by

$$H(s) = \frac{10^{\circ}}{s^2 + 20s + 10^{\circ}}$$

The Quality factor (Q-factor) of this circuit is (A) 25 (B) 50

(D) 5000

(C) 100

v

2.75 For the circuit shown in the figure, the initial conditions are zero. Its 2.80 transfer function $H(s) = \frac{V_c(s)}{V(s)}$ is

$$\begin{array}{c|c} 10 \text{ k}\Omega & 10 \text{ mH} \\ \bullet & & & \\ i(t) & 100 \text{ }\mu\text{F} & & \\ v_o(t) \\ \bullet & & \\$$

(A)
$$\frac{1}{s^2 + 10^6 s + 10^6}$$

(B) $\frac{10^6}{s^2 + 10^3 s + 10^6}$
(C) $\frac{10^3}{s^2 + 10^3 s + 10^6}$
(D) $\frac{10^6}{s^2 + 10^6 s + 10^6}$

Consider the following statements S1 and S2 2.76 S1: At the resonant frequency the impedance of a series RLCcircuit is zero.

> S2 : In a parallel GLC circuit, increasing the conductance G results in increase in its Q factor.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Which one of the following is correct?

- (A) S1 is FALSE and S2 is TRUE
- (B) Both S1 and S2 are TRUE
- (C) S1 is TRUE and S2 is FALSE
- (D) Both S1 and S2 are FALSE

GATE 2003

ONE MARK

2.83

2.84

The minimum number of equations required to analyze the circuit 2.77 shown in the figure is

A source of angular frequency 1 rad/sec has a source impedance 2.78 consisting of 1 Ω resistance in series with 1 H inductance. The load that will obtain the maximum power transfer is

(B) 4

(D) 7

- (A) 1 Ω resistance
- (B) 1 Ω resistance in parallel with 1 H inductance
- (C) 1 Ω resistance in series with 1 F capacitor
- (D) 1 Ω resistance in parallel with 1 F capacitor
- A series RLC circuit has a resonance frequency of 1 kHz and a 2.79 quality factor Q = 100. If each of R, L and C is doubled from its original value, the new Q of the circuit is

(A) 25 (B) 50

differential equation for the current
$$i(t)$$
 in the circuit of the

figure is $\sin t \left(\stackrel{+}{\simeq} \right)$ 1 F 茾 (A) $2\frac{d^2i}{dt^2} + 2\frac{di}{dt} + i(t) = \sin t$ (B) $\frac{d^2i}{dt^2} + 2\frac{di}{dt} + 2i(t) = \cos t$ (C) $2\frac{d^2i}{dt^2} + 2\frac{di}{dt} + i(t) = \cos t$ (D) $\frac{d^2i}{dt^2} + 2\frac{di}{dt} + 2i(t) = \sin t$

(D) 200

GATE 2003

(C) 100

The

Twelve 1 Ω resistance are used as edges to form a cube. The resistance between two diagonally opposite corners of the cube is (A) $\frac{5}{6}\Omega$

(C)
$$\frac{6}{5}\Omega$$
 (D) $\frac{3}{2}\Omega$

2.81

The current flowing through the resistance R in the circuit in the figure has the form $P\cos 4t$ where P is

(B) 1Ω

The circuit for Q. 2.66 & 2.67 is given below.

Assume that the switch S is in position 1 for a long time and thrown to position 2 at t = 0.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

- At $t = 0^+$, the current i_1 is (A) $\frac{-V}{2R}$ (B) $\frac{-V}{R}$ (C) $\frac{-V}{4R}$ (D) zero
- $I_1(s)$ and $I_2(s)$ are the Laplace transforms of $i_1(t)$ and $i_2(t)$ respectively. The equations for the loop currents $I_1(s)$ and $I_2(s)$ for the circuit shown in the figure, after the switch is brought from position 1 to position 2 at t = 0, are

$$\begin{array}{c} \text{(A)} \begin{bmatrix} R+Ls+\frac{1}{Cs} & -Ls\\ -Ls & R+\frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s)\\ I_2(s) \end{bmatrix} = \begin{bmatrix} \frac{V}{s}\\ 0 \end{bmatrix} \\ \text{(B)} \begin{bmatrix} R+Ls+\frac{1}{Cs} & -Ls\\ -Ls & R+\frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s)\\ I_2(s) \end{bmatrix} = \begin{bmatrix} -\frac{V}{s}\\ 0 \end{bmatrix}$$

Page 24

TWO MARKS

(C)
$$\begin{bmatrix} R + Ls + \frac{1}{Cs} & -Ls \\ -Ls & R + Ls + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} -\frac{V}{s} \\ 0 \end{bmatrix}$$

(D)
$$\begin{bmatrix} R + Ls + \frac{1}{Cs} & -Cs \\ -Ls & R + Ls + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} \frac{V}{s} \\ 0 \end{bmatrix}$$

The driving point impedance Z(s) of a network has the pole-zero 2.90 locations as shown in the figure. If Z(0) = 3, then Z(s) is

2.86

2.85

- An input voltage $v(t) = 10\sqrt{2}\cos(t+10^\circ) + 10\sqrt{5}\cos(2t+10^\circ)$ V is applied to a series combination of resistance $R = 1 \Omega$ and an inductance L = 1 H. The resulting steady-state current i(t) in ampere is
 - (A) $10\cos(t+55^{\circ}) + 10\cos(2t+10^{\circ}+\tan^{-1}2)$
 - (B) $10\cos(t+55^\circ) + 10\sqrt{\frac{3}{2}}\cos(2t+55^\circ)$
 - (C) $10\cos(t-35^{\circ}) + 10\cos(2t+10^{\circ}-\tan^{-1}2)$
 - (D) $10\cos(t-35^\circ) + \sqrt{\frac{3}{2}}\cos(2t-35^\circ)$
- The impedance parameters z_{11} and z_{12} of the two-port network in 2.87 the figure are

GATE 2002

The dependent current source shown in the figure 2.88

(D) absorbs 40 W

2.93 In the figure, the switch was closed for a long time before opening 2.89 at t = 0. The voltage v_x at $t = 0^+$ is

(A) 25 V (B) 50 V(C) - 50 V(D) 0 V

GATE 2002

2.91

In the network of the fig, the maximum power is delivered to R_L if its value is

If the 3-phase balanced source in the figure delivers 1500 W at

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

a leading power factor 0.844 then the value of Z_L (in ohm) is approximately

32.44°

ONE MARK

(A)
$$90 \angle 32.44^{\circ}$$
(B) $80 \angle 32.44^{\circ}$ (C) $80 \angle -32.44^{\circ}$ (D) $90 \angle -32.44^{\circ}$

GATE 2001

ONE MARK

2.92

The Voltage e_0 in the figure is

If each branch of Delta circuit has impedance $\sqrt{3}Z$, then each branch of the equivalent Wye circuit has impedance

(A) $\frac{Z}{\sqrt{3}}$	(B) $3Z$
(C) $3\sqrt{3}Z$	(D) $\frac{Z}{3}$

The admittance parameter Y_{12} in the 2-port network in Figure is 2.94

TWO MARKS

TWO MARKS

GATE 2001

2.95

The voltage e_0 in the figure is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

2.96 When the angular frequency ω in the figure is varied 0 to ∞ , the locus of the current phasor I_2 is given by

 $\overline{2R_2}$

(C)

 $\omega = \infty$

2.97 In the figure, the value of the load resistor R_L which maximizes the power delivered to it is

 $E = E_m \angle 0^\circ$

GATE 2000

2.99

The circuit of the figure represents a

(A) Low pass filter(B) High pass filter(C) band pass filter(D) band reject filter

^{2.100} In the circuit of the figure, the voltage v(t) is

A)
$$e^{at} - e^{bt}$$
 (B) $e^{at} + e^{bt}$
C) $ae^{at} - be^{bt}$ (D) $ae^{at} + be^{bt}$

2.101 In the circuit of the figure, the value of the voltage source E is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$(C) - 6 V$$
 (D) 16 V

GATE 2000

TWO MARKS

2.102 Use the data of the figure (a). The current i in the circuit of the figure (b)

ONE MARK

ONE MARK

Identify which of the following is NOT a tree of the graph shown in 2.103 the given figure is

GATE 1999

(\mathbf{A})	begh	(B) defg
(C)	abfg	(D) aegh

A 2-port network is shown in the given figure. The parameter h_{21} for 2.104 this network can be given by

$$+ \underbrace{\overset{I_1}{\sim} & \overset{R}{\sim} & \overset{R}{\sim} & \overset{I_2}{\sim} \\ V_1 & \swarrow & V_2 \\ - & & & \circ - \\ (A) - 1/2 \\ (C) - 3/2 \end{array}$$

GATE 1999

2.105

The Thevenin equivalent voltage V_{TH} appearing between the terminals A and B of the network shown in the given figure is given by

(B) +1/2

(D) + 3/2

The value of R (in ohms) required for maximum power transfer in 2.106 the network shown in the given figure is

ONE MARK

2.107 A Delta-connected network with its Wye-equivalent is shown in the given figure. The resistance R_1, R_2 and R_3 (in ohms) are respectively

GATE 1998

2.110

2.112

2.113

(A)

TWO MARK

A network has 7 nodes and 5 independent loops. The number of 2.108 branches in the network is (A) 13 (B) 12

(C) 11 (D) 10

2.109 The nodal method of circuit analysis is based on

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

- (A) KVL and Ohm's law (B) KCL and Ohm's law (D) KCL, KVL and Ohm's law (C) KCL and KVL
- Superposition theorem is NOT applicable to networks containing (A) nonlinear elements (B) dependent voltage sources
- (C) dependent current sources
 - (D) transformers
- 2.111 The parallel RLC circuit shown in the figure is in resonance. In this circuit

(A)
$$|I_R| < 1 \text{ mA}$$

(B) $|I_R + I_L| > 1 \text{ mA}$
(C) $|I_R + I_C| < 1 \text{ mA}$
(D) $|I_R + I_C| > 1 \text{ mA}$

- $The short-circuit admittance \,matrix\,a\,two\mbox{-}port\,network\,is$ The two-port network is (B) non-reciprocal and active (A) non-reciprocal and passive (C) reciprocal and passive
 - (D) reciprocal and active

The voltage across the terminals a and b in the figure is

A high-Q quartz crystal exhibits series resonance at the frequency 2.114

- ω_s and parallel resonance at the frequency ω_p . Then
- (A) ω_s is very close to, but less than ω_p
- (B) $\omega_s \ll \omega_p$
- (C) ω_s is very close to, but greater than ω_p
- (D) $\omega_s >> \omega_p$

GATE 1997

2.116

ONE MARK

The current i_4 in the circuit of the figure is equal to 2.115

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(A) 10 V (B) 15 V (C) 5 V(D) None of the above

In the circuit of the figure is the energy absorbed by the 4 Ω resistor 2.119 in the time interval $(0,\infty)$ is

- (A) 36 Joules
- (C) 256 Joules
- (B) 16 Joules (D) None of the above
- In the circuit of the figure the equivalent impedance seen across 2.120 terminals a, b, is

(D) None of the above

ONE MARK

GATE 1996

2.121 In the given figure, A_1, A_2 and A_3 are ideal ammeters. If A_2 and A_3 read 3 A and 4 A respectively, then A_1 should read

(B) 5 A

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) 1 A

(D) None of these

- The number of independent loops for a network with n nodes and 2.122 b branches is
 - (A) n 1
 - (B) b n
 - (C) b n + 1
 - (D) independent of the number of nodes

GATE 1996

TWO MARKS

The voltages V_{C1} , V_{C2} , and V_{C3} across the capacitors in the circuit in 2.123

(C) 5 V

(D) None of these

The voltage V in the figure is always equal to 2.117

(A) 9 V (C) 1 V

2.118 The voltage V in the figure is

the given figure, under steady state, are respectively.

(C) 20 V, 8 V, 12 V (D) 20 V, 12 V, 8 V

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

SOLUTIONS

2.1 Option (B) is correct.

In the equivalent star connection, the resistance can be given as

$$R_{C} = \frac{R_{b}R_{a}}{R_{a} + R_{b} + R_{c}}$$
$$R_{B} = \frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}}$$
$$R_{A} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$$

So, if the delta connection components R_a , R_b and R_c are scaled by a factor k then

$$R_{A}' = \frac{(k R_b)(k R_c)}{kR_a + kR_b + kR_c}$$
$$= \frac{k^2}{k} \frac{R_b R_c}{R_c + R_b + R_c}$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$= k R_A$$

hence, it is also scaled by a factor k

^{2.2} Option (D) is correct.

For the given capacitance, $C = 100 \mu F$ in the circuit, we have the ^{2.6} reactance.

$$X_C = \frac{1}{sc} = \frac{1}{s \times 100 \times 10^{-6}} = \frac{10^4}{s}$$

So,

$$\frac{V_2(s)}{V_1(s)} = \frac{\frac{10^4}{s} + 10^4}{\frac{10^4}{s} + 10^4 + \frac{10^4}{s}} = \frac{s+1}{s+2}$$

2.3 Option (C) is correct.

For the purely resistive load, maximum average power is transferred when

$$R_L = \sqrt{R_{Th}^2 + X_{Th}^2}$$

where $R_{Th} + jX_{Th}$ is the equivalent the vinin (input) impedance of the circuit. Hence, we obtain

$$R_L = \sqrt{4^2 + 3^2} \\ 5 \,\Omega$$

2.4 Option (C) is correct.

For evaluating the equivalent the venin voltage seen by the load R_L , we open the circuit across it (also if it consist dependent source). The equivalent circuit is shown below

As the circuit open across R_L so

$$I_2 = 0$$

$$j40I_2 = 0$$

i.e., the dependent source in loop 1 is short circuited. Therefore,

$$V_{L1} = \frac{(j4) V_s}{j4+3}$$

$$V_{Th} = 10 V_{L1} = \frac{j40}{j4+3} 100 / 53.13^{\circ}$$
$$= \frac{40 / 90^{\circ}}{5 / 53.13^{\circ}} 100 / 53.13^{\circ}$$
$$= 800 / 90^{\circ}$$

Option (C) is correct.

or,

2.5

For the given transformer, we have
$$V = 1.25$$

Option (C) is correct.

and

The quality factor of the inductances are given by

$$q_1 = \frac{\omega L_1}{R_1}$$
$$q_2 = \frac{\omega L_2}{R_2}$$

So, in series circuit, the effective quality factor is given by

$$Q = \frac{\left| X_{Leq} \right|}{R_{eq}} = \frac{\omega L_1 + \omega L_2}{R_1 + R_2}$$
$$= \frac{\frac{\omega L_1}{R_1 R_2} + \frac{\omega L_2}{R_1 R_2}}{\frac{1}{R_2} + \frac{1}{R_2}} = \frac{\frac{q_1}{R_2} + \frac{q_2}{R_2}}{\frac{1}{R_2} + \frac{1}{R_2}} = \frac{q_1 R_1 + q_2 R_2}{R_1 + R_2}$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

2.7 Option (C) is correct.

....(1)

Consider that the voltage across the three capacitors C_1 , C_2 and C_3 are V_1 , V_2 and V_3 respectively. So, we can write

$$\frac{V_2}{V_3} = \frac{C_3}{C_2}$$

Since, Voltage is inversely proportional to capacitance Now, given that

$$C_{1} = 10 \ \mu F; \ (V_{1})_{\text{max}} = 10V$$

$$C_{2} = 5 \ \mu F; \ (V_{2})_{\text{max}} = 5 V$$

$$C_{3} = 2 \ \mu F; \ (V_{3})_{\text{max}} = 2V$$

 $\frac{V_2}{V_3} = \frac{2}{5}$

 $(V_3)_{\rm max} = 2$

So, from Eq (1) we have

for

We obtain,

$$V_2 = \frac{2 \times 2}{5} = 0.8 \text{ volt} < 5$$

i.e., $V_2 < (V_2)_{\rm max}$ Hence, this is the voltage at C_2 . Therefore, $V_3 = 2$ volt $V_2 = 0.8 \text{ volt}$ $V_1 = V_2 + V_3 = 2.8$ volt and

Now, equivalent capacitance across the terminal is

$$C_{eq} = \frac{C_2 C_3}{C_2 + C_3} + C_1 = \frac{5 \times 2}{5 + 2} + 10 = \frac{80}{7} \,\mu\text{F}$$

Equivalent voltage is (max. value)

 $V_{\rm max} = V_1 = 2.8$

So, charge stored in the effective capacitance is (80)

$$Q = C_{eq} V_{\text{max}} = \left(\frac{30}{7}\right) \times (2.8) = 32 \,\mu\text{C}$$

Option (D) is correct.

2.8

At the node 1, voltage is given as $V_1 = 10 \text{ volt}$

Applying KCL at node 1

$$I_{S} + \frac{V_{1}}{2} + \frac{V_{1}}{1} - 2 = 0$$

$$I_{S} + \frac{10}{2} + \frac{10}{1} - 2 = 0$$

 $I_{S} = -13 \, \text{A}$

Also, from the circuit,

$$V_S - 5 \times 2 = V_1$$
$$V_S = 10 + V_1$$
$$= 20 \text{ volt}$$

Option (C) is correct. 2.9 Again from the shown

circuit, the current in 1
$$\Omega$$
 resistor is

$$I = \frac{V_1}{1} = \frac{10}{1} = 10 \text{ A}$$

Option (D) is correct. 2.10

The s-domain equivalent circuit is shown as below.

$$I(s) = \frac{v_c(0)/s}{\frac{1}{C_1 s} + \frac{1}{C_2 s}} = \frac{v_c(0)}{\frac{1}{C_1} + \frac{1}{C_2}}$$
$$I(s) = \left(\frac{C_1 C_2}{C_1 + C_2}\right)(12 \text{ V}) = 12 C_{eq} \qquad v_c(0) = 12 \text{ V}$$

Taking inverse Laplace transform for the current in time domain, $i(t) = 12 C_{eq} \delta(t)$ (Impulse)

Option (B) is correct. 2.11 In phasor form,

$$Z = 4 - j3 = 5 / -36.86^{\circ} \Omega$$

 $I = 5 / 100^{\circ} \text{ A}$

Average power delivered.

$$P_{avg.} = \frac{1}{2} |\mathbf{I}|^2 Z \cos \theta = \frac{1}{2} \times 25 \times 5 \cos 36.86^\circ = 50 \text{ W}$$

Alternate method:

$$Z = (4 - j3)\Omega, \qquad I = 5\cos(100\pi t + 100)A$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

$$P_{avg} = \frac{1}{2} \operatorname{Re} \left\{ |I|^2 Z \right\} = \frac{1}{2} \times \operatorname{Re} \left\{ (5)^2 \times (4 - j3) \right\}$$

= $\frac{1}{2} \times 100 = 50 \mathrm{W}$

Option (C) is correct 2.12

Applying nodal analysis at top node.

$$\frac{V_{1} + 1/0^{\circ}}{1} + \frac{V_{1} + 1/0^{\circ}}{j1} = 1/0^{\circ}$$
$$V_{1}(j1+1) + j1 + 1/0^{\circ} = j1$$
$$V_{1} = \frac{-1}{1+j1}$$
Current
$$I_{1} = \frac{V_{1} + 1/0^{\circ}}{j1} = \frac{-\frac{1}{1+j} + 1}{j1}$$

j1

2.13

 $\frac{j}{(1+j)j} = \frac{1}{1+j} \mathbf{A}$ Option (A) is correct.

We obtain Thevenin equivalent of circuit B.

Thevenin Impedance :

$$Z_{Th} = R$$

Thevenin Voltage :

 $V_{Th}=3/{
m 0^\circ}\,{
m V}$ Now, circuit becomes as

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

Current in the circuit, $I_1 = \frac{10-3}{2+R}$ Power transfer from circuit A to B

 $D = (I^2)^2 D$

$$P = (I_1^{\prime})^2 R + 3I_1$$

$$P = \left[\frac{10-3}{2+R}\right]^2 R + 3\left[\frac{10-3}{2+R}\right]$$

$$P = \frac{49R}{(2+R)^2} + \frac{21}{(2+R)}$$

$$P = \frac{49R+21(2+R)}{(2+R)^2}$$

$$P = \frac{42+70R}{(2+R)^2}$$

$$\frac{dP}{dR} = \frac{(2+R)^2 70 - (42+70R)2(2+R)}{(2+R)^4} = 0$$

$$(2+R)\left[(2+R)70 - (42+70R)2\right] = 0$$

$$140+70R - 84 - 140R = 0$$

$$56 = 70R$$

$$R = 0.8 \Omega$$

2.14 Option (A) is correct.

In the given circuit

$$V_A - V_B = 6 V$$

So current in the branch will be

$$I_{AB} = \frac{6}{2} = 3 A$$

We can see, that the circuit is a one port circuit looking from terminal BD as shown below

For a one port network current entering one terminal, equals the current leaving the second terminal. Thus the outgoing current from A to B will be equal to the incoming current from D to C as shown

 $I_{DC} = I_{AB} = 3 \mathrm{A}$

The total current in the resistor 1Ω will be

$$I_1 = 2 + I_{DC}$$
 (By writing KCL at node D)
= 2 + 3 = 5 A

$$V_{CD} = 1 \times (-I_1) = -5 \text{ V}$$

2.15 Option (C) is correct.

i.e.

So,

When 10 V is connected at port A the network is

Now, we obtain Thevenin equivalent for the circuit seen at load terminal, let Thevenin voltage is $V_{Th,10V}$ with 10 V applied at port A and Thevenin resistance is R_{Th} .

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Dividing above two

$$rac{3}{2}=rac{R_{Th}+2.5}{R_{Th}+1}$$

 $3R_{Th}+3=2R_{Th}+5$
 $R_{Th}=2\,\Omega$
Substituting R_{Th} into equation (i)

$$V_{Th,10V} = 3(2+1) = 9V$$

Note that it is a non reciprocal two port network. Thevenin voltage seen at port B depends on the voltage connected at port A. Therefore we took subscript $V_{Th,10V}$. This is Thevenin voltage only when 10 V source is connected at input port A. If the voltage connected to port A is different, then Thevenin voltage will be different. However, Thevenin's resistance remains same.

Now, the circuit is as shown below :

For
$$R_L = 7 \Omega$$
, $I_L = \frac{V_{Th,10 V}}{2 + R_L} = \frac{9}{2 + 7} = 1 \text{ A}$

Option (B) is correct.

2.16

Now, when 6 V connected at port A let Thevenin voltage seen at port B is $V_{Th,6V}$. Here $R_L = 1 \Omega$ and $I_L = \frac{7}{3}$ A

$$V_{Th, 6 V}$$

$$V_{Th,6V} = R_{Th} \times \frac{7}{3} + 1 \times \frac{7}{3} = 2 \times \frac{7}{3} + \frac{7}{3} = 7 V$$

This is a linear network, so V_{Th} at port B can be written as

 $V_{Th} = V_1 \alpha + \beta$

where V_1 is the input applied at port A. We have $V_1 = 10$ V. $V_{TL 10V} = 9$ V.

when
$$V_1 = 10 \text{ V}$$
, $V_{Th,10\text{ V}} = 9 \text{ V}$
 $\therefore \qquad 9 = 10\alpha + \beta \qquad \dots(i)$
When $V_1 = 6 \text{ V}$, $V_{Th,6\text{ V}} = 9 \text{ V}$

$$7 = 6\alpha + \beta \qquad \dots (ii)$$

Solving (i) and (ii)

$$\alpha = 0.5, \ \beta = 4$$

Thus, with any voltage V_1 applied at port A, Thevenin voltage or open circuit voltage at port B will be

So,
$$V_{Th, V_1} = 0.5 V_1 + 4$$

For $V_1 = 8 V$

 $V_{Th,8V} = 0.5 \times 8 + 4 = 8 = V_{oc}$ (open circuit voltage)

2.17 Option (A) is correct. Replacing P - Q by short circuit as shown below we have

Using current divider rule the current I_{sc} is

$$I_{SC} = \frac{25}{25 + 15 + j30} (16/0) = (6.4 - j4.8) \,\mathrm{A}$$

2.18 Option (C) is correct.

Power transferred to R_L will be maximum when R_L is equal to the Thevenin resistance. We determine Thevenin resistance by killing all source as follows :

2.19 Option (A) is correct.

The given circuit is shown below

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

For parallel combination of R and C equivalent impedance is

$$Z_{\rm p} = \frac{R \cdot \frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{R}{1 + j\omega RC}$$

Transfer function can be written as

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{Z_{\text{p}}}{Z_{\text{s}} + Z_{\text{p}}} = \frac{\frac{1}{1 + j\omega RC}}{R + \frac{1}{j\omega C} + \frac{R}{1 + j\omega RC}}$$
$$= \frac{j\omega RC}{j\omega RC + (1 + j\omega RC)^2}$$
$$= \frac{j}{j + (1 + j)^2} \qquad \text{Here } \omega = \frac{1}{RC}$$
$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{j}{(1 + j)^2 + j} = \frac{1}{3}$$
$$v_{\text{out}} = \left(\frac{V_p}{3}\right) \cos\left(t/RC\right)$$

Thus

2.20

Option (B) is correct.

From star delta conversion we have

Thus

Here

$$R_{1} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}} = \frac{6.6}{6 + 6 + 6} = 2 \Omega$$
$$R_{1} = R_{2} = R_{3} = 2 \Omega$$

Replacing in circuit we have the circuit shown below :

Now the total impedance of circuit is $Z = \frac{(2+j4)(2-j4)}{(2+j4)(2-j4)} + 2 = 7 \Omega$

Current

Option (D) is correct. 2.21

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

 $I = \frac{14 \angle 0^{\circ}}{7} = 2 \angle 0^{\circ}$

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

From given admittance matrix we get	
$I_1 = 0.1 V_1 - 0.01 V_2$ and	(1)
$I_2 = 0.01 V_1 + 0.1 V_2$	(2)
Now, applying KVL in outer loop;	
$V_2 = -100I_2$	
or $I_2 = -0.01 V_2$	(3)
From eq (2) and eq (3) we have	
$-0.01V_2 = 0.01V_1 + 0.1V_2$	
$-0.11 V_2 = 0.01 V_1$	

$$-0.11 V_2 = 0.01 V_1$$
$$\frac{V_2}{V_1} = \frac{-1}{11}$$

Option (A) is correct. Here we take the current flow direction as positive. At $t = 0^{-}$ voltage across capacitor is

$$V_C(0^-) = -\frac{Q}{C} = -\frac{2.5 \times 10^{-3}}{50 \times 10^{-6}} = -50$$

Thus

2.22

 $V_C(0^+) = -50 \text{ V}$ In steady state capacitor behave as open circuit thus

Now,

$$V(\infty) = 100 \text{ V}$$

$$V_C(t) = V_C(\infty) + (V_C(0^+) - V_C(\infty)) e^{-t/RC}$$

$$= 100 + (-50 - 100) e^{\frac{-t}{10 \times 50 \times 10^{-6}}}$$

$$= 100 - 150 e^{-(2 \times 10^3 t)}$$

Now

$$i_{c}(t) = C \frac{dV}{dt}$$

= 50 × 10⁻⁶ × 150 × 2 × 10³ e^{-2×10³t} A
= 15 e^{-2×10³t}
 $i_{c}(t) = 15 \exp(-2 \times 10^{3} t)$ A

V

Given circuit is as shown below

By writing node equation at input port

$$I_1 = \frac{V_1}{0.5} + \frac{V_1 - V_2}{0.5} = 4 V_1 - 2 V_2 \qquad \dots (1)$$

By writing node equation at output port

$$I_2 = \frac{V_2}{0.5} + \frac{V_2 - V_1}{0.5} = -2V_1 + 4V_2 \qquad \dots (2)$$

From (1) and (2), we have admittance matrix

$$Y = \begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix}$$

Option (D) is correct.

2.24

A parallel RLC circuit is shown below :

Input impedance

$$Z_{\rm in} = \frac{1}{\frac{1}{R} + \frac{1}{j\omega L} + j\omega C}$$

At resonance

So,

 $\frac{1}{\omega L} = \omega C$

 $Z_{\rm in} = \frac{1}{1/R} = R$ (maximum at resonance)

Thus (D) is not true.

Furthermore bandwidth is ω_B i.e. $\omega_B \propto \frac{1}{R}$ and is independent of L

Hence statements A, B, C, are true.

2.25 Option (A) is correct.

> Let the current $i(t) = A + Be^{-t/\tau}$ $\tau \rightarrow \text{Time constant}$ When the switch S is open for a long time before t < 0, the circuit is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

At t = 0, inductor current does not change simultaneously, So the circuit is

Option (A) is correct. 2.23

$$1.5 \text{ A} \underbrace{10 \Omega}_{l_{10}} \underbrace{i(0)}_{0.75 \text{ A}} \underbrace{i_{L}(0)}_{0.75 \text{ A}} i_{L}(0)$$

Current is resistor (AB)

$$i(0) = \frac{0.75}{2} = 0.375 \,\mathrm{A}$$

Similarly for steady state the circuit is as shown below

1.5 A
10
$$\Omega$$
10 Ω
10 Ω
10 Ω
10 Ω
10 Ω
10 Ω

$$i(\infty) = \frac{15}{3} = 0.5 \text{ A}$$

$$\tau = \frac{L}{R_{eq}} = \frac{15 \times 10^{-3}}{10 + (10 \mid \mid 10)} = 10^{-3} \sec$$

$$i(t) = A + Be^{-\frac{t}{1 \times 10^{-3}}} = A + Be^{-100t}$$
Now
$$i(0) = A + B = 0.375$$
and
$$i(\infty) = A = 0.5$$
So,
$$B = 0.375 - 0.5 = -0.125$$
Hence
$$i(t) = 0.5 - 0.125e^{-1000t} \text{ A}$$

Option (A) is correct. Circuit is redrawn as shown below

$$\begin{array}{c} 20\angle 0^{\circ} V \\ \omega = 10^{3} \text{ rad/s} \end{array} \qquad \boxed{Z_{1}} \\ \end{array}$$

Where,

2.26

$$Z_{2} = R || X_{C}$$

$$X_{C} = \frac{1}{j\omega C} = \frac{1}{j \times 10^{3} \times 50 \times 10^{-6}} = -20j$$

$$Z_{2} = \frac{1(-20j)}{1-20j}$$

$$R = 1 \Omega$$

 $Z_1 = i\omega L = i \times 10^3 \times 20 \times 10^{-3} = 20i$

Voltage across Z_2

$$V_{Z_2} = \frac{Z_2}{Z_1 + Z_2} \cdot 20 / 0 = \frac{\left(\frac{-20j}{1 - 20j}\right)}{\left(20j - \frac{20j}{1 - 20j}\right)} \cdot 20$$
$$= \left(\frac{(-20j)}{20j + 400 - 20j}\right) \cdot 20 = -j$$

Current in resistor R is

$$I = \frac{V_{Z_2}}{R} = -\frac{j}{1} = -j A$$

Option (A) is correct. 2.27

The circuit can be redrawn as

Applying nodal analysis

$$\frac{V_A - 10}{2} + 1 + \frac{V_A - 0}{2} = 0$$

2 V_A - 10 + 2 = 0 = V₄ = 4 V
at, I₁ = $\frac{10 - 4}{2} = 3$ A

Current,

Current from voltage source is

$$I_2 = I_1 - 3 = 0$$

 $4 \,\mathrm{V}$

Since current through voltage source is zero, therefore power delivered is zero.

Option (A) is correct. 2.28 Circuit is as shown below

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

Since 60 V source is absorbing power. So, in 60 V source current flows from + to - ve direction

$$I + I_1 = 12$$
$$I = 12 - I_1$$

I is always less than 12 A So, only option (A) satisfies this conditions.

Option (C) is correct.

So,

2.29

For given network we have

$$V_{0} = \frac{(R_{L} \| X_{C}) V_{i}}{R + (R_{L} \| X_{C})}$$
$$\frac{V_{0}(s)}{V_{i}(s)} = \frac{\frac{R_{L}}{1 + sR_{L}C}}{R + \frac{R_{L}}{1 + sR_{L}C}} = \frac{R_{L}}{R + RR_{L}sC + R_{L}}$$
$$= \frac{R_{L}}{R + RR_{L}sC + R_{L}} = \frac{1}{1 + \frac{R}{R_{L}} + RsC}$$

But we have been given

$$T.F. = \frac{V_0(s)}{V_i(s)} = \frac{1}{2 + sCR}$$

Comparing, we get

$$1 + \frac{R}{R_L} = 2 \quad \Rightarrow R_L = R$$

Option (C) is correct. 2.30

The energy delivered in 10 minutes is

$$E = \int_0^t VIdt = I \int_0^t Vdt = I \times Area$$
$$= 2 \times \frac{1}{2} (10 + 12) \times 600 = 13.2 \text{ kJ}$$

2.31 Option (B) is correct.

From given circuit the load current is

$$I_L = \frac{V}{Z_s + Z_L} = \frac{20\angle 0^{\circ}}{(1+2j) + (7+4j)} = \frac{20\angle 0^{\circ}}{8+6j}$$
$$= \frac{1}{5}(8-6j) = \frac{20\angle 0^{\circ}}{10\angle \phi} = 2\angle -\phi \quad \text{where } \phi = \tan^{-1}\frac{3}{4}$$

The voltage across load is

 $V_L = I_L Z_L$

The reactive power consumed by load is $P_{T} = V_{T} I_{T}^{*} = I_{T} Z_{T} \times I_{T}^{*} = Z_{T} | I$

Thus average power is 28 and reactive power is 16.

2.32 Option (B) is correct.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

At $t = 0^{-}$, the circuit is as shown in fig below :

 $V(0^{-}) = 100 \text{ V}$ Thus $V(0^{+}) = 100 \text{ V}$ At $t = 0^{+}$, the circuit is as shown below

$$I(0^+) = \frac{100}{5k} = 20 \text{ mA}$$

At steady state i.e. at $t = \infty$ is $I(\infty) = 0$ Now $i(t) = I(0^+) e^{-\frac{t}{RC_q}} u(t)$

$$C_{eq} = \frac{(0.5\mu + 0.3\mu)0.2\mu}{0.5\mu + 0.3\mu + 0.2\mu} = 0.16 \,\mu\text{F}$$
$$\frac{1}{RC_{eq}} = \frac{1}{5 \times 10^3 \times 0.16 \times 10^{-6}} = 1250$$
$$i(t) = 20e^{-1250t}u(t) \text{ mA}$$

2.33 Option (C) is correct.

For P_{max} the load resistance R_L must be equal to the venin resistance R_{eq} i.e. $R_L = R_{eq}$. The open circuit and short circuit is as shown below

The open circuit voltage is

From fig

2.34

2.35

$$I_{1} = \frac{100}{8} = 12.5 \text{ A}$$

$$V_{x} = -4 \times 12.5 = -50 \text{ V}$$

$$I_{2} = \frac{100 + V_{x}}{4} = \frac{100 - 50}{4} = 12.5 \text{ A}$$

$$I_{sc} = I_{1} + I_{2} = 25 \text{ A}$$

$$R_{th} = \frac{V_{oc}}{I_{sc}} = \frac{100}{25} = 4 \Omega$$

Thus for maximum power transfer $R_L = R_{eq} = 4 \Omega$

 $V_{oc} = 100 \text{ V}$

Option (A) is correct.

Steady state all transient effect die out and inductor act as short circuits and forced response acts only. It doesn't depend on initial current state. From the given time domain behavior we get that circuit has only R and L in series with V_0 . Thus at steady state

$$i(t) \to i(\infty) = \frac{V}{H}$$

Option (C) is correct. The given graph is

There can be four possible tree of this graph which are as follows:

There can be 6 different possible cut-set.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

2.36 Option (B) is correct.

Initially $i(0^-) = 0$ therefore due to inductor $i(0^+) = 0$. Thus all current I_s will flow in resistor R and voltage across resistor will be $I_s R_s$. The voltage across inductor will be equal to voltage across R_s as no current flow through R.

Thus $v_L(0^+) = I_s R_s$

 $v_L(0^+) = L \frac{di(0^+)}{dt}$

Thus $\frac{di(0^+)}{dt} = \frac{v_L(0^+)}{L} = \frac{I_s R_s}{L}$

2.37 Option (A) is correct.

Killing all current source and voltage sources we have,

$$\begin{array}{c} 1 \text{ H} & 1 \text{ F} \\ 1 \text{ O} & \bullet \text{P} \\ \bullet \text{ Q} & \bullet \text{P} \\ \bullet \text{ P} & \bullet \text{P} \\ \bullet \text{ Q} & \bullet \text{P} \\ \bullet \text{$$

Alternative :

Here at DC source capacitor act as open circuit and inductor act as short circuit. Thus we can directly calculate the venin Impedance as 1 Ω

2.38 Option (D) is correct.

$$Z(s) = R \left\| \frac{1}{sC} \right\| sL = \frac{\frac{s}{C}}{s^2 + \frac{s}{RC} + \frac{1}{LC}}$$

We have been given

$$Z(s) = \frac{0.2s}{s^2 + 0.1s + 2}$$

Comparing with given we get

$$\frac{1}{C} = 0.2 \text{ or } C = 5 \text{ F}$$
$$\frac{1}{RC} = 0.1 \text{ or } R = 2 \Omega$$
$$\frac{1}{LC} = 2 \text{ or } L = 0.1 \text{ H}$$

2.39 Option (C) is correct. Voltage across capacitor is

$$V_c = \frac{1}{C} \int_0^t i dt$$

Here C = 1 F and i = 1 A. Therefore

$$V_c = \int_0^t dt$$

For 0 < t < T, capacitor will be charged from 0 V

$$V_c = \int_0^t dt = t$$

At $t = T, V_c = T$ Volts

For T < t < 2T, capacitor will be discharged from T volts as

$$V_c = T - \int_T^t dt = 2T - t$$

At $t = 2T, V_c = 0$ volts

For 2T < t < 3T, capacitor will be charged from 0 V

$$V_c = \int_{2T}^t dt = t - 2T$$

At t = 3T, $V_c = T$ Volts For 3T < t < 4T, capacitor will be discharged from T Volts

$$V_c = T - \int_{3T}^t dt = 4T - t$$

At t = 4T, $V_c = 0$ Volts

$$V_c = \int_{4T}^t dt = t - 4T$$

At
$$t = 5T$$
, $V_c = T$ Volts

Thus the output waveform is

Only option C satisfy this waveform.

Option (D) is correct.

2.40

Writing in transform domain we have
$$V(x)$$

$$\frac{V_c(s)}{V_s(s)} = \frac{\frac{1}{s}}{(\frac{1}{s} + s + 1)} = \frac{1}{(s^2 + s + 1)}$$

Since $V_s(t) = \delta(t) \to V_s(s) = 1$ and

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

in

$$V_c(s) = \frac{1}{(s^2 + s + 1)}$$

$$V_c(s) = \frac{2}{\sqrt{3}} \left[\frac{\frac{\sqrt{3}}{2}}{(s+\frac{1}{2})^2 + \frac{3}{4}} \right]$$

Taking inverse Laplace transform we have

$$V_t = \frac{2}{\sqrt{3}} e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right)$$

Option (B) is correct. Let voltage across resistor be v_R

or

2.41

$$\frac{V_R(s)}{V_S(s)} = \frac{1}{\left(\frac{1}{s} + s + 1\right)} = \frac{s}{\left(s^2 + s + 1\right)}$$

Since $v_s = \delta(t) \to V_s(s) = 1$ we get
$$V_R(s) = \frac{s}{\left(s^2 + s + 1\right)} = \frac{s}{\left(s + \frac{1}{2}\right)^2 + \frac{3}{4}}$$
$$= \frac{\left(s + \frac{1}{2}\right)}{\left(s + \frac{1}{2}\right)^2 + \frac{3}{4}} - \frac{\frac{1}{2}}{\left(s + \frac{1}{2}\right)^2 + \frac{3}{4}}$$
or
$$v_R(t) = e^{-\frac{1}{2}} \cos \frac{\sqrt{3}}{2} t - \frac{1}{2} \times \frac{2}{\sqrt{3}} e^{-\frac{1}{2}} \sin \frac{\sqrt{3}}{2} t$$
$$= e^{-\frac{t}{2}} \left[\cos \frac{\sqrt{3}}{2} t - \frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t \right]$$

2.42 Option (C) is correct.

$$z_{11} = \frac{v_1}{i_1}\Big|_{i_2=0} = \frac{6}{4} = 1.5\Omega$$
$$z_{12} = \frac{v_1}{i_2}\Big|_{i_1=0} = \frac{4.5}{1} = 4.5\Omega$$
$$z_{21} = \frac{v_2}{i_1}\Big|_{i_2=0} = \frac{6}{4} = 1.5\Omega$$
$$z_{22} = \frac{v_2}{i_2}\Big|_{i_2=0} = \frac{1.5}{1} = 1.5\Omega$$

Thus z-parameter matrix is

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{bmatrix} 1.5 & 4.5 \\ 1.5 & 1.5 \end{bmatrix}$$

2.43 Option (A) is correct.

From the problem statement we have

$$h_{12} = \frac{v_1}{v_2}\Big|_{i_1=0} = \frac{4.5}{1.5} = 3$$
$$h_{22} = \frac{i_2}{v_2}\Big|_{i_1=0} = \frac{1}{1.5} = 0.67$$

From z matrix, we have

$$v_1 = z_{11}i_1 + z_{12}i_2$$
$$v_2 = z_{21}i_1 + z_{22}i_2$$

If $v_2 = 0$

Then

or

Putting in equation for v_1 , we get

 $i_2 = -i_1$

$$v_{1} = (z_{11} - z_{12}) i_{1}$$
$$\frac{v_{1}}{i_{1}}\Big|_{v_{2}=0} = h_{11} = z_{11} - z_{12} = 1.5 - 4.5 = -3$$

 $\frac{i_2}{i_1} = \frac{-z_{21}}{z_{22}} = \frac{-1.5}{1.5} = -1 = h_{21}$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

Hence h –parameter will be

$$\begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ -1 & 0.67 \end{bmatrix}$$

- 2.44 Option (D) is correct. According to maximum Power Transform Theorem $Z_L = Z_s^* = (R_s - jX_s)$
- 2.45 Option (C) is correct.

At $\omega \to \infty$, capacitor acts as short circuited and circuit acts as shown in fig below ^{2.48}

$$\begin{array}{c} & & R & C \\ & & & \\ V_i & & R \\ \hline \bullet & & \\ \hline \bullet & &$$

At $\omega \to 0$, capacitor acts as open circuited and circuit look like as shown in fig below

So frequency response of the circuit is as shown in fig and circuit is a Band pass filter.

2.46 Option (D) is correct.

We know that bandwidth of series RLC circuit is $\frac{R}{L}$. Therefore Bandwidth of filter 1 is $B_1 = \frac{R}{L_1}$ Bandwidth of filter 2 is $B_2 = \frac{R}{L_2} = \frac{R}{L_1/4} = \frac{4R}{L_1}$

Dividing above equation $\frac{B_1}{B_2} = \frac{1}{4}$ Option (D) is correct.

Here V_{th} is voltage across node also. Applying nodal analysis we get

$$rac{V_{th}}{2}+rac{V_{th}}{1}+rac{V_{th}-2i}{1}=2$$

n circuit $i=rac{V_{th}}{1}=V_{th}$

But from circuit

Therefore

2.47

$$\frac{V_{th}}{2} + \frac{V_{th}}{1} + \frac{V_{th} - 2V_{th}}{1} = 2$$
$$V_{th} = 4 \text{ volt}$$

or
$$V_{th} = 4$$
 volt
From the figure shown below it may be easily seen that the short
circuit current at terminal XY is $i_{sc} = 2$ A because $i = 0$ due to

short circuit of 1 Ω resistor and all current will pass through short circuit.

Therefore

$$R_{th}=rac{V_{th}}{i_{sc}}=rac{4}{2}=2\,\Omega$$

Option (A) is correct.

The voltage across capacitor is At $t = 0^+$, $V_c(0^+) = 0$ At $t = \infty$, $V_C(\infty) = 5$ V The equivalent resistance seen by capacitor as shown in fig is

 $R_{eq} = 20 \| 20 = 10 k\Omega$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Time constant of the circuit is

$$\tau = R_{eq}C = 10k \times 4\mu = 0.04 \text{ s}$$

Using direct formula

$$V_{c}(t) = V_{C}(\infty) - [V_{c}(\infty) - V_{c}(0)] e^{-t/\tau}$$

$$= V_{C}(\infty) (1 - e^{-t/\tau}) + V_{C}(0) e^{-t/\tau} = 5 (1 - e^{-t/0.04})$$
or
$$V_{c}(t) = 5 (1 - e^{-25t})$$

Now
$$I_C(t) = C \frac{dV_C(t)}{dt}$$

$$= 4 \times 10^{-6} \times (-5 \times 25e^{-25t}) = 0.5e^{-25t} \text{ mA}$$

2.49 Option (D) is correct.

Impedance

$$= (5 - 3j) || (5 + 3j) = \frac{(5 - 3j) \times (5 + 3j)}{5 - 3j + 5 + 3j}$$
$$= \frac{(5)^2 - (3j)^2}{10} = \frac{25 + 9}{10} = 3.4$$

 $V_{AB} = \text{Current} \times \text{Impedance}$

 $=5 \angle 30^{\circ} \times 34 = 17 \angle 30^{\circ}$

Option (D) is correct.

The network is shown in figure below.

$$\begin{array}{c} \mathbf{P}_{1} \\ \mathbf{P}_{1} \\ \mathbf{\bar{o}} \end{array}$$

Now	$V_1 = A V_2 - BI_2$	(1)
and	$I_1 = CV_2 - DI_2$	(2)
also	$V_2 = -I_2 R_L$	(3)
From (1) and	(2) we get	
Thus	$\frac{V_1}{I_1} = \frac{A V_2 - B I_2}{C V_2 - D I_2}$	
Substituting v	value of V_2 from (3) we get	
т , т 1	$-A \times I_2 R_L - BI_2$	

Input Impedance $Z_{in} = \frac{-A \times I_2 R_L - B I_2}{-C \times I_2 R_L - D I_2}$ or $Z_{in} = \frac{A R_L + B}{C R_L + D}$

2.51

2.50

The circuit is as shown below.

Option (B) is correct.

At input port $V_1 = r_e I_1$ At output port $V_2 = r_0 (I_2 - \beta I_1) = -r_0 \beta I_1 + r_0 I_2$ Comparing standard equation $V_1 = z_{11}I_1 + z_{12}I_2$

$$V_2 = z_{21}I_1 + z_{22}I_2$$

$$z_{12} = 0 \text{ and } z_{21} = -n_0\beta$$

^{2.52} Option (B) is correct. For series RC network

network input impedance is

$$Z_{ins} = \frac{1}{sC} + R = \frac{1 + sRC}{sC}$$

Thus pole is at origin and zero is at $-\frac{1}{RC}$

For parallel RC network input impedance is

1

$$Z_{in} = \frac{\frac{1}{sC}R}{\frac{1}{sC}+R} = \frac{sC}{1+sRC}$$

Thus pole is at $-\frac{1}{RC}$ and zero is at infinity.

2.53 Option (A) is correct.

We know
$$v = \frac{Ldi}{dt}$$

Taking Laplace transform we get $V(s) = sLI(s) - Li(0^{+})$

As per given in question

$$-Li(0^+) = -1 \text{ mV}$$

Thus $i(0^+) = \frac{1 \text{ mV}}{2 \text{ mH}} = 0.5 \text{ A}$

Option (B) is correct.

2.54

At initial all voltage are zero. So output is also zero.

Thus
$$v_0(0^+) = 0$$

At steady state capacitor act as open circuit.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Thus,

 $v_0(\infty) = \frac{4}{5} \times v_i = \frac{4}{5} \times 10 = 8$

The equivalent resistance and capacitance can be calculate after killing all source

$$\begin{aligned} R_{eq} &= 1 \| 4 = 0.8 \text{ k}\Omega \\ C_{eq} &= 4 \| 1 = 5 \text{ }\mu\text{F} \\ \tau &= R_{eq} C_{eq} = 0.8 \text{k}\Omega \times 5 \mu\text{F} = 4 \text{ ms} \\ v_0(t) &= v_0(\infty) - [v_0(\infty) - v_0(0^+)] e^{-t/\tau} \\ &= 8 - (8 - 0) e^{-t/0.004} \\ v_0(t) &= 8 (1 - e^{-t/0.004}) \text{ Volts} \end{aligned}$$

2.55 Option (A) is correct.

Here $Z_2(s) = R_{neg} + Z_1(s)$ or $Z_2(s) = R_{neg} + \operatorname{Re} Z_1(s) + j\operatorname{Im} Z_1(s)$ For $Z_2(s)$ to be positive real, $\operatorname{Re} Z_2(s) \ge 0$ Thus $R_{neg} + \operatorname{Re} Z_1(s) \ge 0$ or $\operatorname{Re} Z_1(s) \ge - R_{neg}$

But
$$R_{neg}$$
 is negative quantity and $-R_{neg}$ is positive quantity.
Therefore

$$\operatorname{Re} Z_{1}(s) \geq |R_{neg}|$$
$$|R_{neg}| \leq \operatorname{Re} Z_{1}(j\omega)$$
 For all ω .

2.56 Option (C) is correct.

or

Transfer function is

$$\frac{Y(s)}{U(s)} = \frac{\frac{1}{sC}}{R + sL + \frac{1}{sC}} = \frac{1}{s^2 LC + scR + 1}$$
$$= \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

Comparing with $s^2 + 2\xi\omega_n s + \omega_n^2 = 0$ we have

Here

and

=

$$2\xi\omega_n = \frac{R}{L},$$
$$\omega_n = \frac{1}{\sqrt{LC}}$$

Thus

$$\xi = \frac{R}{2L} \sqrt{LC} = \frac{R}{2} \sqrt{\frac{C}{L}}$$

For no oscillations, $\xi \geq 1$ $\frac{R}{2}\sqrt{\frac{C}{L}} \ge 1$

Thus

or

$$R \ge 2\sqrt{\frac{L}{C}}$$

Option (B) is correct. 2.57 For given transformer

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$\frac{I_2}{I_1} = \frac{V_1}{V_2} = \frac{n}{1}$$

or $I_1 = \frac{I_2}{n}$ and $V_1 = nV_2$
Comparing with standard equation
 $V_1 = A V_2 + BI_2$

$$V_1 = A V_2 + BI_2$$

$$I_1 = CV_2 + DI_2$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} n & 0 \\ 0 & \frac{1}{n} \end{bmatrix}$$

$$x = \frac{1}{n}$$

Thus

2.58

Option (B) is correct. We have L = 1H and $C = \frac{1}{400} \times 10^{-6}$

Resonant frequency

$$f_{0} = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{1 \times \frac{1}{400} \times 10^{-6}}}$$
$$= \frac{10^{3} \times 20}{2\pi} = \frac{10^{4}}{\pi} \text{ Hz}$$

Option (C) is correct. 2.59

> Maximum power will be transferred when $R_L = R_s = 100\Omega$ In this case voltage across R_L is 5 V, therefore

$$P_{\text{max}} = \frac{V^2}{R} = \frac{5 \times 5}{100} = 0.25 \text{ W}$$

Option (C) is correct. 2.60

> For stability poles and zero interlace on real axis. In RC series network the driving point impedance is

$$Z_{ins} = R + \frac{1}{Cs} = \frac{1 + sRC}{sC}$$

Here pole is at origin and zero is at s = -1/RC, therefore first critical frequency is a pole and last critical frequency is a zero.

For RC parallel network the driving point impedance is

$$Z_{inp} = \frac{R\frac{1}{Cs}}{R + \frac{1}{Cs}} = \frac{R}{1 + sRC}$$

Here pole is s = -1/RC and zero is at ∞ , therefore first critical frequency is a pole and last critical frequency is a zero.

Option (A) is correct. 2.61

Applying KCL we get

$$i_1(t) + 5 \angle 0^\circ = 10 \angle 60^\circ$$

$$i_1(t) = 10\angle 60^\circ - 5\angle 0^\circ = 5 + 5\sqrt{3j} - 5$$

 $i_1(t) = 5\sqrt{3} \angle 90^\circ = \frac{10}{2}\sqrt{3} \angle 90^\circ$

or

If $L_1 = j5\Omega$ and $L_3 = j2\Omega$ the mutual induction is subtractive because current enters from dotted terminal of $j2\Omega$ coil and exit from dotted terminal of $j5\Omega$. If $L_2 = j2\Omega$ and $L_3 = j2\Omega$ the mutual induction is additive because current enters from dotted terminal of both coil. $7 - I M + I + M_{--} + I$ 11 11 Thus

$$Z = L_1 - M_{13} + L_2 + M_{23} + L_3 - M_{31} + M_{32}$$

= $j5 + j10 + j2 + j10 + j2 - j10 + j10 = j9$

Option (B) is correct. 2.63

Open circuit at terminal ab is shown below

$$0.5I_{i} + 5 \Omega = 0$$

Applying KCL at node we get

$$\frac{V_{ab}}{5} + \frac{V_{ab} - 10}{5} = 1$$

or

$$V_{ab} = 7.5 = V_{th}$$

Short circuit at terminal ab is shown below

Short circuit current from terminal ab is

$$I_{sc} = 1 + \frac{10}{5} = 3$$
 A

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$R_{th} = \frac{V_{th}}{I_{sc}} = \frac{7.5}{3} = 2.5\,\Omega$$

Here current source being in series with dependent voltage source make it ineffective.

Option (C) is correct.

Thus

Now

2.64

Here
$$V_a = 5$$
 V because $R_1 = R_2$ and total voltage drop is 10 V.

$$V_b = \frac{R_3}{R_3 + R_4} \times 10 = \frac{1.1}{2.1} \times 10 = 5.238 \text{ V}$$
$$V = V_a - V_b = 5 - 5.238 = -0.238 \text{ V}$$

Option (D) is correct. 2.65

For h parameters we have to write V_1 and I_2 in terms of I_1 and V_2 .

$$V_1 = h_{11}I_1 + h_{12}V_2$$

$$I_2 = h_{21}I_1 + h_{22}V_2$$
Applying KVL at input port

$$V_1 = 10I_1 + V_2$$

Applying KCL at output port

$$\frac{V_2}{20} = I_1 + I_2$$
$$I_2 = -I_1 + \frac{V_2}{20}$$

Thus from above equation we get

$$\begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} = \begin{bmatrix} 10 & 1 \\ -1 & 0.05 \end{bmatrix}$$

Option (B) is correct. 2.66

or

 $RC = 0.1 \times 10^{-6} \times 10^{3} = 10^{-4}$ sec Time constant Since time constant RC is very small, so steady state will be reached in 2 sec. At t = 2 sec the circuit is as shown in fig.

$$V_c = 3 V$$
$$V_2 = -V_c = -3 V$$

Option (B) is correct. 2.67

> For a tree there must not be any loop. So a, c, and d don't have any loop. Only b has loop.

Option (D) is correct. 2.68

> The sign of M is as per sign of L If current enters or exit the dotted terminals of both coil. The sign of M is opposite of L If current enters in dotted terminal of a coil and exit from the dotted terminal of other coil.

$$L_{eq} = L_1 + L_2 - 2M$$

Option (A) is correct. 2.69

Thus

Here
$$\omega = 2$$
 and $V = 1 \angle 0^{\circ}$
 $Y = \frac{1}{R} + j\omega C + \frac{1}{j\omega L}$
 $= 3 + j2 \times 3 + \frac{1}{j2 \times \frac{1}{4}} = 3 + j4$
 $= 5 \angle \tan^{-1} \frac{4}{3} = 5 \angle 53.11^{\circ}$
 $I = V^* Y = (1 \angle 0^{\circ})(5 \angle 53.1^{\circ}) = 5 \angle 53.1^{\circ}$
Thus $i(t) = 5 \sin(2t + 53.1^{\circ})$

Thus

2.70

$$v_i(t) = \sqrt{2} \sin 10^3 t$$

Here $\omega = 10^3$ rad and $V_i = \sqrt{2} \angle 0^\circ$

Now

$$V_{0} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} \cdot V_{t} = \frac{1}{1 + j\omega CR} V_{i}$$
$$= \frac{1}{1 + j \times 10^{3} \times 10^{-3}} \sqrt{2} \angle 0^{\circ}$$
$$= 1 / -45^{\circ}$$
$$v_{0}(t) = \sin(10^{3}t - 45^{\circ})$$

Option (C) is correct. 2.71 $v_i(t) = u(t)$ Input voltage $V_i(s) = \frac{1}{s}$ Taking Laplace transform

$$Z(s) = s + 2$$

$$I(s) = \frac{V_i(s)}{s+2} = \frac{1}{s(s+2)}$$

$$I(s) = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{s+2} \right]$$

or

Taking inverse Laplace transform

 $i(t) = \frac{1}{2}(1 - e^{-2t})u(t)$ i(t) = 0At t = 0, At $t = \frac{1}{2}$, i(t) = 0.31At $t = \infty$, i(t) = 0.5Graph (C) satisfies all these conditions.

Option (D) is correct. 2.72

We know that

where

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$
$$V_{2} = z_{11}I_{1} + z_{22}I_{2}$$
$$z_{11} = \frac{V_{1}}{2}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

$$z_{21} = \frac{V_2}{I_1}\Big|_{I_1=0}$$

Consider the given lattice network, when $I_2 = 0$. There is two similar path in the circuit for the current I_1 . So $I = \frac{1}{2}I_1$

For z_{11} applying KVL at input port we get

$$V_1 = I(Z_a + Z_b)$$

 $V_1 = \frac{1}{2}I_1(Z_a + Z_b)$

$$z_{11} = \frac{1}{2}(Z_a + Z_b)$$

 $(Z_a + Z_b)$

For Z_{21} applying KVL at output port we get

$$V_2 = Z_a \frac{I_1}{2} - Z_b \frac{I_1}{2}$$

 $V_2 = \frac{1}{2}I_1(Z_a - Z_b)$

Thus

Thus

$$z_{21}=\frac{1}{2}(Z_a-Z_b)$$

For this circuit $z_{11} = z_{22}$ and $z_{12} = z_{21}$. Thus

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{bmatrix} \frac{Z_a + Z_b}{2} & \frac{Z_a - Z_b}{2} \\ \frac{Z_a - Z_b}{2} & \frac{Z_a + Z_b}{2} \end{bmatrix}$$

Here $Z_a = 2j$ and $Z_b = 2\Omega$

Thus
$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{bmatrix} 1+j & j-1 \\ j-1 & 1+j \end{bmatrix}$$

Page 42

^{2.73} Option (B) is correct. Applying KVL,

$$v(t) = Ri(t) + \frac{Ldi(t)}{dt} + \frac{1}{C} \int_0^\infty i(t) dt$$

Taking L.T. on both sides,

$$V(s) = RI(s) + LsI(s) - Li(0^{+}) + \frac{I(s)}{sC} + \frac{v_c(0^{+})}{sC}$$
$$v(t) = u(t) \text{ thus } V(s) = \frac{1}{s}$$

Hence

$$\frac{1}{s} = I(s) + sI(s) - 1 + \frac{I(s)}{s} - \frac{1}{s}$$
$$\frac{2}{s} + 1 = \frac{I(s)}{s}[s^2 + s + 1]$$
$$I(s) = \frac{s+2}{s^2 + s + 1}$$

or

2.74 Option (B) is correct.

Characteristics equation is $2 + 20 + 10^6$

 $s^2 + 20s + 10^6 = 0$ Comparing with $s^2 + 2\xi\omega_n s + \omega_n^2 = 0$ we have

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

 $\omega_n = \sqrt{10^6} = 10^3$

Thus

$$2\xi = \frac{20}{10^3} = 0.02$$
$$Q = \frac{1}{2\xi} = \frac{1}{0.02} = 50$$

 $2\xi\omega = 20$

Now

2.75

$$H(s) = \frac{V_0(s)}{V_i(s)}$$

= $\frac{\frac{1}{sC}}{R + sL + \frac{1}{sC}} = \frac{1}{s^2 LC + sCR + 1}$
= $\frac{1}{s^2(10^{-2} \times 10^{-4}) + s(10^{-4} \times 10^4) + 1}$
= $\frac{1}{10^{-6}s^2 + s + 1} = \frac{10^6}{s^2 + 10^6s + 10^6}$

2.76 Option (D) is correct.

Impedance of series RLC circuit at resonant frequency is minimum, not zero. Actually imaginary part is zero.

$$Z = R + j \left(\omega L - \frac{\mathbf{1}}{\omega C} \right)$$

At resonance $\omega L - \frac{1}{\omega C} = 0$ and Z = R that is purely resistive. Thus S_1 is false

 $Q = R_{\sqrt{\frac{C}{L}}}$

 $Q = \frac{1}{G} \sqrt{\frac{C}{L}}$

Now quality factor

Since
$$G = \frac{1}{R}$$
,

If $G \uparrow$ then $Q \downarrow$ provided C and L are constant. Thus S_2 is also false.

2.77 Option (B) is correct.

Number of loops
$$= b - n + 1$$

= minimum number of equation

Number of branches
$$= b = 8$$

Number of nodes = n = 5

Minimum number of equation

$$= 8 - 5 + 1 = 4$$

2.78 Option (C) is correct.

For maximum power transfer $Z_L = Z_S^* = R_s - jX_s$

Thus $Z_L = Z_S = I$ $Z_L = 1 - 1j$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

 $Q' = \frac{100}{2} = 50$

When R, L and C are doubled,

Thus

or

2.80

Option (C) is correct. Applying KVL we get

$$\sin t = Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C}\int i(t) dt$$
$$\sin t = 2i(t) + 2\frac{di(t)}{dt} + \int i(t) dt$$

 $Q' = \frac{1}{2R}\sqrt{\frac{2L}{2C}} = \frac{1}{2R}\sqrt{\frac{L}{C}} = \frac{Q}{2}$

Differentiating with respect to t, we get

$$\cos t = \frac{2di(t)}{dt} + \frac{2d^2i(t)}{dt^2} + i(t)$$

^{2.81} Option (A) is correct.

For current i there is 3 similar path. So current will be divide in three path

so, we get

$$V_{ab} - \left(\frac{i}{3} \times 1\right) - \left(\frac{i}{6} \times 1\right) - \left(\frac{1}{3} \times 1\right) = 0$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$\frac{V_{ab}}{i} = R_{eq} = \frac{1}{3} + \frac{1}{6} + \frac{1}{3} = \frac{5}{6}\Omega$$

2.82 Option () is correct.

Data are missing in question as $L_1 \& L_2$ are not given.

Option (A) is correct.

At $t = 0^{-}$ circuit is in steady state. So inductor act as short circuit and capacitor act as open circuit.

At
$$t = 0^{-}$$
, $i_1(0^{-}) = i_2(0^{-}) = 0$
 $v_c(0^{-}) = V$

At $t = 0^+$ the circuit is as shown in fig. The voltage across capacitor and current in inductor can't be changed instantaneously. Thus

At
$$t = 0^+$$
, $i_1 = i_2 = -\frac{V}{2R}$

Option (C) is correct. 2.84

> When switch is in position 2, as shown in fig in question, applying KVL in loop (1),

 $RI_{1}(s) + \frac{V}{s} + \frac{1}{sC}I_{1}(s) + sL[I_{1}(s) - I_{2}(s)] = 0$ $I_1(s)\left[R + \frac{1}{sc} + sL\right] - I_2(s)sL = \frac{-V}{s}$ or $z_{11}I_1 + z_{12}I_2 = V_1$

Applying KVL in loop 2,

$$sL[I_{2}(s) - I_{1}(s)] + RI_{2}(s) + \frac{1}{sC}I_{2}(s) = 0$$

$$Z_{12}I_{1} + Z_{22}I_{2} = V_{2}$$
or
$$-sLI_{1}(s) + \left[R + sL + \frac{1}{sc}\right]I_{2}(s) = 0$$
Now comparing with
$$\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix} = \begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix}$$

we get

$$\begin{array}{cc} R + sL + \frac{1}{sC} & -sL \\ -sL & R + sL + \frac{1}{sC} \end{array} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} -\frac{V}{s} \\ 0 \end{bmatrix}$$

Option (B) is correct. 2.85

Zeros = - 3
Pole¹ = -1 + j
Pole² = -1 - j

$$Z(s) = \frac{K(s+3)}{(s+1+j)(s+1-j)}$$

$$= \frac{K(s+3)}{(s+1)^2 - j^2} = \frac{K(s+3)}{(s+1)^2 + 1}$$
statement $Z(0)|_{s=0} = 3$

From problem $\omega = 0$ Thus $\frac{3K}{2} = 3$ and we get K = 2

$$2(s+3)$$

$$Z(s) = \frac{1}{s^2 + 2s + 2}$$

Option (C) is correct. 2.86

$$v(t) = \underbrace{10\sqrt{2}\cos(t+10^{\circ})}_{v_1} + \underbrace{10\sqrt{5}\cos(2t+10^{\circ})}_{v_2}$$
hus we get $\omega_1 = 1$ and $\omega_2 = 2$

Thus we get $\omega_1 = 1$ and $\omega_2 = 2$

$$Z_{1} = R + j\omega_{1}L = 1 + j1$$

$$Z_{2} = R + j\omega_{2}L = 1 + j2$$

$$i(t) = \frac{v_{1}(t)}{Z_{1}} + \frac{v_{2}(t)}{Z_{2}}$$

$$= \frac{10\sqrt{2}\cos(t+10^{\circ})}{1+j} + \frac{10\sqrt{5}\cos(2t+10^{\circ})}{1+j2}$$

$$= \frac{10\sqrt{2}\cos(t+10^{\circ})}{\sqrt{1^{2}+2^{2}} \angle \tan^{-1}1} + \frac{10\sqrt{5}\cos(2t+10^{\circ})}{\sqrt{1^{2}+2^{2}}\tan^{-1}2}$$

$$= \frac{10\sqrt{2}\cos(t+10^{\circ})}{\sqrt{2} \angle \tan^{-1}45^{\circ}} + \frac{10\sqrt{5}\cos(2t+10^{\circ})}{\sqrt{5}\tan^{-1}2}$$

$$i(t) = 10\cos(t-35^{\circ}) + 10\cos(2t+10^{\circ} - \tan^{-1}2)$$

Option (A) is correct. 2.87 Using $\triangle - Y$ conversion

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

$$1 \circ \frac{2 \Omega}{1 \Omega} \qquad 2 \Omega \qquad 3 \Omega \qquad 0 2$$

$$1 \circ \frac{2 \Omega}{1 \Omega} \qquad 1 \Omega \qquad 0 2$$

$$R_1 = \frac{2 \times 1}{2 + 1 + 1} = \frac{2}{4} = 0.5$$

$$R_2 = \frac{1 \times 1}{2 + 1 + 1} = \frac{1}{4} = 0.25$$

$$R_3 = \frac{2 \times 1}{2 + 1 + 1} = 0.5$$
Now the circuit is as shown in figure below.

Now

2.88

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0} = 2 + 0.5 + 0.25 = 2.75$$
$$z_{12} = R_3 = 0.25$$

Option (A) is correct.

 $V_2 = V_1 = 20 \text{ V}$

Voltage across dependent current source is 20 thus power delivered by it is

$$PV_2 \times \frac{V_1}{5} = 20 \times \frac{20}{5} = 80 \text{ W}$$

It deliver power because current flows from its +ive terminals.

2.89

or

Option (C) is correct.

When switch was closed, in steady state, $i_L(0) = 2.5$ A

At $t = 0^+$, $i_L(0^+) = i_L(0^-) = 2.5$ A and all this current of will pass through 2 Ω resistor. Thus

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$V_x = -2.5 \times 20 = -50$$
 V

2.90 Option (A) is correct.

For maximum power delivered, R_L must be equal to R_{th} across same terminal.

 $V_{th} + 10I_1 = 0$

Applying KCL at Node, we get

$$0.5I_1 = \frac{V_{th}}{20} + I_1$$

 $I_1 = \frac{V_{th} - 50}{40}$

= 0

or

but

Thus
$$V_{th} + \frac{V_{th} - 50}{4}$$

$$V_{th} = 10 \text{ V}$$

For I_{sc} the circuit is shown in figure below.

but

or

$$I_{1} = -\frac{50}{40} = -1.25 \text{ A}$$
$$I_{sc} = -0.5 \times -12.5 = 0.625 \text{ A}$$
$$R_{th} = \frac{V_{th}}{I_{sc}} = \frac{10}{0.625} = 16 \Omega$$

 $I_{sc} = 0.5I_1 - I_1 = -0.5I_1$

 $I_P, V_P \rightarrow$ Phase current and Phase voltage $I_L, V_L \rightarrow$ Line current and line voltage

Now

2.91

2.92

2.93

or

also

So,

$$1500 = 3\left(\frac{V_L}{\sqrt{3}}\right)(I_L)\cos\theta$$
$$I_L = \left(\frac{V_L}{\sqrt{3}Z_L}\right)$$
$$1500 = 3\left(\frac{V_L}{\sqrt{3}}\right)\left(\frac{V_L}{\sqrt{3}Z_L}\right)\cos\theta$$
$$Z_L = \frac{(400)^2(.844)}{1500} = 90\,\Omega$$

 $V_P = \left(\frac{V_L}{\sqrt{3}}\right)$ and $I_P = I_L$

Power = $3 V_P I_L \cos \theta$

As power factor is leading

So, $\cos \theta = 0.844 \rightarrow \theta = 32.44$ As phase current leads phase voltage

 $Z_L = 90 \angle -\theta = 90 \angle -32.44^\circ$

Option (C) is correct.

Applying KCL, we get

$$\frac{e_0 - 12}{4} + \frac{e_0}{4} + \frac{e_0}{2 + 2} = 0$$

$$e_0 = 4 V$$

Option (A) is correct.

The star delta circuit is shown as below

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Now

$$Z_A = Z_B = Z_C = \frac{\sqrt{3} Z \sqrt{3} Z}{\sqrt{3} Z + \sqrt{3} Z + \sqrt{3} Z} = \frac{Z}{\sqrt{3}}$$

2.94 Option (C) is correct.

2.95 Option (D) is correct.

We apply source conversion the circuit as shown in fig below.

$$80 \text{ V} \xrightarrow{10 \Omega} 2\Omega \stackrel{e_0}{\longleftarrow} 16 \text{ V} \xrightarrow{1} 12 \Omega \stackrel{e_0}{\longleftarrow} \stackrel{e_0}{\longrightarrow} \stackrel{e_0$$

Now applying nodal analysis we have $e_0 - 80 + e_0 - 16$

$$\frac{a_0}{10+2} + \frac{a_0}{12} + \frac{a_0}{6} = 0$$

or

$$4e_0 = 112$$

 $e_0 = \frac{112}{4} = 28 \text{ V}$

2.96 Option (A) is correct.

$$I_{2} = \frac{E_{m} \angle 0^{\circ}}{R_{2} + \frac{1}{j\omega C}} = E_{m} \angle 0^{\circ} \frac{j\omega C}{1 + j\omega CR_{2}}$$
$$\angle I_{2} = \frac{\angle 90^{\circ}}{\angle \tan^{-1}\omega CR_{2}}$$
$$I_{2} = \frac{E_{m}\omega C}{\sqrt{1 + \omega^{2}C^{2}R_{2}^{2}}} \angle (90^{\circ} - \tan^{-1}\omega CR_{2})$$
$$I_{2} = 0$$
$$I_{2} = \frac{E_{m}}{R_{2}}$$

Only fig. given in option (A) satisfies both conditions.

2.97 Option (A) is correct.

and at $\omega = \infty$.

At $\omega = 0$

$$X_s = \omega L = 10 \,\Omega$$

For maximum power transfer

$$R_L = \sqrt{R_s^2 + X_s^2} = \sqrt{10^2 + 10^2} = 14.14 \,\Omega$$

Option (C) is correct. Applying KVL in LHS loop

 $E_{1} = 2I_{1} + 4(I_{1} + I_{2}) - 10E_{1}$ $E_{1} = \frac{6I_{1}}{11} + \frac{4I_{2}}{11}$

or

2.98

2.99

Thus $z_{11} = \frac{6}{11}$

Applying KVL in RHS loop

$$E_2 = 4(I_1 + I_2) - 10E_1$$

= $4(I_1 + I_2) - 10\left(\frac{6I_1}{11} + \frac{4I_2}{11}\right)$
= $-\frac{16I_1}{11} + \frac{4I_2}{11}$

Thus $z_{21} = -\frac{16}{11}$

Option (D) is correct.

At $\omega = 0$, circuit act as shown in figure below.

At $w = \infty$, circuit act as shown in figure below:

At resonant frequency $\omega = \sqrt{\frac{1}{LC}}$ circuit acts as shown in fig and $V_0 = 0$.

Thus it is a band reject filter.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

2.100 Option (D) is correct.

Applying KCL we get
$$i_L = e^{at} + e^{bt}$$

 $V(t) = v_L = L\frac{di_L}{dt} = L\frac{d}{dt}[e^{at} + e^{bt}] = ae^{at} + be^{bt}$

^{2.101} Option (A) is correct. Going from 10 V to 0 V

$$10 + 5 + E + 1 = 0$$

$$E = -16 \text{ V}$$

2.102 Option (C) is correct.

or

(finite value)

This is a reciprocal and linear network. So we can apply reciprocity theorem which states "Two loops A & B of a network N and if an ideal voltage source E in loop A produces a current I in loop B, then interchanging positions an identical source in loop B produces the same current in loop A. Since network is linear, principle of homogeneity may be applied and when volt source is doubled, current also doubles.

Now applying reciprocity theorem

$$i = 2$$
 A for 10 V
 $V = 10$ V, $i = 2$ A
 $V = -20$ V, $i = -4$ A

2.103 Option (C) is correct.

Tree is the set of those branch which does not make any loop and

Page 46

connects all the nodes.

abfg is not a tree because it contains a loop l node (4) is not connected

Option (A) is correct. 2.104

For a 2-port network the parameter h_{21} is defined as

Applying node equation at node a we get

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

$$\frac{V_a - V_1}{R} + \frac{V_a - 0}{R} + \frac{V_a - 0}{R} = 0$$

$$3 V_a = V_1 \qquad \Rightarrow V_a = \frac{V_1}{3}$$

$$I_1 = \frac{V_1 - V_a}{R} = \frac{V_1 - \frac{V_1}{3}}{R} = \frac{2 V_1}{3R}$$

Now

and

Thus

$$I_2 = \frac{0 - V_a}{R} = \frac{0 - \frac{V_1}{3}}{R} = \frac{-V_1}{3R}$$
$$\frac{I_2}{I_1}\Big|_{V_2 = 0} = h_{21} = \frac{-V_1/3R}{2V_1/3R} = \frac{-1}{2}$$

Option (A) is correct. 2.105

Applying node equation at node A

$$\frac{V_{th} - 100(1+j0)}{3} + \frac{V_{th} - 0}{4j} = 0$$

or $4jV_{th} - 4j100 + 3V_{th} = 0$
or $V_{th}(3+4j) = 4j100$
 $V_{th} = \frac{4j100}{3+4j}$

By simplifying

$$V_{th} = rac{4j100}{3+4j} imes rac{3-4j}{3-4j}$$
 $V_{th} = 16j(3-j4)$

 $^{-1}$

2

2.106 Option (C) is correct.

> For maximum power transfer R_L should be equal to R_{Th} at same terminal.

so, equivalent Resistor of the circuit is

$$R_{eq} = 5\Omega \left\| 20\Omega + 4\Omega \right\|$$

$$R_{eq} = \frac{5.20}{5+20} + 4 = 4 + 4 = 8\,\Omega$$

Option (D) is correct. 2.107 Delta to star conversion

$$R_{1} = \frac{R_{ab}R_{ac}}{R_{ab} + R_{ac} + R_{bc}} = \frac{5 \times 30}{5 + 30 + 15} = \frac{150}{50} = 3 \Omega$$

$$R_{2} = \frac{R_{ab}R_{bc}}{R_{ab} + R_{ac} + R_{bc}} = \frac{5 \times 15}{5 + 30 + 15} = 1.5 \Omega$$

$$R_{3} = \frac{R_{ac}R_{bc}}{R_{ab} + R_{ac} + R_{bc}} = \frac{15 \times 30}{5 + 30 + 15} = 9 \Omega$$

Option (C) is correct. 2.108

No. of branches
$$= n + l - 1 = 7 + 5 - 1 = 11$$

Option (B) is correct. 2.109

> In nodal method we sum up all the currents coming & going at the node So it is based on KCL. Furthermore we use ohms law to determine current in individual branch. Thus it is also based on ohms law.

- Option (A) is correct. 2.110 Superposition theorem is applicable to only linear circuits.
- Option (B) is correct. 2.111
- Option (B) is correct. 2.112

For reciprocal network $y_{12} = y_{21}$ but here $y_{12} = -\frac{1}{2} \neq y_{21} = \frac{1}{2}$. Thus circuit is non reciprocal. Furthermore only reciprocal circuit are passive circuit.

2.113 Option (C) is correct.

Taking b as reference node and applying KCL at a we get

$$\frac{V_{ab} - 1}{2} + \frac{V_{ab}}{2} = 3$$
$$V_{ab} - 1 + V_{ab} = 6$$
$$V_{ab} = \frac{6 + 1}{2} = 3.5 \text{ V}$$

or

or

Option (A) is correct. 2.114

Option (B) is correct. 2.115 The given figure is shown below.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Applying KCL at node a we have $I = i_0 + i_1 = 7 + 5 = 12 \text{ A}$

$$i_4 = -12 \operatorname{amp}$$

2.116 Option (A) is correct.

 \mathbf{SO}

$$5 V + 2 \Omega \neq 4 V = 4 V$$

$$5 V + 2 \Omega \neq 4 V$$

$$3 \Omega + V = 0$$
(Let take this node as ground)

so V = 3 - 0 = 3 volt

- 2.117 Option (D) is correct.
 - Can not determined V without knowing the elements in box.
- ^{2.118} Option (A) is correct. The voltage V is the voltage across voltage source and that is 10 V.
- 2.119 Option (B) is correct. Voltage across capacitor

$$V_C(t) = V_C(\infty) + (V_C(0) - V_C(\infty)) e^{\frac{-t}{RC}}$$

Here $V_C(\infty) = 10$ V and $(V_C(0) = 6$ V. Thus

$$V_C(t) = 10 + (6 - 10) e^{\frac{-t}{RC}} = 10 - 4e^{\frac{-t}{RC}} = 10 - 4e^{\frac{-t}{8}}$$
$$V_R(t) = 10 - V_C(t)$$

$$= 10 - 10 + 4e^{\frac{-t}{RC}} = 4e^{\frac{-t}{RC}}$$

Energy absorbed by resistor

$$E \int_0^\infty \frac{V_R^2(t)}{R} = \int_0^\infty \frac{16e^{\frac{-t}{4}}}{4} = \int_0^\infty 4e^{\frac{-t}{4}} = 16 \text{ J}$$

2.120 Option (B) is correct.

It is a balanced whetstone bridge

$$\left(\frac{R_1}{R_2} = \frac{R_3}{R_4}\right)$$

so equivalent circuit is

$$Z_{eq} = (4\Omega \| 8\Omega) = \frac{4 \times 8}{4+8} = \frac{8}{3}$$

2.121 Option (B) is correct.

Current in A_2 , $I_2 = 3 \text{ amp}$ Inductor current can be defined as $I_2 = -3j$ Current in A_3 , $I_3 = 4$ Total current $I_1 = I_2 + I_3$ $I_1 = 4 - 3j$

$$|I| = \sqrt{(4)^2 + (3)^2} = 5$$
 amp

2.122 Option (C) is correct.

For a tree we have (n-1) branches. Links are the branches which from a loop, when connect two nodes of tree. so if total no. of branches = b

No. of links = b - (n - 1) = b - n + 1

Total no. of links in equal to total no. of independent loops.

2.123 Option (B) is correct.

In the steady state condition all capacitors behaves as open circuit & Inductors behaves as short circuits as shown below :

$$10 \text{ k}\Omega \qquad 1 \text{ H} \qquad + V_{C2} - 2 \text{ H} \qquad 25 \text{ k}\Omega$$

$$+ V_{C1} \qquad 40 \text{ k}\Omega \qquad V_{C3}$$

Thus voltage across capacitor C_1 is

$$V_{C_1} = \frac{100}{10+40} \times 40 = 80 \text{ V}$$

Now the circuit faced by capacitor C_2 and C_3 can be drawn as below :

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

Voltage across capacitor C_2 and C_3 are

$$V_{C_2} = 80 \frac{C_3}{C_2 + C_3} = 80 \times \frac{3}{5} = 48 \text{ volt}$$
$$V_{C_3} = 80 \frac{C_2}{C_2 + C_3} = 80 \times \frac{2}{5} = 32 \text{ volt}$$

UNIT 3 ELECTRONICS DEVICES

2013

ONE MARK

3.6

- In a forward biased pn junction diode, the sequence of events that best describes the mechanism of current flow is
 - (A) injection, and subsequent diffusion and recombination of minority carriers
 - (B) injection, and subsequent drift and generation of minority carriers
 - (C) extraction, and subsequent diffusion and generation of minority carriers
 - (D) extraction, and subsequent drift and recombination of minority carriers
- ^{3.2} In IC technology, dry oxidation (using dry oxygen) as compared to wet oxidation (using steam or water vapor) produces
 - (A) superior quality oxide with a higher growth rate
 - (B) inferior quality oxide with a higher growth rate
 - (C) inferior quality oxide with a lower growth rate
 - (D) superior quality oxide with a lower growth rate
- ^{3.3} In a MOSFET operating in the saturation region, the channel length modulation effect causes
 - (A) an increase in the gate-source capacitance
 - (B) a decrease in the transconductance
 - (C) a decrease in the unity-gain cutoff frequency
 - (D) a decrease in the output resistance

2013

3.4

TWO MARKS

The small-signal resistance (i.e., dV_B/dI_D) in k Ω offered by the n-channel MOSFET M shown in the figure below, at a bias point of $V_B = 2$ V is (device data for M: device transconductance parameter $k_N = \mu_n C'_{0x}(W/L) = 40 \,\mu\text{A/V}^2$, threshold voltage $V_{TN} = 1$ V, and neglect body effect and channel length modulation effects)

2012

3.5

TWO MARKS

The source of a silicon $(n_i = 10^{10} \text{ per cm}^3)$ *n*-channel MOS transistor has an area of 1 sq µm and a depth of 1 µm. If the dopant density in the source is $10^{19}/\text{cm}^3$, the number of holes in the source region with the above volume is approximately (A) 10^7 (B) 100

(A) 10°	(B) 100
(C) 10	(D) 0

In the CMOS circuit shown, electron and hole mobilities are equal, and M_1 and M_2 are equally sized. The device M_1 is in the linear region if

(B) $1.875 \text{ V} < V_{in} < 3.125 \text{ V}$ (D) $0 < V_{in} < 5 \text{ V}$

Common Data For Q. 2 and 3 :

(C) $V_{in} > 3.125 \text{ V}$

In the three dimensional view of a silicon *n*-channel MOS transistor shown below, $\delta = 20$ nm. The transistor is of width 1 µm. The depletion width formed at every *p*-*n* junction is 10 nm. The rela-

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

- ^{3.7} The gate source overlap capacitance is approximately (A) 0.7 fF (B) 0.7 pF (C) 0.35 fF (D) 0.24 pF
- ^{3.8} The source-body junction capacitance is approximately (A) 2 fF (B) 7 fF (C) 2 pF (D) 7 pF

2011

3.9

- Drift current in the semiconductors depends upon
- (A) only the electric field
- (B) only the carrier concentration gradient
- (C) both the electric field and the carrier concentration
- (D) both the electric field and the carrier concentration gradient

ONE MARK

A Zener diode, when used in voltage stabilization circuits, is biased

Page 48

TWO MARKS

- in
- (A) reverse bias region below the breakdown voltage
- (B) reverse breakdown region
- (C) forward bias region
- (D) forward bias constant current mode
- A silicon PN junction is forward biased with a constant current at 3.11 room temperature. When the temperature is increased by 10°C, the forward bias voltage across the PN junction
 - (A) increases by 60 mV
 - (B) decreases by 60 mV
 - (C) increases by 25 mV
 - (D) decreases by 25 mV

```
2011
```

TWO MARKS

Common Data For Q. 3.12 & 3.13 :

The channel resistance of an N-channel JFET shown in the fig-

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

ure below is 600 Ω when the full channel thickness (t_{ch}) of 10 μ m is available for conduction. The built-in voltage of the gate P^+N junction (V_{bi}) is -1 V. When the gate to source voltage (V_{GS}) is 0 V, the channel is depleted by $1 \ \mu m$ on each side due to the built in voltage and hence the thickness available for conduction is only 8 μm

3.12	The channel resistance when	$V_{GS} = -3$ V is
	(A) 360 Ω	(B) 917 Ω
	(C) 1000 Ω	(D) 3000 Ω

8.13	The channel resistance when	$V_{GS} = 0 \text{ V}$ is
	(A) 480 Ω	(B) 600 Ω
	(C) 750 Ω	(D) 1000 Ω

2010	ONE MARK

- At room temperature, a possible value for the mobility of electrons 3.14 in the inversion layer of a silicon n-channel MOSFET is (B) $1350 \,\mathrm{cm}^2/\mathrm{V-s}$ (A) $450 \,\mathrm{cm}^2/\mathrm{V}$ -s (C) $1800 \text{ cm}^2/\text{V-s}$ (D) $3600 \,\mathrm{cm}^2/\mathrm{V}$ -s
- Thin gate oxide in a CMOS process in preferably grown using 3.15 (A) wet oxidation (B) dry oxidation

(\mathbf{C})	epitaxial	oxidation
(\bigcirc)	opiumiai	OMIGATION

(D) ion implantation

2010

3.16

In a uniformly doped BJT, assume that N_E, N_B and N_C are the

emitter injection efficiency of the BJT is close unity, which one of the following condition is TRUE (A) $N_E = N_B = N_C$ (B) $N_E >> N_B$ and $N_B > N_C$

(C)
$$N_E = N_B$$
 and $N_B < N_C$ (D) $N_E < N_B < N_C$

emitter, base and collector doping in $atoms/cm^3$, respectively. If the

- Compared to a p-n junction with $N_A = N_D = 10^{14} / \text{cm}^3$, which 3.17 one of the following statements is TRUE for a p-n junction with $N_A = N_D = 10^{20} / \text{cm}^3$?
 - (A) Reverse breakdown voltage is lower and depletion capacitance is lower
 - (B) Reverse breakdown voltage is higher and depletion capacitance is lower
 - (C) Reverse breakdown voltage is lower and depletion capacitance is higher
 - (D) Reverse breakdown voltage is higher and depletion capacitance is higher

Statements for Linked Answer Question : 3.10 & 3.11 :

The silicon sample with unit cross-sectional area shown below is in thermal equilibrium. The following information is given: T = 300 Kelectronic charge = 1.6×10^{-19} C, thermal voltage = 26 mV and electron mobility $= 1350 \,\mathrm{cm}^2/\mathrm{V}$ -s

3.18	The magnitude of the e	electric field at $x = 0.5 \mu\text{m}$ is
	(A) 1 kV/cm	(B) 5 kV/cm
	(C) 10 kV/cm	(D) 26 kV/cm

The magnitude of the electron of the electron drift current density 3.19 at $x = 0.5 \,\mu\text{m}$ is (A) $2.16 \times 10^4 \,\text{A/cm}^2$

(B) $1.08 \times 10^4 \,\text{A/m}^2$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(C) $4.32 \times 10^3 \,\text{A/cm}^2$

(D) $6.48 \times 10^2 \,\mathrm{A/cm^2}$

```
2009
```

3.20

ONE MARK

In an n-type silicon crystal at room temperature, which of the following can have a concentration of 4×10^{19} cm⁻³? (A) Silicon atoms (B) Holes

- (C) Dopant atoms (D) Valence electrons
- The ratio of the mobility to the diffusion coefficient in a semiconductor 3.21 has the units
 - (A) V^1 (B) cm. V^1

(D) *V.s*

(C) $V.cm^{-1}$

2009

TWO MARKS

Consider the following two statements about the internal conditions 3.22 in a n-channel MOSFET operating in the active region. S1: The inversion charge decreases from source to drain S2 : The channel potential increases from source to drain. Which of the following is correct?

- (A) Only S2 is true
- (B) Both S1 and S2 are false
- (C) Both S1 and S2 are true, but S2 is not a reason for S1
- (D) Both S1 and S2 are true, and S2 is a reason for S1

Common Data For Q. 3.13 and 3.14

Consider a silicon p - n junction at room temperature having the following parameters:

Doping on the *n*-side = 1×10^{17} cm⁻³

Depletion width on the *n*-side = $0.1 \mu m$

Depletion width on the p-side = $1.0 \mu m$

Intrinsic carrier concentration $= 1.4 \times 10^{10}$ cm⁻³

Thermal voltage = 26 mV

Permittivity of free space = 8.85×10^{-14} F.cm⁻¹ Dielectric constant of silicon = 12

The built-in potential of the junction 3.23

- (A) is 0.70 V
- (B) is 0.76 V
- (C) is 0.82 V

(D) Cannot be estimated from the data given

The peak electric field in the device is 3.24

- (A) 0.15 MV . cm⁻¹, directed from p-region to n-region
- (B) 0.15 MV . cm⁻¹, directed from n –region to p –region
- (C) 1.80 MV . cm⁻¹, directed from *p*-region to n-region
- (D) 1.80 MV . cm⁻¹, directed from n –region to p –region

2008

ONE MARK

3.30

- Which of the following is NOT associated with a p-n junction ? 3.25 (A) Junction Capacitance (B) Charge Storage Capacitance
 - (C) Depletion Capacitance (D) Channel Length Modula-
 - tions
- Which of the following is true? 3.26
 - (A) A silicon wafer heavily doped with boron is a p^+ substrate
 - (B) A silicon wafer lightly doped with boron is a p^+ substrate
 - (C) A silicon wafer heavily doped with arsenic is a p^+ substrate
 - (D) A silicon wafer lightly doped with arsenic is a p^+ substrate
- A silicon wafer has 100 nm of oxide on it and is furnace at a 3.31 3.27 temperature above 1000° C for further oxidation in dry oxygen. The oxidation rate
 - (A) is independent of current oxide thickness and temperature
 - (B) is independent of current oxide thickness but depends on temperature
 - (C) slows down as the oxide grows
 - (D) is zero as the existing oxide prevents further oxidation

The drain current of MOSFET in saturation is given by $I_D = K(V_{GS} - V_T)^2$ where K is a constant.

The magnitude of the transconductance q_m is

A)
$$\frac{K(V_{GS} - V_T)^2}{V_{DS}}$$
 (B) $2K(V_{GS} - V_T)$
C) $\frac{I_d}{V_{GS} - V_{DS}}$ (D) $\frac{K(V_{GS} - V_T)^2}{V_{GS}}$

2008

TWO MARKS

3.29

3.28

The measured trans conductance g_m of an NMOS transistor operating in the linear region is plotted against the gate voltage V_G at a constant drain voltage V_D . Which of the following figures represents the expected dependence of g_m on V_G ?

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

Silicon is doped with boron to a concentration of 4×10^{17} atoms cm³ . Assume the intrinsic carrier concentration of silicon to be 1.5×10^{10} / cm³ and the value of kT/q to be 25 mV at 300 K. Compared to undopped silicon, the fermi level of doped silicon

- (A) goes down by 0.31 eV(B) goes up by 0.13 eV
- (C) goes down by 0.427 eV(D) goes up by 0.427 eV

The cross section of a JFET is shown in the following figure. Let V_c be -2 V and let V_P be the initial pinch -off voltage. If the width W is doubled (with other geometrical parameters and doping levels remaining the same), then the ratio between the mutual trans conductances of the initial and the modified JFET is

(A) 4
(B)
$$\frac{1}{2} \left(\frac{1 - \sqrt{2}/V_p}{1 - \sqrt{1/2}V_p} \right)$$

(C) $\left(\frac{1 - \sqrt{2}/V_p}{1 - \sqrt{1/2}V_p} \right)$
(D) $\frac{1 - (2 - \sqrt{V_p})}{1 - [1(2\sqrt{V_p})]}$

Consider the following assertions.

- S1 : For Zener effect to occur, a very abrupt junction is required.
- S2 : For quantum tunneling to occur, a very narrow energy barrier is required.

Which of the following is correct?

(A) Only S2 is true

3.32

(B) S1 and S2 are both true but S2 is not a reason for S1

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

(C) S1 and S2 and are both true but S2 is not a reason for S1

(D) Both S1 and S2 are false

2007

ONE MARK

^{3.33} The electron and hole concentrations in an intrinsic semiconductor are n_i per cm³ at 300 K. Now, if acceptor impurities are introduced with a concentration of N_A per cm³ (where $N_A >> n_i$, the electron concentration per cm³ at 300 K will be)

(A) n_i	(B) $n_i + N_A$
(C) $N_A - n_i$	(D) $\frac{n_i^2}{N_A}$

- 3.34 In a p^+n junction diode under reverse biased the magnitude of electric field is maximum at
 - (A) the edge of the depletion region on the p-side
 - (B) the edge of the depletion region on the n-side
 - (C) the p^+n junction
 - (D) the centre of the depletion region on the n-side

2007

TWO MARKS

3.40

- Group I lists four types of p n junction diodes. Match each device in Group I with one of the option in Group II to indicate the bias condition of the device in its normal mode of operation. Group - I Group-II
 - (P) Zener Diode (1) Forward bias
 - (Q) Solar cell (2) Reverse bias
 - (\mathbf{Q}) Donar con
 - (R) LASER diode
 - (S) Avalanche Photodiode

(A) P - 1, Q - 2, R - 1, S - 2

(B) P - 2, Q - 1, R - 1, S - 2

(C) P - 2, Q - 2, R - 1, S - 2
(D) P - 2, Q - 1, R - 2, S - 2

3.36 Group I lists four different semiconductor devices. match each device in Group I with its charactecteristic property in Group II

Group-I	Gro	oup-II
(P) BJT	(1)	Population iniversion
(Q) MOS capacitor	(2)	Pinch-off voltage
(R) LASER diode	(3)	Early effect
(S) JFET	(4)	Flat-band voltage
(A) P - 3, Q - 1, R - 4, S -	2	
(B) P - 1, Q - 4, R - 3, S -	2	
(C) P - 3, Q - 4, R - 1, S -	2	
(D) P - 3, Q - 2, R - 1, S -	4	

- ^{3.37} A p^+n junction has a built-in potential of 0.8 V. The depletion layer width a reverse bias of 1.2 V is 2 µm. For a reverse bias of 7.2 V, the depletion layer width will be
 - (A) 4 μm
 (B) 4.9 μm
 (C) 8 μm
 (D) 12 μm
- The DC current gain (β) of a BJT is 50. Assuming that the emitter injection efficiency is 0.995, the base transport factor is (A) 0.980 (B) 0.985

$$(C) 0.990 (D) 0.995$$

Common Data For Q. 2.29, 2.30 and 2.31 :

The figure shows the high-frequency capacitance - voltage characteristics of Metal/Sio²/silicon (MOS) capacitor having an area of 1×10^{-4} cm². Assume that the permittivities ($\varepsilon_0 \varepsilon_r$) of silicon and Sio_2 are 1×10^{-12} F/cm and 3.5×10^{-13} F/cm respectively.

The gate oxide thickness	s in the MOS capacitor is
(A) 50 nm	(B) 143 nm $$
(C) 350 nm	(D) 1 μm

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

- The maximum depletion layer width in silicon is (A) $0.143 \ \mu m$ (B) $0.857 \ \mu m$ (C) $1 \ \mu m$ (D) $1.143 \ \mu m$
- ^{3.41} Consider the following statements about the C-V characteristics plot :
 - S1 : The MOS capacitor has as n-type substrate
 - S2 : If positive charges are introduced in the oxide, the C-V polt will shift to the left.
 - Then which of the following is true?
 - (A) Both S1 and S2 are true
 - (B) S1 is true and S2 is false

- (C) S1 is false and S2 is true
- (D) Both S1 and S2 are false

2006

ONE MARK

3.49

The values of voltage (V_D) across a tunnel-diode corresponding to 3.42 peak and valley currents are V_p , V_D respectively. The range of tunneldiode voltage for V_D which the slope of its $I - V_D$ characteristics is negative would be (R) $0 < V_{\rm P}$ $(\Lambda) T T$

(A) $V_D < 0$	(B) $0 \le V_D < V_p$
(C) $V_p \leq V_D < V_v$	(D) $V_D \ge V_v$

- The concentration of minority carriers in an extrinsic semiconductor 3.43 under equilibrium is
 - (A) Directly proportional to doping concentration
 - (B) Inversely proportional to the doping concentration
 - (C) Directly proportional to the intrinsic concentration
 - (D) Inversely proportional to the intrinsic concentration
- Under low level injection assumption, the injected minority carrier 3.44 current for an extrinsic semiconductor is essentially the
 - (A) Diffusion current (B) Drift current
 - (C) Recombination current (D) Induced current
- The phenomenon known as "Early Effect" in a bipolar transistor 3.45 refers to a reduction of the effective base-width caused by
 - (A) Electron hole recombination at the base
 - (B) The reverse biasing of the base collector junction
 - (C) The forward biasing of emitter-base junction
 - (D) The early removal of stored base charge during saturation-tocut off switching

2006

TWO MARKS

In the circuit shown below, the switch was connected to position 1 3.46 at t < 0 and at t = 0, it is changed to position 2. Assume that the 3.52 diode has zero voltage drop and a storage time t_s . For $0 < t \le t_s$, v_R is given by (all in Volts)

The majority carriers in an n-type semiconductor have an average 3.47 drift velocity v in a direction perpendicular to a uniform magnetic field B. The electric field E induced due to Hall effect acts in the direction

(A) $v \times B$	(B) $B \times v$
(C) along v	(D) opposite to v

- Find the correct match between Group 1 and Group 2 3.48 Group 1 Group 2 E - Varactor diode 1. Voltage reference
 - F PIN diode 2. High frequency switch
 - G Zener diode 3. Tuned circuits
 - H Schottky diode 4. Current controlled attenuator
 - (A) E 4, F 2, G 1, H 3

(B) E - 3, F - 4, G - 1, H - 3 (C) E - 2, F - 4, G - 1, H - 2(D) E - 1, F - 3, G - 2, H - 4

A heavily doped *n*- type semiconductor has the following data: Hole-electron ratio :0.4 $:4.2\times10^8$ atoms/m³ Doping concentration $:1.5\times10^4$ atoms/m³ Intrinsic concentration The ratio of conductance of the n-type semiconductor to that of the intrinsic semiconductor of same material and ate same temperature is given by (A) 0.00005 (B) 2000 (C) 10000 (D) 20000

2005

ONE MARK

TWO MARKS

The bandgap of Silicon at room temperature is 3.50 (A) 1.3 eV(B) 0.7 eV

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(C) 1.1 eV

3.51

- (D) 1.4 eV
- A Silicon PN junction at a temperature of 20° C has a reverse saturation current of 10 pico - Ameres (pA). The reserve saturation current at 40°C for the same bias is approximately (A) 30 pA (B) 40 pA (C) 50 pA (D) 60 pA
- The primary reason for the widespread use of Silicon in semiconductor device technology is
 - (A) abundance of Silicon on the surface of the Earth.
 - (B) larger bandgap of Silicon in comparison to Germanium.
 - (C) favorable properties of Silicon dioxide (SiO_2)
 - (D) lower melting point

2005

3.53

3.54

A Silicon sample A is doped with 10^{18} atoms/cm³ of boron. Another sample B of identical dimension is doped with 10^{18} atoms/cm³ phosphorus. The ratio of electron to hole mobility is 3. The ratio of conductivity of the sample A to B is

(A) 3	(B) $\frac{1}{3}$
(C) $\frac{2}{3}$	(D) $\frac{3}{2}$

- A Silicon PN junction diode under reverse bias has depletion region of width 10 μ m. The relative permittivity of Silicon, $\varepsilon_r = 11.7$ and the permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m. The depletion capacitance of the diode per square meter is (A) 100 μF (B) 10 μF
 - (D) 20 µF (C) 1 µF
- A MOS capacitor made using p type substrate is in the accumulation 3.55 mode. The dominant charge in the channel is due to the presence of

(A) holes

3.56

- (C) positively charged icons
- For an n-channel MOSFET and its transfer curve shown in the $_{3.61}$ figure, the threshold voltage is

(B) electrons

(D) negatively charged ions

- (A) 1 V and the device is in active region
- (B) -1 V and the device is in saturation region

(C) 1 V and the device is in saturation region

(D) -1 V and the device is an active region

2004

ONE MARK

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

- The impurity commonly used for realizing the base region of a silicon n-p-n transistor is (A) Gallium (B) Indium
 - (C) Boron (D) Phosphorus
- ^{3.58} If for a silicon npn transistor, the base-to-emitter voltage (V_{BE}) is 0.7 V and the collector-to-base voltage (V_{CB}) is 0.2 V, then the transistor is operating in the
 - (A) normal active mode(B) saturation mode(C) inverse active mode(D) cutoff mode
- 3.59 Consider the following statements S1 and S2.
 - S1 : The β of a bipolar transistor reduces if the base width is increased.
 - S2 : The β of a bipolar transistor increases if the dopoing concentration in the base is increased.

Which remarks of the following is correct ?

- (A) S1 is FALSE and S2 is TRUE
- (B) Both S1 and S2 are TRUE
- (C) Both S1 and S2 are FALSE
- (D) S1 is TRUE and S2 is FALSE
- 3.60 Given figure is the voltage transfer characteristic of

- (A) an NOMS inverter with enhancement mode transistor as load
- (B) an NMOS inverter with depletion mode transistor as load

(C) a CMOS inverter

(D) a BJT inverter

		Fig Q. (A) 56 μ A (C) 60 mA	(B) 140 mA(D) 3 mA
		2004	TWO MARKS
	3.62	side and <i>n</i> -side are $N_A =$	on, the doping concentrations on the $p-$ = 9×10^{16} /cm ³ respectively. The $p-n$ and the total depletion width is 3 μ m. e p -side is (B) 0.3 μ m (D) 0.75 μ m
on	3.63	mc. If the electron mobility	hly doped n -type silicon sample is 0.5Ω - $V(\mu_n)$ is 1250 cm ² /V-sec and the charge of bulomb, the donor impurity concentration (B) 1×10^{16} /cm ³ (D) 5×10^{15} /cm ³
is he	3.64	of this junction and V_R be	junction. Let V_{bi} be the built-in potential e the applied reverse bias. If the junction or $V_{bi} + V_R = 1$ V, then for $V_{bi} + V_R = 4$ V, (B) 2 pF (D) 0.5 pF
-	3.65	increase in gate oxide	(V_T) of MOS capacitor decreases with thickness. (V_T) of a MOS capacitor decreases with loping concentration.
	F	Study material	sources, Mock Test and join the community book.com/gateec2014
		 (A) S1 is FALSE and S2 is (B) Both S1 and S2 are T. (C) Both S1 and S2 are FA (D) S1 is TRUE and S2 is 	RUE ALSE
1	3.66	$V_{GS} = V_{DS}$. The threshold v	MOSFET is shorted to the gate so that voltage (V_T) of the MOSFET is 1 V. If the for $V_{GS} = 2$ V, then for $V_{GS} = 3$ V, I_D is (B) 3 mA

Assuming $V_{CEsat} = 0.2$ V and $\beta = 50$, the minimum base current (I_B)

required to drive the transistor in the figure to saturation is

- (C) 9 mA (D) 4 mA
- 3.67 The longest wavelength that can be absorbed by silicon, which has

the bandgap of 1.12 eV, is 1.1 μ m. If the longest wavelength that can be absorbed by another material is 0.87 μ m, then bandgap of this material is

(A) 1.416 A/cm^2	(B) 0.886 eV
(C) 0.854 eV	(D) 0.706 eV

The neutral base width of a bipolar transistor, biased in the active 3.68 region, is $0.5 \ \mu m$. The maximum electron concentration and the diffusion constant in the base are $10^{14}/\text{cm}^3$ and $D_n = 25 \text{ cm}^2/$ sec respectively. Assuming negligible recombination in the base, the collector current density is (the electron charge is 1.6×10^{-19} Coulomb)

(A) 800 A/cm^2	(B) 8 A/cm ^{2}
(C) 200 A/cm ²	(D) 2 A/cm ²

3

ONE MARK

3.77

3.79

3.80

3.81

3.82

3.69	n-type silicon is obtained by d	loping silicon with
	(A) Germanium	(B) Aluminium
	(C) Boron	(D) Phosphorus

3.70	The Bandgap of silicon at 300	K is
	(A) 1.36 eV	(B) 1.10 eV
	(C) 0.80 eV	(D) 0.67 eV

The intrinsic carrier concentration of silicon sample at 300 K is 3.71 1.5×10^{16} /m³. If after doping, the number of majority carriers is 5×10^{20} /m³. the minority carrier density is

(A) $4.50 \times 10^{11} / \text{m}^3$	(B) $3.333 \times 10^4 / \text{m}^3$
(C) $5.00 \times 10^{20} / \text{m}^3$	(D) $3.00 \times 10^{-5} / \text{m}^3$

- Choose proper substitutes for X and Y to make the following 3.72 statement correct Tunnel diode and Avalanche photo diode are operated in X bias and Y bias respectively
 - (A) X: reverse, Y: reverse (B) X: reverse, Y: forward
 - (C) X: forward, Y: reverse (D) X: forward, Y: forward
- For an n channel enhancement type MOSFET, if the source is 3.73 connected at a higher potential than that of the bulk (i.e. $V_{SB} > 0$), the threshold voltage V_T of the MOSFET will
 - (A) remain unchanged (B) decrease
 - (C) change polarity (D) increase

2003

TWO MARKS

An *n*-type silicon bar 0.1 cm long and 100 μm^2 i cross-sectional 3.74 area has a majority carrier concentration of $5 \times 10^{20} / \text{m}^2$ and the carrier mobility is 0.13 m^2/V -s at 300 K. If the charge of an electron is 1.5×10^{-19} coulomb, then the resistance of the bar is

(A) 10° Ohm	(B) 10^4 Ohm
(C) 10^{-1} Ohm	(D) 10^{-4} Ohm

- The electron concentration in a sample of uniformly doped n-type 3.75 silicon at 300 K varies linearly from $10^{17}/\text{cm}^3$ at x = 0 to $6 \times 10^{16}/$ cm^3 at $x = 2\mu m$. Assume a situation that electrons are supplied to keep this concentration gradient constant with time. If electronic charge is 1.6×10^{-19} coulomb and the diffusion constant $D_n = 35$ cm 2 /s, the current density in the silicon, if no electric field is present, is (B) -112 A/cm^2 (A) zero
 - $(C) + 1120 \text{ A/cm}^2$ (D) -1120 A/cm^2
- 3.76 Match items in Group 1 with items in Group 2, most suitably.

Group 1	Group 2
P. LED	1. Heavy doping
Q. Avalanche photo diode	2. Coherent radiation
R. Tunnel diode	3. Spontaneous emissi
S. LASER	4. Current gain
(A) P - 1, Q - 2, R - 4, S - 3	
(B) P - 2, Q - 3, R - 1, S - 4	
(C) P - 3 Q - 4, R - 1, S - 2	

At 300 K, for a diode current of 1 mA, a certain germanium diode requires a forward bias of 0.1435 V, whereas a certain silicon diode requires a forward bias of 0.718 V. Under the conditions state above, the closest approximation of the ratio of reverse saturation current in germanium diode to that in silicon diode is

(A) 1	(B) 5
(C) 4×10^{3}	(D) 8×10^3

(D) P - 2, Q - 1, R - 4, S - 3

A particular green LED emits light of wavelength 5490 Ű. The 3.78

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

energy bandgap of the semiconductor material used there is		
(Plank's constant = $6.626 \times 10^{-34} J - s$)		
(A) 2.26 eV	(B) $1.98 \mathrm{eV}$	
(C) 1.17 eV	(D) 0.74 eV	

When the gate-to-source voltage (V_{Gs}) of a MOSFET with threshold voltage of 400 mV, working in saturation is 900 mV, the drain current is observed to be 1 mA. Neglecting the channel width modulation effect and assuming that the MOSFET is operating at saturation, the drain current for an applied V_{GS} of 1400 mV is (B) 2.0 m $(\Lambda) 0.5 \text{ m}\Lambda$

(A) 0.5 IIIA	(D) 2.0 IIIA
(C) 3.5 mA	(D) 4.0 mA

If P is Passivation, Q is n-well implant, R is metallization and S is source/drain diffusion, then the order in which they are carried out in a standard n-well CMOS fabrication process, is

(A) $P - Q - R - S$	(B) Q - S - R - P
(C) $R - P - S - Q$	(D) $S - R - Q - P$

The action of JFET in its equivalent circuit can best be represented as a

- (A) Current controlled current source
- (B) Current controlled voltage source
- (C) Voltage controlled voltage source
- (D) Voltage controlled current source

2002

In the figure, silicon diode is carrying a constant current of 1 mA. When the temperature of the diode is $20^{\circ}C$, V_D is found to be 700 mV. If the temperature rises to $40^{\circ}C, V_D$ becomes approximately equal to

ONE MARK

emission

(C) 50

(D) 96

GATI	E Electronics and Communication Topicwise S	olved Paper by RK Kanodia & Ashish Murolia			Page 54
	o +			1998	ONE MARK
			3.89		
	(A) 740 mV(C) 680 mV	(B) 660 mV(D) 700 mV		(C) $np_i = n_i p$	(D) $np = n_i p_i$
3.83	If the transistor in the figure is i	n saturation, then	3.90	The f_T of a BJT is related t $C_{\pi} + C_{\mu}$	to its g_m, C_{π} and C_{μ} as follows $2\pi (C_{\pi} + C_{\mu})$
				(A) $f_T = \frac{g_m}{g_m}$ (C) $f_T = \frac{g_m}{g_m}$	(B) $f_T = \frac{g_m}{g_m}$ (D) $f_T = \frac{g_m}{g_m}$
	$I_{\underline{B}}$ $B \bullet \qquad $		3.91	(C) $M = C_{\pi} + C_{\mu}$ The static characteristic of junction is a straight line, if (A) $\log I$ vs $\log V$	to its g_m, C_π and C_μ as follows (B) $f_T = \frac{2\pi (C_\pi + C_\mu)}{g_m}$ (D) $f_T = \frac{g_m}{2\pi (C_\pi + C_\mu)}$ of an adequately forward biased p -and the plot is of (B) $\log I \mathrm{vs} V$
	(A) I_C is always equal to $\beta_{dc}I_B$			(C) $I \operatorname{vs} \log V$	(D) $I vs V$
	(B) I_C is always equal to $-\beta_{de}I_B$ (C) I_C is greater than or equal to (D) I_C is less than or equal to β_C GATE Electronics 8	o $eta_{dc} I_B$	3.92	 A long specimen of <i>p</i>-type s (A) is positively charged (B) is electrically neutral 	
	by RK Ka	nodia		(C) has an electric field dire(D) acts as a dipole	ected along its length
Pu	Now in 3 rchase Online at maximum and get POSTAL and O	discount from online store nline Test Series Free	3.93		naracterized by the parameters g_m and g_m he composite FET is then characterize
	visit www.nc			${\rm (A)} \frac{g_m}{2} {\rm and} 2r_d$	(B) $\frac{g_m}{2}$ and $\frac{r_d}{2}$
3.84	2001 MOSFET can be used as a	ONE MARK		(C) $2g_m$ and $\frac{r_d}{2}$	${\rm (D)} 2g_m {\rm and} 2r_d$
3.84	(A) current controlled capacitor(C) current controlled inductor	(B) voltage controlled capacitor(D) voltage controlled inductor	3.94	The units of $\frac{q}{kT}$ are (A) V	(B) V^{-1}
3.85	The effective channel length of with increase in	MOSFET in saturation decreases		(C) J	(D) J/K
	(A) gate voltage(C) source voltage	(B) drain voltage(D) body voltage	3.95	_	ONE MARK ated on a p -type semiconductor, stron
	1999	ONE MARK		inversion occurs when (A) surface potential is equation	al to Fermi potential
3.86	The early effect in a bipolar june (A) fast turn-on	ction transistor is caused by		(B) surface potential is zero(C)	surface potential is negative and
	(B) fast turn-off(C) large collector-base reverse b	ing		equal to Fermi potentia	- 0
	(D) large emitter-base forward b			For more GATE Res	ources, Mock Test and join the community
	1999	TWO MARKS		•	ook.com/gateec2014
3.87		$D_{DSS} = 2 \text{ mA}$ and $V_p = -4 \text{ V}$. Its nm) for an applied gate-to-source		tential	
	voltage V_{GS} of -2 V is (A) 0.25	(B) 0.5	3.96		v at 300 K is 1.5×10^{10} /cm ³ , in silicon
	(C) 0.75	(D) 1.0		electron and hole densities a	
3.88	-	0.3 pF) has a unity-gain cutoff bias current $I_c = 1 \text{ mA}$. The value $(V_T = 26 \text{ mV})$ (B) 30		(A) $n = 1.5 \times 10^{15} / \text{cm}^3, p =$ (B) $n = 1.5 \times 10^{10} / \text{cm}^3, p =$ (C) $n = 2.25 \times 10^{15} / \text{cm}^3, p =$ (D) $n = 1.5 \times 10^{10} / \text{cm}^3, p =$	$2.25 \times 10^{15} / \mathrm{cm}^3$ = $1.0 \times 10^{15} / \mathrm{cm}^3$
	(C) 50	(\mathbf{D}) 06		•	

ONE MARK

3.97 The p-type substrate in a conventional pn-junction isolated integrated circuit should be connected to

(A) nowhere, i.e. left floating

(B) a DC ground potential

- (C) the most positive potential available in the circuit
- (D) the most negative potential available in the circuit
- If a transistor is operating with both of its junctions forward biased, but with the collector base forward bias greater than the emitter base forward bias, then it is operating in the
 - (A) forward active mode (B) reverse saturation mode
 - (C) reverse active mode (D) forward saturation mode
- 3.99 The common-emitter short-circuit current gain β of a transistor (A) is a monotonically increasing function of the collector current I_C
 - (B) is a monotonically decreasing function of I_C
 - (C) increase with I_c , for low I_c , reaches a maximum and then decreases with further increase in I_c
 - (D) is not a function of I_C
- ^{3.100} A *n*-channel silicon ($E_g = 1.1 \,\mathrm{eV}$) MOSFET was fabricated using *n*+poly-silicon gate and the threshold voltage was found to be 1 V. Now, if the gate is changed to p^+ poly-silicon, other things remaining the same, the new threshold voltage should be

(A) $-0.1 \mathrm{V}$	(B) $0 V$
(C) $1.0 V$	(D) $2.1 \mathrm{V}$

(C) 1.0 V (D) 2.1 V

1996

TWO MARKS

- 3.101In a bipolar transistor at room temperature, if the emitter current
is doubled the voltage across its base-emitter junction
(A) doubles
(C) increases by about 20 mV(B) halves
(D) decreases by about 20 mV
- 3.102 An *npn* transistor has a beta cut-off frequency f_{β} of 1 MHz and common emitter short circuit low-frequency current gain β_o of 200 it unity gain frequency f_T and the alpha cut-off frequency f_{α} respectively are

$(A) 200 \mathrm{MHz}, 201 \mathrm{MHz}$	$(B)~200~\mathrm{MHz}, 199~\mathrm{MHz}$
(C) 199 MHz, 200 MHz	(D) $201 \mathrm{MHz}, 200 \mathrm{MHz}$

^{3.103} A silicon n MOSFET has a threshold voltage of 1 V and oxide thickness of Ao.

 $[\varepsilon_r(\text{SiO}_2) = 3.9, \varepsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}, q = 1.6 \times 10^{-19} \text{ C}]$ The region under the gate is ion implanted for threshold voltage tailoring. The dose and type of the implant (assumed to be a sheet charge at the interface) required to shift the threshold voltage to -1 V are

(A) $1.08 \times 10^{12} / \text{cm}^2$, p-type	(B) $1.08 \times 10^{12} / \text{cm}^2$, n-type
(C) 5.4×10^{11} /cm ² , p-type	(D) $5.4 \times 10^{11} / \text{cm}^2$, n-type

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

SOLUTIONS

Option (A) is correct. 3.1

> The potential barrier of the pn junction is lowered when a forward bias voltage is applied, allowing electrons and holes to flow across the space charge region (Injection) when holes flow from the p region across the space charge region into the n region, they become excess minority carrier holes and are subject to diffuse, drift and recombination processes.

Option (D) is correct. 3.2

> In IC technology, dry oxidation as compared to wet oxidation produces superior quality oxide with a lower growth rate

Option (D) is correct. 3.3

> In a MOSFET operating in the saturation region, the channel length modulation effect causes a decrease in output resistance.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

Option (A) is correct. 3.4 Given,

$$V_B = 2 V$$
$$V_{TN} = 1 V$$

So, we have

Drain voltage $V_D = 2$ volt $V_G = 2$ volt $V_s = 0$ (Ground) $V_{GS} = 2 > V_{TN}$ Therefore, $V_{DS} = 2 > V_{GS} - V_{TN}$ and So, the MOSFET is in the saturation region. Therefore, drain current is

 $I_D = k_N (V_{GS} - V_{TN})^2$

or,

or,

$$I_D = k_N (V_B - 1)^2$$

Differentiating both side with respect to I_D
 $1 = k_N 2(V_B - 1) \frac{dV_B}{dI_D}$

Since, Hence, we obtain $V_{BQ} = 2$ volt (at D.C. Voltage)

$$\begin{aligned} \frac{dV_B}{dI_D} &= \frac{1}{2k_N(V_B - 1)} \\ &= \frac{1}{2 \times 40 \times 10^{-6} \times (2 - 1)} \\ &= 12.5 \times 10^3 \,\Omega \\ &= 12.5 \,\mathrm{k}\Omega \end{aligned}$$

Option (D) is correct. 3.5

For the semiconductor,

$$n_0 p_0 = n_i^2$$

 $p_0 = \frac{n_i^2}{n_0} = \frac{10^{20}}{10^{19}} = 10 \text{ per cm}^3$

Volume of given device, $=1\,\mu\mathrm{m}^2\times1\,\mu$

 $V = \text{Area} \times \text{depth}$

$$\times 1$$
 µm

$$= 10^{-12} \,\mathrm{cm}^3$$

3.6

So total no. of holes is,

Which is approximately equal to zero.

Option (A) is correct.

Given the circuit as below :

$$V_{in} \bullet \bullet \bullet V_{T_{1}} \bullet M_{1}$$

$$V_{T_{p}} = 1 V$$

$$V_{T_{n}} = 1 V$$

$$M_{2} \bullet V_{T_{n}} = 1 V$$

Since all the parameters of PMOS and NMOS are equal.

 $\mu_n = \mu_p$

So,

$$C_{OX}\left(\frac{W}{L}\right)_{M_1} = C_{OX}\left(\frac{W}{L}\right)_{M_2} = C_{OX}\left(\frac{W}{L}\right)$$

Given that M_1 is in linear region. So, we assume that M_2 is either in cutoff or saturation.

Case 1 : M_2 is in cut off

So,
$$I_2 = I_1 = 0$$

Where I_1 is drain current in M_1 and I_2 is drain current in M_2 .

Since,

$$I_{1} = \frac{\mu_{p} C_{OX}}{2} \left(\frac{W}{L}\right) \left[2 V_{SD} \left(V_{SG} - V_{Tp}\right) - V_{SD}^{2}\right]$$

$$\Rightarrow \qquad 0 = \frac{\mu_{p} C_{OX}}{2} \left(\frac{W}{L}\right) \left[2 V_{SD} \left(V_{SG} - V_{Tp}\right) - V_{SD}^{2}\right]$$

$$0 = \frac{\mu_p C_{OX}}{2} \left(\frac{W}{L}\right) \left[2 V_{SD} \left(V_{SG} - V_{Tp}\right) - V_{SD}^2\right]$$

Solving it we get,

$$2(V_{SG} - V_{Tp}) = V_{SD}$$

$$\Rightarrow \qquad 2(5 - V_{in} - 1) = 5 - V_D$$

$$\Rightarrow \qquad V_{in} = \frac{V_D + 3}{2}$$
For
$$I_1 = 0, V_D = 5 \text{ V}$$
So,
$$V_{in} = \frac{5 + 3}{2} = 4 \text{ V}$$

So for the NMOS

So,

 $V_{GS} = V_{in} - 0 = 4 - 0 = 4 \text{ V} \text{ and } V_{GS} > V_{Tn}$

So it can't be in cutoff region.

Case 2 : M_2 must be in saturation region.

$$I_1 = I_2$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

	$\frac{\mu_p C_{OX}}{2} \frac{W}{L} [2 (V_{SG} - V_{Tp}) V_{SD} - V_{SD}^2] = \frac{\mu_n C_{OX}}{2} \frac{W}{L} (V_{GS} - V_{Tn})^2$
\Rightarrow	$2\left(V_{SG}-V_{Tp} ight)V_{SD}-V_{SD}^{2}=\left(V_{GS}-V_{Tn} ight)^{2}$
\Rightarrow	$2(5 - V_{in} - 1)(5 - V_D) - (5 - V_D)^2 = (V_{in} - 0 - 1)^2$
\Rightarrow	$2(4-V_{in})(5-V_D)-(5-V_D)^2=(V_{in}-1)^2$
Substit	tuting $V_D = V_{DS} = V_{GS} - V_{Tn}$ and for N -MOS $\Rightarrow V_D = V_{in} - 1$
\Rightarrow	$2\left(4-V_{\it in} ight)\left(6-V_{\it in} ight)-(6-V_{\it in})^2=(V_{\it in}-1)^2$
\Rightarrow	$48 - 36 - 8 V_{in} = -2 V_{in} + 1$
\Rightarrow	$6V_{in}=11$
\Rightarrow	$V_{in} = rac{11}{6} = 1.833~{ m V}$

 $= 10^{-8} \text{cm}^2 \times 10^{-4} \text{cm}$

 $p = p_0 \times V = 10 \times 10^{-12} = 10^{-11}$

So for M_2 to be in saturation $V_{in} < 1.833$ V or $V_{in} < 1.875$ V

3.7 Option (B) is correct. Gate source overlap capacitance.

$$C_o = \frac{\delta W \varepsilon_{ox} \varepsilon_0}{t_{ox}} \text{ (medium Sio}_2)$$
$$= \frac{20 \times 10^{-9} \times 1 \times 10^{-6} \times 3.9 \times 8.9 \times 10^{-12}}{1 \times 10^{-9}}$$

^{3.8} Option (B) is correct. Source body junction capacitance. $C = A\varepsilon_r\varepsilon_0$

= 0.

3.10

$$C_s = \frac{A\varepsilon_r \varepsilon}{d}$$

 $\begin{aligned} A \\ &= (0.2\,\mu\text{m} + 0.2\,\mu\text{m} + 0.2\,\mu\text{m}) \times 1\,\mu\text{m} + 2\,(0.2\,\mu\text{m} \times 0.2\,\mu\text{m}) \\ &= 0.68\,\mu\text{m}^2 \\ d &= 10\,\text{nm} \text{ (depletion width of all junction)} \\ C_s &= \frac{0.68 \times 10^{-12} \times 11.7 \times 8.9 \times 10^{-12}}{10 \times 10^{-9}} \\ &= 7 \times 10^{-15}\,\text{F} \end{aligned}$

^{3.9} Option (C) is correct. Drift current $I_d = qn\mu_n E$

It depends upon Electric field E and carrier concentration nOption (B) is correct.

Zener diode operates in reverse breakdown region.

3.11 Option (D) is correct.

For every 1°C increase in temperature, forward bias voltage across diode decreases by 2.5 mV. Thus for 10°C increase, there us 25 mV decreases.

3.12 Option (B) is correct. Full channel resistance is

$$r \; \frac{\rho \times L}{W \times a} = 600 \; \Omega \qquad \dots (1)$$

If V_{GS} is applied, Channel resistance is

$$r' = \frac{\rho \times L}{W \times b}$$
 where $b = a \left(1 - \sqrt{\frac{V_{GS}}{V_p}} \right)$

Pinch off voltage,

$$V_p \left| = \frac{qN_D}{2\varepsilon} a^2 \qquad \dots(2)$$

If depletion on each side is $d = 1 \ \mu m$ at $V_{GS} = 0$.

 $V_j = \frac{qN_D}{2\varepsilon} d^2$

or

$$1=rac{qN_D}{2arepsilon}(1 imes10^{-6})^2 \ \Rightarrow \ rac{qN_D}{2arepsilon}=10^{12}$$

Now from equation (2), we have

 $|V_p| = 10^{12} \times (5 \times 10^{-6})^2$

or $V_p = -25 \text{ V}$ At $V_{GS} = -3 \text{ V}$;

$$b = 5\left(1 - \sqrt{\frac{-3}{-25}}\right)\mu m = 3.26\,\mu m$$

$$r' = \frac{\rho L}{W \times b} = \frac{\rho L}{Wa} \times \frac{a}{b} = 600 \times \frac{5}{3.26} = 917 \,\Omega$$

3.13 Option (C) is correct.

At $V_{GS} = 0$

Thus

V,
$$b = 4 \,\mu\text{m}$$
 since $2b = 8 \,\mu\text{m}$
 $r' = \frac{\rho L}{Wa} \times \frac{a}{b} = 600 \times \frac{5}{4} = 750 \,\Omega$

3.14 Option (A) is correct.

At room temperature mobility of electrons for Si sample is given $\mu_n = 1350 \text{ cm}^2/\text{Vs}$. For an *n*-channel MOSFET to create an inversion layer of electrons, a large positive gate voltage is to be applied. Therefore, induced electric field increases and mobility decreases. So, Mobility $\mu_n < 1350 \text{ cm}^2/\text{Vs}$ for *n*-channel MOSFET

- ^{3.15} Option (B) is correct. Dry oxidation is used to achieve high quality oxide growth.
- 3.16 Option (B) is correct. Emitter injection efficiency is given as

$\gamma = \frac{1}{N_B}$ SPECIAL EDITION (STADY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

To achieve $\gamma = 1, N_E >> N_B$

3.17 Option (C) is correct.

Reverse bias breakdown or Zener effect occurs in highly doped PN junction through tunneling mechanism. In a highly doped PN junction, the conduction and valence bands on opposite sides of the junction are sufficiently close during reverse bias that electron may tunnel directly from the valence band on the p-side into the conduction band on n-side.

Breakdown voltage $V_B \propto \frac{1}{N_A N_D}$

So, breakdown voltage decreases as concentration increases Depletion capacitance

$$C = \left\{ \frac{e\varepsilon_s N_A N_D}{2 \left(V_{bi} + V_R \right) \left(N_A + N_D \right)} \right\}^{1/2}$$

Thus $C \propto N_A N_D$

Depletion capacitance increases as concentration increases

3.18

3.19

Sample is in thermal equilibrium so, electric field

$$E = \frac{1}{1\,\mu\mathrm{m}} = 10\,\mathrm{kV/cm}$$

Option (A) is correct.

 $J_d = N_D \mu_n eE = 10^{16} \times 1350 \times 1.6 \times 10^{-19} \times 10 \times 10^{13}$ = 2.16 × 10⁴ A/cm²

3.20 Option (C) is correct.

Only dopant atoms can have concentration of 4×10^{19} cm⁻³ in n - type silicon at room temperature.

Unit of mobility
$$\mu_n$$
 is $=\frac{\text{cm}^2}{V. \text{sec}}$

Unit of diffusion current D_n is $=\frac{\mathrm{cm}^2}{\mathrm{ccc}}$

Thus unit of
$$\frac{\mu_n}{D_n}$$
 is $=\frac{\mathrm{cm}^2}{V\cdot\mathrm{sec}}/\frac{\mathrm{cm}^2}{\mathrm{sec}}=\frac{1}{V}=V^{-1}$

Option (D) is correct. 3.22 Both S1 and S2 are true and S2 is a reason for S1.

3.23 Option (B) is correct. We know that

or

$$N_A W_P = N_D W$$

$$N_A = \frac{N_D W_N}{W_P} = \frac{1 \times 10^{17} \times 0.1 \times 10^{-6}}{1 \times 10^{-6}} = 1 \times 10^{16}$$

The built-in potential is

$$V_{bi} = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$$

= 26 × 10⁻³ ln $\left(\frac{1 \times 10^{17} \times 1 \times 10^{16}}{(1.4 \times 10^{10})^2}\right) = 0.760$

Option (B) is correct. 3.24

The peak electric field in device is directed from p to n and is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$E = -\frac{eN_D x_n}{\varepsilon_s} \qquad \text{from } p \text{ to } n$$
$$= \frac{eN_D x_n}{\varepsilon_s} \qquad \text{from } n \text{ to } p$$
$$= \frac{1.6 \times 10^{-19} \times 1 \times 10^{17} \times 1 \times 10^{-5}}{8.85 \times 10^{-14} \times 12} = 0.15$$

MV/cm

Option (D) is correct. 3.25

> Channel length modulation is not associated with a p - n junction. It is being associated with MOSFET in which effective channel length decreases, producing the phenomenon called channel length modulation.

Option (A) is correct. 3.26 Trivalent impurities are used for making p – type semiconductors.

So, Silicon wafer heavily doped with boron is a p^+ substrate.

Option (D) is correct. 3.27

> Oxidation rate is zero because the existing oxide prevent the further oxidation.

Option (B) is correct. 3.28

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \frac{\partial}{\partial V_{GS}} K(V_{GS} - V_T)^2 = 2K(V_{GS} - V_T)$$

Which is straight line.

Option (C) is correct. 3.29

> As $V_D = \text{constant}$ Thus $g_m \propto (V_{GS} - V_T)$

Option (C) is correct. 3.30

$$E_2 - E_1 = kT \ln \frac{N_A}{n_i}$$
$$N_A = 4 \times 10^{17}$$
$$n_i = 1.5 \times 10^{10}$$

$$E_2 - E_1 = 25 \times 10^{-3} e \ln \frac{4 \times 10^{17}}{1.5 \times 10^{10}} = 0.427 \text{ eV}$$

Hence fermi level goes down by 0.427 eV as silicon is doped with boron.

 $V_P = \frac{e W^2 N_D}{\varepsilon s}$

 $\frac{V_{P1}}{V_{P2}} = \frac{W_1^2}{W_2^2} = \frac{W^2}{(2W)^2}$

 $V_P = V_{P1}$

 $4V_{P1} = V_{P2}$

 g_{m1}

Option (C) is correct.

Pinch off voltage Let

3.31

Now

or

Initial transconductance

$$g_m = K_n \left[1 - \sqrt{\frac{V_{bi} - V_{GS}}{V_p}} \right]$$

For first condition

$$= K_n \left[1 - \sqrt{\frac{0 - (-2)}{V_{Pl}}} \right] = K_n \left[1 - \sqrt{\frac{2}{V_{Pl}}} \right]$$

For second condition

$$g_{m2} = K_n \left[1 - \sqrt{\frac{0 - (-2)}{V_{P2}}} \right] = K_2 \left[1 - \sqrt{\frac{2}{4V_{P1}}} \right]$$
$$\frac{g_{m1}}{g_{m2}} = \left(\frac{1 - \sqrt{2/V_{P1}}}{1 - \sqrt{1/(2V_{P1})}} \right)$$
$$V_P = V_{P1}$$

Dividing

3.33

Option (A) is correct. 3.32

Option (D) is correct.

As per mass action law

$$np = n_i^2$$

If acceptor impurities are introduces

$$p = N_A$$

Thus $nN_A = n_i^2$
or $n = \frac{n_i^2}{N_A}$

Option (C) is correct. 3.34

The electric field has the maximum value at the junction of p^+n .

Option (B) is correct. 3.35

> Zener diode and Avalanche diode works in the reverse bias and laser diode works in forward bias.

> In solar cell diode works in forward bias but photo current is in reverse direction. Thus

> > Zener diode : Reverse Bias

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Solar Cell : Forward Bias Laser Diode : Forward Bias Avalanche Photo diode : Reverse Bias

Option (C) is correct. 3.36

> In BJT as the B-C reverse bias voltage increases, the B-C space charge region width increases which x_B (i.e. neutral base width) > A change in neutral base width will change the collector current. A reduction in base width will causes the gradient in minority carrier concentration to increase, which in turn causes an increased in the diffusion current. This effect si known as base modulation as early effect.

In JFET the gate to source voltage that must be applied to achieve pinch off voltage is described as pinch off voltage and is also called as turn voltage or threshold voltage.

In LASER population inversion occurs on the condition when concentration of electrons in one energy state is greater than that in lower energy state, i.e. a non equilibrium condition.

In MOS capacitor, flat band voltage is the gate voltage that must be applied to create flat ban condition in which there is no space charge region in semiconductor under oxide. Therefore

> BJT : Early effect MOS capacitor : Flat-band voltage LASER diode : Population inversion JFET : Pinch-off voltage

3.37 Option (A) is correct.

 $W = K\sqrt{V + V_R}$ Now $2\mu = K\sqrt{0.8 + 1.2}$

From above two equation we get

$$\frac{W}{2\mu} = \frac{\sqrt{0.8 + 7.2}}{\sqrt{0.8 + 1.2}} = \frac{\sqrt{8}}{\sqrt{2}} = 2$$
$$W_2 = 4 \ \mu \ m$$

3.38

or

or

$$\alpha = \frac{\beta}{\beta + 1} = \frac{50}{50 + 1} = \frac{50}{51}$$

Current Gain = Base Transport Factor \times Emitter injection Efficiency

$$\alpha = \beta_1 \times \beta_2$$

$$\beta_1 = \frac{\alpha}{\beta_2} = \frac{50}{51 \times 0.995} = 0.985$$

3.39 Option (A) is correct.

At low voltage when there is no depletion region and capacitance is decide by SiO_2 thickness only,

$$C = \frac{\varepsilon_0 \varepsilon_{r1} A}{D}$$
$$D = \frac{\varepsilon_0 \varepsilon_{r1} A}{C} = \frac{3.5 \times 10^{-13} \times 10^{-4}}{7 \times 10^{-12}} = 50 \text{ nm}$$

3.40 Option (B) is correct.

or

The construction of given capacitor is shown in fig below

When applied voltage is 0 volts, there will be no depletion region and we get

$$C_1 = 7 \text{ pF}$$

When applied voltage is V, a depletion region will be formed as shown in fig an total capacitance is 1 pF. Thus

or $C_T = 1 \text{ pF}$ $C_T = \frac{C_1 C_2}{C_1 + C_2} = 1 \text{ pF}$

or $\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2}$

Substituting values of C_T and C_1 we get

$$C_2 = \frac{7}{6} \text{ pF}$$

Now $= 0.857 \ \mu m$

3.41

Option (C) is correct. Depletion region will not be formed if the MOS capacitor has n type substrate but from C-V characteristics, C reduces if V is increased. Thus depletion region must be formed. Hence S_1 is false If positive charges is introduced in the oxide layer, then to equalize the effect the applied voltage V must be reduced. Thus the C - Vplot moves to the left. Hence S_2 is true.

 $D_2 = \frac{\varepsilon_0 \varepsilon_{r2} A}{C_2} = \frac{1 \times 10^{-12} \times 10^{-4}}{\frac{7}{6} \times 10^{-12}} = \frac{6}{7} \times 10^{-4} \text{ cm}$

3.42 Option (C) is correct.

For the case of negative slope it is the negative resistance region

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Option (A) is correct.

3.43

3.44

For n-type p is minority carrier concentration

$$np = n_i^2$$

 $np = \text{Constant}$

Since n_i is constant

 $p \propto \frac{1}{n}$

Thus p is inversely proportional to n.

Option (A) is correct. Diffusion current, since the drift current is negligible for minority carrier.

3.45 Option (B) is correct.

In BJT as the B-C reverse bias voltage increases, the B-C space charge region width increases which x_B (i.e. neutral base width) > A change in neutral base width will change the collector current. A reduction in base width will causes the gradient in minority carrier concentration to increases, which in turn causes an increases in the diffusion current. This effect si known as base modulation as early effect.

3.46 Option (A) is correct.

For t < 0 diode forward biased and $V_R = 5$. At t = 0 diode abruptly changes to reverse biased and current across resistor must be 0. But in storage time $0 < t < t_s$ diode retain its resistance of forward

biased. Thus for $0 < t < t_s$ it will be ON and

$$V_R = -5 \text{ V}$$

Option (B) is correct. 3.47

> According to Hall effect the direction of electric field is same as that of direction of force exerted.

$$E = -v \times B$$
$$E = B \times v$$

or

Option (B) is correct. 3.48

> The varacter diode is used in tuned circuit as it can provide frequently stability.

PIN diode is used as a current controlled attenuator.

Zener diode is used in regulated voltage supply or fixed voltage reference.

Schottkey diode has metal-semiconductor function so it has fast switching action so it is used as high frequency switch

Varactor diode : Tuned circuits

PIN Diode : Current controlled attenuator

Zener diode : Voltage reference

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

Schottky diode : High frequency switch

Option (D) is correct. 3.49

> $\frac{\mu_P}{\mu_n} = 0.4$ We have

Conductance of n type semiconductor

$$\sigma_n = nq\mu_n$$

Conductance of intrinsic semiconductor

 $\sigma_i = n_i q(\mu_n + \mu_p)$

Ratio is

 $\frac{\sigma_n}{\sigma_i} = \frac{n\mu_n}{n_i(\mu_n + \mu_p)} = \frac{n}{n_i(1 + \frac{\mu_p}{\mu_n})}$ $\frac{1}{-\frac{1}{2}} = 2 \times 10^4$ 4.2×10^8 $1.5 \times 10^4 (1 + 0.4)$

3.50

Option (C) is correct. For silicon at 0 K,

$$E_{g0} = 1.21 \text{ eV}$$

At any temperature

$$E_{aT} = E_{a0} - 3.6 \times 10^{-4} T$$

At T = 300 K,

$$E_{g300} = 1.21 - 3.6 \times 10^{-4} \times 300 = 1.1 \text{ eV}$$

This is standard value, that must be remembered.

- Option (B) is correct. 3.51
 - The reverse saturation current doubles for every $10^{\circ}C$ rise in temperature as follows :

$$I_0(T) = I_{01} \times 2^{(T-T_1)/1}$$

Thus at 40° C, $I_0 = 40$ pA

Option (A) is correct. 3.52

Silicon is abundant on the surface of earth in the from of SiO_2 .

Option (B) is correct. 3.53

$$\sigma_n = nq\mu_n$$

$$\sigma_p = pq\mu_p \qquad (n=p)$$

$$\frac{\sigma_p}{\sigma_n} = \frac{\mu_p}{\mu_n} = \frac{1}{3}$$

Option (B) is correct.

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$
$$\frac{C}{A} = \frac{\varepsilon_0 \varepsilon_r}{d} = \frac{8.85 \times 10^{-12} \times 11.7}{10 \times 10^{-6}} = 10.35 \,\mu\text{F}$$

Option (B) is correct.

or

3.55

3.56

In accumulation mode for NMOS having p-substrate, when positive voltage is applied at the gate, this will induce negative charge near p- type surface beneath the gate. When V_{GS} is made sufficiently large, an inversion of electrons is formed and this in effect forms and n - channel.

Option (C) is correct.

From the graph it can be easily seen that $V_{th} = 1$ V Now $V_{GS} = 3 - 1 = 2$ V

1	
and	$V_{DS} = 5 - 1 = 4 \text{ V}$
Since	$V_{DS} > V_{GS} \longrightarrow V_{DS} > V_{GS} - V_{th}$

Thus MOSFET is in saturation region.

Option (C) is correct. 3.57

> Trivalent impurities are used for making p type semiconductor. Boron is trivalent.

Option (A) is correct. 3.58

Here emitter base junction is forward biased and base collector junction is reversed biased. Thus transistor is operating in normal active region.

Option (D) is correct. 3.59

> $\beta = \frac{\alpha}{1 - \alpha}$ We have Thus $\alpha \uparrow \rightarrow \beta \uparrow$

$$\alpha \downarrow \rightarrow \beta \downarrow$$

If the base width increases, recombination of carrier in base region increases and α decreases & hence β decreases. If doping in base region increases, recombination of carrier in base increases and α decreases thereby decreasing β . Thus S_1 is true and S_2 is false.

- Option (C) is correct. 3.60
- Option (A) is correct. 3.61 Applying KVL we get

 $V_{CC} - I_C R_C - V_{CE} = 0$

 $I_C =$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

or

or

3.62

$$\frac{V_{CC} - V_{CE}}{R_{c}} = \frac{3 - 0.2}{1k} = 2.8 \text{ mA}$$

Now

$$I_B = \frac{I_C}{\beta} = \frac{2.8 \text{m}}{50} = 56 \,\mu\text{A}$$

Option (B) is correct.

We know that

$$W_p N_A = W_n N_D$$

$$W_p = \frac{W_n \times N_D}{N_A} = \frac{3 \,\mu \times 10^{16}}{9 \times 10^{16}} = 0.3 \,\mu \mathrm{m}$$

3.63 Option (B) is correct.

> Conductivity $\sigma = nqu_n$

Page 60

 $\rho = \frac{1}{\sigma} = \frac{1}{nq\mu_n}$

or resistivity

 $= \frac{1}{1.6 \times 10^{-19} \times 0.5 \times 1250} = 10^{16} / \text{cm}^3$

For n type semiconductor $n = N_D$

Option (D) is correct. 3.64 We know that

 $C_{j} = \left[\frac{e\varepsilon_{S}N_{A}N_{D}}{2(V_{bi} + V_{R})(N_{A} + N_{D})}\right]^{\frac{1}{2}}$ $C_{j} \propto \sqrt{\frac{1}{(V_{bi} + V_{R})}}$

Thus

Now

$$\frac{C_j \propto \sqrt{(V_{bi} + V_R)}}{\frac{C_{j2}}{C_{j1}}} = \sqrt{\frac{(V_{bi} + V_R)_1}{(V_{bi} + V_R)_2}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

or

3.65

 $C_{j2} = \frac{C_{j1}}{2} = \frac{1}{2} = 0.5 \text{ pF}$

Option (C) is correct. Increase in gate oxide thickness makes difficult to induce charges in channel. Thus V_T increases if we increase gate oxide thickness. Hence S_1 is false.

Increase in substrate doping concentration require more gate voltage because initially induce charges will get combine in substrate. Thus V_T increases if we increase substrate doping concentration. Hence S_2 is false.

Option (D) is correct. 3.66 We know that

> $I_D = K(V_{GS} - V_T)^2$ $\frac{I_{DS}}{I_{DI}} = \frac{(V_{GS2} - V_T)^2}{(V_{GS1} - V_T)^2}$

Substituting the values we have

 $\frac{I_{D2}}{I_{D1}} = \frac{(3-1)^2}{(2-1)^2} = 4$

 $I_{D2} = 4I_{DI} = 4 \text{ mA}$

 $E_g \propto \frac{1}{\lambda}$

 $\frac{E_{g2}}{E_{g1}} = \frac{\lambda_1}{\lambda_2} = \frac{1.1}{0.87}$

Option (A) is correct. 3.67

Thus

or

Thus

or

 $E_{g2} = \frac{1.1}{0.87} \times 1.12 = 1.416 \text{ eV}$

Option (B) is correct. 3.68 Concentration gradient

$$\frac{dn}{dx} = \frac{10^{14}}{0.5 \times 10^{-4}} = 2 \times 10^{18}$$

$$q = 1.6 \times 10^{-19} C$$

$$D_n = 25$$

$$\frac{dn}{dx} = \frac{10^{14}}{0.5 \times 10^{-4}}$$

$$J_C = q D_n \frac{dn}{dx} = 1.6 \times 10^{-19} \times 25 \times 2 \times 10^{18} = 8 \text{ A/cm}^2$$

Option (D) is correct. 3.69 Pentavalent make n-type semiconductor and phosphorous is pentavalent.

3.70 Option (C) is correct.
For silicon at 0 K
$$E_{g0} = 1.21$$
 eV
At any temperature

$$E_{gT} = E_{g0} - 3.6 \times 10^{-4} T$$

At T = 300 K,

3.71

$$E_{g300} = 1.21 - 3.6 \times 10^{-4} \times 300 = 1.1 \text{ eV}$$

This is standard value, that must be remembered.

$$np = n_i^2$$
$$p = \frac{n_i^2}{n} = \frac{1.5 \times 10^{16} \times 1.5 \times 10^{16}}{5 \times 10^{20}} = 4.5 \times 10^{11}$$

Option (C) is correct. 3.72

> Tunnel diode shows the negative characteristics in forward bias. It is used in forward bias.

Avalanche photo diode is used in reverse bias.

Option (D) is correct. 3.73

We that
$$R = \frac{\rho l}{A}, \ \rho = \frac{1}{\sigma} \text{ and } \alpha = nqu_n$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

From above relation we have

$$R = \frac{1}{nq\mu_n A} = \frac{0.1 \times 10^{-2}}{5 \times 10^{20} \times 1.6 \times 10^{-19} \times 0.13 \times 100 \times 10^{-12}}$$

Option (D) is correct. 3.75

 $= 10^6 \Omega$

$$\frac{dn}{dx} = \frac{6 \times 10^{16} - 10^{17}}{2 \times 10^{-4} - 0} = -2 \times 10^{20}$$

Now $J_n = nq\mu_e E + D_n q \frac{dn}{dr}$

Since no electric field is present, E = 0 and we get

So,
$$J_n = qD_n \frac{dn}{dx}$$

= $1.6 \times 10^{-19} \times 35 \times (-2 \times 10^{20}) = -1120 \text{ A/cm}^2$

3.76 Option (C) is correct.

> LED works on the principal of spontaneous emission. In the avalanche photo diode due to the avalanche effect there is large current gain.

Tunnel diode has very large doping.

LASER diode are used for coherent radiation.

Option (C) is correct. 3.77

We know

or

that
$$I = I_{o_{si}} \left(e^{\eta \frac{V_{D1}}{V_T}} - 1 \right)$$

where
$$\eta = 1$$
 for germanium and $\eta = 2$ silicon. As per question $I_{o_n} \left(e^{\frac{V_{Dsi}}{e^{\eta V T}}} - 1 \right) = I_{o_{ce}} \left(e^{\frac{V_{Dse}}{\eta V_T}} - 1 \right)$

$$\frac{I_{o_{si}}}{I_{o_{si}}} = \frac{e^{\frac{V_{Dsi}}{\eta V_T}} - 1}{e^{\frac{V_{Dce}}{\eta V_T}} - 1} = \frac{e^{\frac{0.718}{2 \times 26 \times 10^{-3}}} - 1}{e^{\frac{0.1435}{26 \times 10^{-3}}} - 1} = 4 \times 10^3$$

Option (A) is correct. 3.78

$$E_g = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{54900 \times 10^{-10}} = 3.62 \text{ J}$$

In eV
$$E_g(eV) = \frac{E_g(J)}{e} = \frac{3.62 \times 10^{-19}}{1.6 \times 10^{-19}} = 2.26 \text{ eV}$$

Page 62

Alternatively

$$E_g = \frac{1.24}{\lambda(\mu m)} \text{ eV} = \frac{1.24}{5490 \times 10^{-4} \mu m} = 2.26 \text{ eV}$$

Option (D) is correct. 3.79 We know that

$$I_D = K(V_{GS} - V_T)^2$$

Thus

hus
$$\frac{I_{D2}}{I_{D1}} = \frac{(V_{GS2} - V_T)^2}{(V_{GS1} - V_T)^2}$$

Substituting the values we have

 $\frac{I_{D2}}{I_{D1}} = \frac{(1.4 - 0.4)^2}{(0.9 - 0.4)^2} = 4$ $I_{D2} = 4I_{DI} = 4 \text{ mA}$

or

3.80

Option (B) is correct.

In n-well CMOS fabrication following are the steps :

- (A) n well implant
- (B) Source drain diffusion

(C) Metalization

(D) Passivation

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (D) is correct. 3.81

For a JFET in active region we have

$$I_{DS} = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

From above equation it is clear that the action of a JFET is voltage controlled current source.

Option (B) is correct. 3.82

> At constant current the rate of change of voltage with respect to temperature is

> > $\frac{dV}{dT} = -2.5 \text{ mV}$ per degree centigrade $\Delta T = T_2 - T_1 = 40 - 20 = 20^{\circ}C$

> > > $\Delta V_D = -2.5 \times 20 = 50 \text{ mV}$

Here

Thus

Therefore, $V_D = 700 - 50 = 650 \text{ mV}$

Option (D) is correct. 3.83

Condition for saturation is $I_C < \beta I_B$

Option (B) is correct. 3.84

> The metal area of the gate in conjunction with the insulating dielectric oxide layer and semiconductor channel, form a parallel plate capacitor. It is voltage controlled capacitor because in active region the current voltage relationship is given by

$$I_{DS} = K(V_{GS} - V_T)^2$$

3.85 Option (D) is correct.

> In MOSFET the body (substrate) is connected to power supply in such a way to maintain the body (substrate) to channel junction in cutoff condition. The resulting reverse bias voltage between source and body will have an effect on device function. The reverse bias will widen the depletion region resulting the reduction in channel length.

Option (C) is correct. 3.86

At a given value of v_{BE} , increasing the reverse-bias voltage on the collector-base junction and thus increases the width of the depletion region of this junction. This in turn results in a decrease in the effective base width W. Since I_s is inversely proportional to W, I_s increases and that i_{C} increases proportionally. This is early effect.

Option (B) is correct. 3.87

For an n-channel JEFT trans-conductance is

$$g_m = \frac{-2I_{DSS}}{V_P} \left(1 - \frac{V_{GS}}{V_P}\right) = \frac{-2 \times 2 \times 10^{-3}}{-4} \left[1 - \frac{(-2)}{(-4)}\right]$$
$$= 10^{-3} \times \frac{1}{2} = 0.5 \text{ mho}$$

Option (A) is correct. 3.88

We have

Now

or

or

or

3.90

3.91

$$(0.3 \times 10^{-12} + C_{\mu}) = \frac{1}{2\pi \times 26 \times 400} = 15.3 \times 10^{-12}$$

 $g_m = \frac{I_C}{V_T} = \frac{1}{26}$

 $f_T = \frac{g_m}{2\pi (C_\pi + C_\mu)}$

 $400 = \frac{1/26}{2\pi (0.3 \times 10^{-12} + C_{\mu})}$

$$C_{\mu} \ 15.3 \times 10^{-12} - 0.3 \times 10^{-12} = 15 \times 10^{-12} \ 15 \ \mathrm{pF}$$

Option (D) is correct. 3.89

> For any semiconductor (Intrinsic or extrinsic) the product n premains constant at a given temperature so here

$$np = n_i p_i$$

Option (D) is correct.

$$f_T = \frac{g_m}{2\pi (C_\pi + C_\mu)}$$

For a Forward Bias p-n junction, current equation

$$egin{aligned} I &= I_0(e^{V/kT}-1)\ &rac{I}{I_0}+1 &= e^{V/kT}\ &kT \mathrm{log}\Bigl(rac{I}{I_0}+1\Bigr) &= V \end{aligned}$$

or

So if we plot $\log I$ vs V we get a straight line.

Option (B) is correct. 3.92

A specimen of p – type or n – type is always electrical neutral.

Option (C) is correct. 3.93

Option (B) is correct. 3.94

The unit of q is e and unit of
$$kT$$
 is eV. Thus unit of e/kT is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$e/eV = V^{-1}$$

We have

Option (D) is correct. 3.95

3.96 Option (C) is correct.

$$n_i=1.5 imes 10^{10}/{
m cm}^3$$

 $N_d = 2.25 \times 10^{13} \,\mathrm{atoms/cm}$

For
$$n$$
 type doping we have electron concentration

$$n \simeq N_d = 2.25 imes 10^{15} \, \mathrm{atom/cm^3}$$

For a given temperature

Hole concentration
$$p = n_i^2$$

 $p = \frac{n_i^2}{n} = \frac{(1.5 \times 10^{10})^2}{2.25 \times 10^{15}} = 1.0 \times 10^5 / \text{cm}^3$

3.97 Option (D) is correct.

In pn-junction isolated circuit we should have high impedance, so that pn junction should be kept in reverse bias. (So connect p to negative potential in the circuit)

3.98

Option (B) is correct. $E \quad B \quad C$

If both junction are forward biased and collector base junction is more forward biased then I_c will be flowing out wards (opposite direction to normal mode) the collector and it will be in reverse saturation mode.

3.99 Option (C) is correct.

For normal active mode we have

$$\beta = \frac{I_C}{I_B}$$

For small values of I_C , if we increases I_C , β also increases until we reach (I_C) saturation. Further increases in I_C (since transistor is in saturation mode know) will increases I_B and β decreases.

3.100 Option (C) is correct.

For a n-channel mosfet thresholds voltage is given by

 $V_{TN} = V_{GS} - V_{DS}(\text{sat})$

for *p*-channel $[p^+$ polysilicon used in gate]

$$V_{TP} = V_{SD}(\mathrm{sat}) - V_{GS}$$

so $V_{TP} = -V_{DS}(sat) + V_{GS}$ so threshold voltage will be same.

Option (C) is correct.

Emitter current is given by

3.101

or

 $V_{BE} = kT ln \Big(rac{I_E}{I_0}\Big)$

Now

$$(V_{BE})_1 = kT \ln\left(\frac{I_{E1}}{I_0}\right)$$
$$(V_{BE})_2 = kT \ln\left(\frac{I_{E2}}{I_0}\right)$$
$$(V_{BE})_2 - (V_{BE})_1 = kT \left[\ln\left(\frac{I_{E2}}{I_{E1}}\right)\right] = kT \ln\left(\frac{2I_{E1}}{I_{E1}}\right)$$

 $I_E = I_0(e^{V_{\scriptscriptstyle BE}/kT}-1)$

 $e^{V_{\scriptscriptstyle BE}/kT}>>1$

 $I_E = I_0 e^{V_{\scriptscriptstyle BE}/kT}$

or

Now if emitter current is double i.e. $I_{E2} = 2I_{E1}$

$$(V_{BE})_2 = (V_{BE})_1 + (25 \times 0.60) \,\mathrm{m} \,\mathrm{volt}$$

$$= (V_{BE})_1 + 15 \text{ m volt}$$

Thus if emitter current is doubled the base emitter junction voltage is increased by 15 mV.

3.102 Option (A) is correct.

Unity gain frequency is given by

$$f_T=f_B imeseta\,=10^6 imes200=200\,\mathrm{MHz}$$

 α -cutoff frequency is given by

$$f_{\alpha} = \frac{f_{\beta}}{1 - \alpha} = \frac{f_{\beta}}{1 - \frac{\beta}{\beta + 1}} = f_{\beta}(\beta + 1)$$
$$= 10^{6} \times (200 + 1) = 201 \text{ MHz}$$

3.103 Option (A) is correct.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

(A) - 15 V	(B) $-0.7 V$
(C) + 0.7 V	(D) $+15 V$

4.2 In a voltage-voltage feedback as shown below, which one of the following statements is TRUE if the gain k is increased?

- (A) The input impedance increases and output impedance decreases
- (B) The input impedance increases and output impedance also increases
- (C) The input impedance decreases and output impedance also decreases
- (D) The input impedance decreases and output impedance increases

2013

4.3

TWO MARKS

4.6

4.5

In the circuit shown below, the knee current of the ideal Zener dioide is 10 mA. To maintain 5 V across R_L , the minimum value of R_L in Ω and the minimum power rating of the Zener diode in mW , respectively, are

- (A) 125 and 125(B) 125 and 250(C) 250 and 125(D) 250 and 250
- The ac schematic of an NMOS common-source state is shown in the figure below, where part of the biasing circuits has been omitted for simplicity. For the *n*-channel MOSFET M, the transconductance $g_m = 1 \text{ mA/V}$, and body effect and channel length modulation effect are to be neglected. The lower cutoff frequency in HZ of the circuit is approximately at

In the circuit shown below the op-amps are ideal. Then, V_{out} in Volts is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) 4	(B) 6
(C) 8	(D) 10

In the circuit shown below, Q_1 has negligible collector-to-emitter saturation voltage and the diode drops negligible voltage across it under forward bias. If V_{cc} is +5 V, X and Y are digital signals with 0 V as logic 0 and V_{cc} as logic 1, then the Boolean expression for Z is

- (B) $\overline{X}Y$ (C) $X\overline{Y}$ (D) \overline{XY}
- 4.7 A voltage $1000 \sin \omega t$ Volts is applied across YZ. Assuming ideal diodes, the voltage measured across WX in Volts, is

In the circuit shown below, the silicon npn transistor Q has a very high value of β . The required value of R_2 in k Ω to produce $I_C = 1 \,\mathrm{mA}$ is

2012

4.9

4.8

ONE MARK

The current i_b through the base of a silicon npn transistor is $1 + 0.1 \cos(10000\pi t)$ mA At 300 K, the r_{π} in the small signal model of the transistor is

The i-v characteristics of the diode in the circuit given below are 4.10

$$i = \begin{cases} \frac{v - 0.7}{500} \,\mathrm{A}, & v \ge 0.7 \,\mathrm{V} \\ 0 \,\mathrm{A} & v < 0.7 \,\mathrm{V} \end{cases}$$

4.11

(C) 6.67 mA

The diodes and capacitors in the circuit shown are ideal. The voltage v(t) across the diode D_1 is

(B) 9.3 mA

(D) 6.2 mA

(A)
$$\cos(\omega t) - 1$$
 (B) $\sin(\omega t)$
SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(C) $1 - \cos(\omega t)$

(D) $1 - \sin(\omega t)$

The impedance looking into nodes 1 and 2 in the given circuit is 4.12

TWO MARKS

2012

4.13

4.14

The circuit shown is a

(A) low pass filter with $f_{3dB} = \frac{1}{(R_1 + R_2)C}$ rad/s (B) high pass filter with $f_{3dB} = \frac{1}{R_1 C}$ rad/s (C) low pass filter with $f_{3dB} = \frac{1}{R_1 C}$ rad/s (D) high pass filter with $f_{3dB} = \frac{1}{(R_1 + R_2)C}$ rad/s The voltage gain A_v of the circuit shown below is

2011

ONE MARK

4.18

4.19

^{4.15} In the circuit shown below, capacitors C_1 and C_2 are very large and are shorts at the input frequency. v_i is a small signal input. The gain magnitude $\left|\frac{v_o}{v_i}\right|$ at 10 M rad/s is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

4.16 The circuit below implements a filter between the input current i_i and the output voltage v_o . Assume that the op-amp is ideal. The filter implemented is a

- (A) low pass filter
- (C) band stop filter

(B) band pass filter(D) high pass filter

2011

TWO MARKS

4.17 In the circuit shown below, for the MOS transistors, $\mu_n C_{ox} = 100 \ \mu \text{A/V}^2$

and the threshold voltage $V_T = 1$ V. The voltage V_x at the source of the upper transistor is

For the BJT, Q_1 in the circuit shown below, $\beta = \infty, V_{\text{BEon}} = 0.7 \text{ V}, V_{\text{CEsat}} = 0.7 \text{ V}.$ The switch is initially closed. At time t = 0, the switch is opened. The time t at which Q_1 leaves the active region is

(C) 50 ms (D) 100 ms For a BJT, the common base current gain $\alpha = 0.98$ and the collector base junction reverse bias saturation current $I_{\rm CO} = 0.6 \,\mu$ A. This

BJT is connected in the common emitter mode and operated in the active region with a base drive current $I_B = 20 \,\mu\text{A}$. The collector current I_C for this mode of operation is (A) 0.98 mA (B) 0.99 mA

Statement for Linked Answer Questions: 4.6 & 4.7

In the circuit shown below, assume that the voltage drop across a forward biased diode is 0.7 V. The thermal voltage $V_t = kT/q = 25 \text{ mV}$. The small signal input $v_i = V_p \cos(\omega t)$ where $V_p = 100 \text{ mV}$.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(B) $1\cos(\omega t)$ mV

(D) $22\cos(\omega t)$ mV

- 4.20 The bias current I_{DC} through the diodes is (A) 1 mA (B) 1.28 mA (C) 1.5 mA (D) 2 mA
- 4.21 The ac output voltage v_{ac} is (A) $0.25 \cos(\omega t) \,\mathrm{mV}$
 - (C) $2\cos(\omega t)$ mV

2010

ONE MARK

4.22 The amplifier circuit shown below uses a silicon transistor. The capacitors C_C and C_E can be assumed to be short at signal frequency and effect of output resistance r_0 can be ignored. If C_E is disconnected from the circuit, which one of the following statements is true

- (A) The input resistance R_i increases and magnitude of voltage $gain A_V$ decreases
- (B) The input resistance R_i decreases and magnitude of voltage gain A_V increases
- (C) Both input resistance R_i and magnitude of voltage gain A_V decreases
- (D) Both input resistance R_i and the magnitude of voltage gain A_V increases
- 4.23 In the silicon BJT circuit shown below, assume that the emitter area of transistor Q_1 is half that of transistor Q_2

The value of current I_o is approximately(A) 0.5 mA(B) 2 mA(C) 9.3 mA(D) 15 mA

4.24 Assuming the OP-AMP to be ideal, the voltage gain of the amplifier shown below is

2010

Common Data For Q. 4.11 & 4.12 :

Consider the common emitter amplifier shown below with the following circuit parameters:

 $\beta = 100, g_m = 0.3861 \text{ A/V}, r_0 = 259 \Omega, R_s = 1 \text{ k}\Omega, R_B = 93 \text{ k}\Omega,$ $R_c = 250 \text{ k}\Omega, R_L = 1 \text{ k}\Omega, C_1 = \infty \text{ and } C_2 = 4.7 \,\mu\text{F}$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

- ^{4.25} The resistance seen by the source v_S is (A) 258 Ω (B) 1258 Ω (C) 93 k Ω (D) ∞
- 4.26 The lower cut-off frequency due to C_2 is (A) 33.9 Hz (B) 27.1 Hz (C) 13.6 Hz (D) 16.9 Hz
- ^{4.27} The transfer characteristic for the precision rectifier circuit shown below is (assume ideal OP-AMP and practical diodes)

TWO MARKS

4.28 In the circuit below, the diode is ideal. The voltage V is given by

2009

(B) max $(V_i, 1)$ (D) max $(-V_i, 1)$ **TWO MARKS**

4.30

4.31

4.29 In the following a stable multivibrator circuit, which properties of $v_0(t)$ depend on R_2 ?

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

- (A) Only the frequency
- (B) Only the amplitude
- (C) Both the amplitude and the frequency
- (D) Neither the amplitude nor the frequency

Statement for Linked Answer Question 4.16 and 4.17

Consider for CMOS circuit shown, where the gate voltage v_0 of the n-MOSFET is increased from zero, while the gate voltage of the p-MOSFET is kept constant at 3 V. Assume, that, for both transistors, the magnitude of the threshold voltage is 1 V and the product of the trans-conductance parameter is 1mA. V^2

For small increase in V_G beyond 1V, which of the following gives the correct description of the region of operation of each MOSFET (A) Both the MOSFETs are in saturation region

- (B) Both the MOSFETs are in triode region
- (C) n-MOSFETs is in triode and p-MOSFET is in saturation region
- (D) n- MOSFET is in saturation and p –MOSFET is in triode region
- Estimate the output voltage V_0 for $V_G = 1.5$ V. [Hints : Use the appropriate current-voltage equation for each MOSFET, based on the answer to Q.4.16]

(A)
$$4 - \frac{1}{\sqrt{2}}$$

(B) $4 + \frac{1}{\sqrt{2}}$
(C) $4 - \frac{\sqrt{3}}{2}$
(D) $4 + \frac{\sqrt{3}}{2}$

In the circuit shown below, the op-amp is ideal, the transistor has $V_{BE} = 0.6$ V and $\beta = 150$. Decide whether the feedback in the circuit is positive or negative and determine the voltage V at the output of the op-amp.

- (A) Positive feedback, V = 10 V
- (B) Positive feedback, V = 0 V
- (C) Negative feedback, V = 5 V
- (D) Negative feedback, V = 2 V
- 4.33 A small signal source $V_i(t) = A \cos 20t + B \sin 10^6 t$ is applied to a transistor amplifier as shown below. The transistor has $\beta = 150$ and $h_{ie} = 3\Omega$. Which expression best approximate $V_0(t)$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) $V_0(t) = -1500 (A \cos 20t + B \sin 10^6 t)$ (B) $V_0(t) = -1500 (A \cos 20t + B \sin 10^6 t)$ (C) $V_0(t) = -1500B \sin 10^6 t$

(D) $V_0(t) = -150B\sin 10^6 t$

2008

ONE MARK

^{4.34} In the following limiter circuit, an input voltage $V_i = 10 \sin 100\pi t$ is applied. Assume that the diode drop is 0.7 V when it is forward biased. When it is forward biased. The zener breakdown voltage is 6.8 V

The maximum and minimum values of the output voltage respectively are

(A) 6.1 V, -0.7 V(B) 0.7 V, -7.5 V(C) 7.5 V, -0.7 V(D) 7.5 V, -7.5 V

2008

4.35

4.36

TWO MARSK

4.38

4.39

For the circuit shown in the following figure, transistor M1 and M2 are identical NMOS transistors. Assume the M2 is in saturation and the output is unloaded.

The current I_x is related to I_{bias} as (A) $I_x = I_{bias} + I_s$ (B) $I_x = I_{bias}$ (C) $I_x = I_{bias} - \left(V_{DD} - \frac{V_{out}}{R_E}\right)$ (D) $I_x = I_{bias} - I_s$

Consider the following circuit using an ideal OPAMP. The I-V characteristic of the diode is described by the relation $I = I_0 \left(e_{V_i}^{V_i-1} \right)$ where $V_T = 25$ mV, $I_0 = 1\mu$ A and V is the voltage across the diode (taken as positive for forward bias). For an input voltage $V_i = -1$ V, the output voltage V_0 is

4.37 The OPAMP circuit shown above represents a

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

- (A) high pass filter(C) band pass filter
- (B) low pass filter(D) band reject filter
- Two identical NMOS transistors M1 and M2 are connected as shown below. V_{bias} is chosen so that both transistors are in saturation. The equivalent g_m of the pair is defied to be $\frac{\partial I_{out}}{\partial V_i}$ at constant V_{out} The equivalent g_m of the pair is

$$V_{\text{bias}} \circ \cdots \circ V_{o}$$

 $V_{i} \circ \cdots \circ M_{1}$
 $V_{i} \circ \cdots \circ M_{2}$

- (A) the sum of individual g_m 's of the transistors
- (B) the product of individual g_m 's of the transistors
- (C) nearly equal to the g_m of M1

(D) nearly equal to
$$\frac{g_m}{q_0}$$
 of M2

Consider the Schmidt trigger circuit shown below A triangular wave which goes from -12 to 12 V is applied to the inverting input of OPMAP. Assume that the output of the OPA-MP swings from +15 V to -15 V. The voltage at the non-inverting input switches between

(A) -12V to +12V (B) -7.5 V to 7.5 V (C) -5 V to +5 V (D) 0 V and 5 V

Statement for Linked Answer Question 3.26 and 3.27:

In the following transistor circuit, $V_{BE} = 0.7$ V, $r_3 = 25$ mV/ I_E , and β and all the capacitances are very large

The value of DC current I_E is	
(A) 1 mA	(B) 2 mA
(C) 5 mA	(D) 10 mA

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

4.41 The mid-band voltage gain of the amplifier is approximately
(A) -180
(B) -120
(C) -90
(D) -60

2

4.42

4.40

ONE MARK

TWO MARKS

- ^{4.43} In a transconductance amplifier, it is desirable to have (A) a large input resistance and a large output resistance
 - (B) a large input resistance and a small output resistance
 - (C) a small input resistance and a large output resistance
 - (D) a small input resistance and a small output resistance

2007

4.44 For the Op-Amp circuit shown in the figure, V_0 is

(A) -2 V (C) -0.5 V (D) 0.5 V

For the BJT circuit shown, assume that the β of the transistor is very large and $V_{BE} = 0.7$ V. The mode of operation of the BJT is

(A) cut-off

(C) normal active

4.45

4.46

In the Op-Amp circuit shown, assume that the diode current follows the equation $I = I_s \exp(V/V_T)$. For $V_i = 2V$, $V_0 = V_{01}$, and for $V_i = 4V$, $V_0 = V_{02}$.

The relationship between V_{01} and V_{02} is

(A)
$$V_{02} = \sqrt{2} V_{o1}$$
 (B) $V_{o2} = e^2 V_{o1}$
(C) $V_{o2} = V_{o1} \ln 2$ (D) $V_{o1} - V_{o2} = V_T \ln 2$

^{4.47} In the CMOS inverter circuit shown, if the trans conductance parameters of the NMOS and PMOS transistors are

 $k_n = k_p = \mu_n C_{ox} \frac{W_n}{L_n} = \mu C_{ox} \frac{W_p}{L_p} = 40 \mu A / V^2$ and their threshold voltages as $V_{THn} = |V_{THp}| = 1$ V the current I is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

^{4.48} For the Zener diode shown in the figure, the Zener voltage at knee is 7 V, the knee current is negligible and the Zener dynamic resistance

Statement for Linked Answer Questions 4.35 & 4.36:

Consider the Op-Amp circuit shown in the figure.

The transfer function $V_0(s)/V_i(s)$ is

(A)
$$\frac{1-sRC}{1+sRC}$$

(B) $\frac{1+sRC}{1-sRC}$
(C) $\frac{1}{1-sRC}$
(D) $\frac{1}{1+sRC}$

If $V_i = V_1 \sin(\omega t)$ and $V_0 = V_2 \sin(\omega t + \phi)$, then the minimum and 4.50 maximum values of ϕ (in radians) are respectively

(A) $-\frac{\pi}{2}$ and $\frac{\pi}{2}$	(B) 0 and $\frac{\pi}{2}$
(C) $-\pi$ and 0	(D) $-\frac{\pi}{2}$ and

2006

2006

4.49

ONE MARK

0

- The input impedance (Z_i) and the output impedance (Z_0) of an ideal 4.51 trans-conductance (voltage controlled current source) amplifier are (B) $Z_i = 0, Z_0 = \infty$ (A) $Z_i = 0, Z_0 = 0$ (D) $Z_i = \infty, Z_0 = \infty$ (C) $Z_i = \infty, Z_0 = 0$
- An n-channel depletion MOSFET has following two points on its 4.52 $I_D - V_{Gs}$ curve:

(i) $V_{GS} = 0$ at $I_D = 12$ mA and (ii) $V_{GS} = -6$ Volts at $I_D = 0$ mA Which of the following Q point will given the highest trans conductance gain for small signals?

(B) $V_{GS} = -3$ Volts (A) $V_{GS} = -6$ Volts (C) V_{GS}

$$v = 0$$
 Volts (D) $V_{GS} = 3$ Volts

TWO MARKS

For the circuit shown in the following figure, the capacitor C is 4.53 initially uncharged. At t = 0 the switch S is closed. The V_c across the capacitor at t = 1 millisecond is

In the figure shown above, the OP-AMP is supplied with $\pm 15 V$.

(A) 0 Volt	(B) 6.3 Volt
(C) 9.45 Volts	(D) 10 Volts

For the circuit shown below, assume that the zener diode is ideal 4.54 with a breakdown voltage of 6 volts. The waveform observed across R is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

Common Data For Q. 4.41, 4.42 and 4.43 :

In the transistor amplifier circuit shown in the figure below, the transistor has the following parameters:

$$\beta_{DC} = 60, V_{BE} = 0.7 V, h_{ie} \rightarrow \infty$$

The capacitance C_C can be assumed to be infinite.

In the figure above, the ground has been shown by the symbol ∇

(D) 6.6 Volts

Page 72

TWO MARKS

- (C) 6.0 Volts
- ^{4.56} If β_{DC} is increased by 10%, the collector-to-emitter voltage drop (A) increases by less than or equal to 10%
 - (B) decreases by less than or equal to 10%
 - (C) increase by more than 10%
 - (D) decreases by more than 10%

4.57 The small-signal gain of the amplifier $\frac{v_c}{v_c}$ is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

(A) -10	(B) - 5.3
(C) 5.3	(D) 10

Common Data For Q. 4.44 & 4.45:

A regulated power supply, shown in figure below, has an unregulated input (UR) of 15 Volts and generates a regulated output V_{out} . Use the component values shown in the figure.

^{4.58} The power dissipation across the transistor Q1 shown in the figure is (A) 4.8 Watts (B) 5.0 Watts

(C) 5.4 Watts	(D)	6.0 Watts
---------------	-----	-----------

^{4.59} If the unregulated voltage increases by 20%, the power dissipation across the transistor Q1

- (A) increases by 20% (B) increases by 50%
- (C) remains unchanged (D) decreases by 20%

2005

ONE MARK

4.60 The input resistance R_i of the amplifier shown in the figure is

(A) $\frac{30}{4}$ k Ω (B) 10 k Ω

(C) $40 \text{ k}\Omega$ (D) infinite

The effect of current shunt feedback in an amplifier is to

- (A) increase the input resistance and decrease the output resistance
- (B) increases both input and output resistance
- (C) decrease both input and output resistance
- (D) decrease the input resistance and increase the output resistance

The cascade amplifier is a multistage configuration of

2005

4.61

4.62

4.63

4.64

In an ideal differential amplifier shown in the figure, a large value of (R_E) .

(A) increase both the differential and common - mode gains.

- (B) increases the common mode gain only.
- (C) decreases the differential mode gain only.
- (D) decreases the common mode gain only.
- For an npn transistor connected as shown in figure $V_{BE} = 0.7$ volts. Given that reverse saturation current of the junction at room temperature 300 K is 10^{-13} A, the emitter current is

4.65 The voltage e_0 is indicated in the figure has been measured by an

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

ideal voltmeter. Which of the following can be calculated ?

- (A) Bias current of the inverting input only
- (B) Bias current of the inverting and non-inverting inputs only

- (C) Input offset current only
- (D) Both the bias currents and the input offset current
- 4.66 The Op-amp circuit shown in the figure is filter. The type of filter and its cut. Off frequency are respectively

- (A) high pass, 1000 rad/sec.(C) high pass, 1000 rad/sec
- (B) Low pass, 1000 rad/sec(D) low pass, 10000 rad/sec
- 4.67 The circuit using a BJT with $\beta = 50$ and $V_{BE} = 0.7 V$ is shown in the figure. The base current I_B and collector voltage by V_C and respectively

(A) 43 μ A and 11.4 Volts

(C) 45 μ A and 11 Volts

(B) 40 μ A and 16 Volts (D) 50 μ A and 10 Volts

^{4.68} The Zener diode in the regulator circuit shown in the figure has a Zener voltage of 5.8 volts and a zener knee current of 0.5 mA. The maximum load current drawn from this current ensuring proper functioning over the input voltage range between 20 and 30 volts, is

• 1 kΩ	0	
$\begin{bmatrix} V_i \\ 20-30 \end{bmatrix} V_z = 5.8 \text{ V} \bigstar$	Load	
0	o	
(A) 23.7 mA		(B) 14.2 mA
(C) 13.7 mA		(D) 24.2 mA

4.69

Both transistors T_1 and T_2 show in the figure, have a $\beta = 100$, threshold voltage of 1 Volts. The device parameters K_1 and K_2 of T_1 and T_2 are, respectively, 36 $\mu A/V^2$ and 9 $\mu A/V^2$. The output voltage V_o is

(B) 2 V

(D) 4 V

Common Data For Q. 4.58, 4.59 and 4.60 :

Given, $r_d = 20k\Omega$, $I_{DSS} = 10$ mA, $V_p = -8$ V

- 4.70 Z_i and Z_0 of the circuit are respectively (A) 2 M Ω and 2 k Ω (B) 2 M Ω and $\frac{20}{11}$ k Ω (C) infinity and 2 M Ω (D) infinity and $\frac{20}{11}$ k Ω 4.71 I_D and V_{DS} under DC conditions are respectively
 - I_D and V_{DS} under DC conditions are respectively

 (A) 5.625 mA and 8.75 V
 (B) 1.875 mA and 5.00 V

 (C) 4.500 mA and 11.00 V
 (D) 6.250 mA and 7.50 V

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

4.72 Transconductance in milli-Siemens (mS) and voltage gain of the amplifier are respectively
(A) 1.875 mS and 3.41
(B) 1.875 ms and -3.41
(C) 3.3 mS and -6
(D) 3.3 mS and 6

Given the ideal operational amplifier circuit shown in the figure indicate the correct transfer characteristics assuming ideal diodes with zero cut-in voltage.

Page 74

- 4.74 An ideal op-amp is an ideal
 (A) voltage controlled current source
 (B) voltage controlled voltage source
 (C) current controlled current source
 - (D) current controlled voltage source
- 4.75 Voltage series feedback (also called series-shunt feedback) results in
 - (A) increase in both input and output impedances
 - (B) decrease in both input and output impedances
 - (C) increase in input impedance and decrease in output impedance
 - (D) decrease in input impedance and increase in output impedance
- 4.76 The circuit in the figure is a

2004

GATE Electronics & Communication by RK Kanodia Now in 3 Volume Purchase Online at maximum discount from online store

and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

(A) low-pass filter

(C) band-pass filter

2004

(D) band-reject filter

(B) high-pass filter

TWO MARKS

ONE MARK

4.79

4.80

4.81

- 4.77 A bipolar transistor is operating in the active region with a collector current of 1 mA. Assuming that the β of the transistor is 100 and the thermal voltage (V_T) is 25 mV, the transconductance (g_m) and the input resistance (r_{π}) of the transistor in the common emitter configuration, are
 - (A) $g_m = 25 \text{ mA/V}$ and $r_{\pi} = 15.625 \text{ k}\Omega$
 - (B) $g_m = 40 \text{ mA/V}$ and $r_{\pi} = 4.0 \text{ k}\Omega$

(C)
$$g_m = 25 \text{ mA/V}$$
 and $r_\pi = 2.5 \text{ k} \Omega$

- (D) $g_m = 40 \text{ mA/V}$ and $r_{\pi} = 2.5 \text{ k}\Omega$
- 4.78 The value of C required for sinusoidal oscillations of frequency 1 kHz in the circuit of the figure is

In the op-amp circuit given in the figure, the load current i_L is

In the voltage regulator shown in the figure, the load current can vary from 100 mA to 500 mA. Assuming that the Zener diode is ideal (i.e., the Zener knee current is negligibly small and Zener resistance is zero in the breakdown region), the value of R is

In a full-wave rectifier using two ideal diodes, V_{dc} and V_m are the dc and peak values of the voltage respectively across a resistive load. If PIV is the peak inverse voltage of the diode, then the appropriate

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

relationships for this rectifier are

(A)
$$V_{dc} = \frac{V_m}{\pi}, PIV = 2V_m$$
 (B) $I_{dc} = 2\frac{V_m}{\pi}, PIV = 2V_m$
(C) $V_{dc} = 2\frac{V_m}{\pi}, PIV = V_m$ (D) $V_{dc}\frac{V_m}{\pi}, PIV = V_m$

Assume that the β of transistor is extremely large and $V_{BE} = 0.7 V, I_C$ and V_{CE} in the circuit shown in the figure

ONE MARK

- Choose the correct match for input resistance of various amplifier 4.83 configurations shown below :
 - Configuration Input resistance CB : Common Base LO:LowCC : Common Collector MO : Moderate CE : Common Emitter HI : High (A) CB - LO, CC - MO, CE - HI(B) CB - LO, CC - HI, CE - MO(C) CB - MO, CC - HI, CE - LO(D) CB - HI, CC - LO, CE - MO

The circuit shown in the figure is best described as a

4.84

2003

• Output •

(C) frequency discriminator

- (A) bridge rectifier
- (D) voltage double

(B) ring modulator

If the input to the ideal comparators shown in the figure is a 4.85 sinusoidal signal of 8 V (peak to peak) without any DC component, then the output of the comparators has a duty cycle of

- If the differential voltage gain and the common mode voltage gain 4.86 of a differential amplifier are 48 dB and 2 dB respectively, then common mode rejection ratio is

(A) 23 dB	(B) 25 dB
(C) 46 dB	(D) 50 dB

- Generally, the gain of a transistor amplifier falls at high frequencies 4.87 due to the
 - (A) internal capacitances of the device
 - (B) coupling capacitor at the input
 - (C) skin effect
 - (D) coupling capacitor at the output

2003

TWO MARKS

4.91

4.92

An amplifier without feedback has a voltage gain of 50, input 4.88 resistance of 1 k Ω and output resistance of 2.5 k Ω . The input resistance of the current-shunt negative feedback amplifier using the above amplifier with a feedback factor of 0.2, is

- (A) $\frac{1}{11}$ k Ω (B) $\frac{1}{5}$ k Ω (D) $11 \,\mathrm{k}\Omega$
- (C) $5 k\Omega$
- In the amplifier circuit shown in the figure, the values of R_1 and R_2 are such that the transistor is operating at $V_{CE} = 3$ V and $I_C = 1.5$ mA when its β is 150. For a transistor with β of 200, the operating point (V_{CE}, I_C) is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

The oscillator circuit shown in the figure has an ideal inverting 4.90 amplifier. Its frequency of oscillation (in Hz) is

The output voltage of the regulated power supply shown in the figure is

If the op-amp in the figure is ideal, the output voltage V_{out} will be equal to

(A) 1 V	(B) 6 V
(C) 14 V	(D) 17 V

^{4.93} Three identical amplifiers with each one having a voltage gain of 50, input resistance of 1 k Ω and output resistance of 250 Ω are cascaded. The opened circuit voltages gain of the combined amplifier is (A) 49 dB (B) 51 dB

(C) 98 dB	(D) 102 dB
(C) 00 uD	(\mathbf{D}) 102 $\mathbf{u}\mathbf{D}$

4.94 An ideal sawtooth voltages waveform of frequency of 500 Hz and amplitude 3 V is generated by charging a capacitor of 2 μ F in every cycle. The charging requires

(A) Constant voltage source of 3 V for 1 ms

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

- (B) Constant voltage source of 3 V for 2 ms
- (C) Constant voltage source of 1 mA for 1 ms
- (D) Constant voltage source of 3 mA for 2 ms

ONE MARK

- ^{4.95} In a negative feedback amplifier using voltage-series (i.e. voltagesampling, series mixing) feedback.
 - (A) R_i decreases and R_0 decreases

2002

- (B) R_i decreases and R_0 increases
- (C) R_i increases and R_0 decreases
- (D) R_i increases and R_0 increases

 $(R_i \text{ and } R_0 \text{ denote the input and output resistance respectively})$

A 741-type opamp has a gain-bandwidth product of 1 MHz. A non-inverting amplifier suing this opamp and having a voltage gain of 20 dB will exhibit a -3 dB bandwidth of

(A) 50 kHz	(B) 100 kHz
(C) $\frac{1000}{17}$ kHz	(D) $\frac{1000}{7.07}$ kHz

4.97 Three identical RC-coupled transistor amplifiers are cascaded. If each of the amplifiers has a frequency response as shown in the figure, the overall frequency response is as given in

2002

4.98

40 Hz

TWO MARKS

10 Hz

0.5 kHz f

The circuit in the figure employs positive feedback and is intended to generate sinusoidal oscillation. If at a frequency $f_0, B(f) = \Delta \frac{V_f(f)}{V_0(f)} = \frac{1}{6} \angle 0^\circ$, then to sustain oscillation at this frequency

2 kHz

f

An amplifier using an opamp with a slew-rate
$$SR = 1 V/\mu$$
 sec has
a gain of 40 dB. If this amplifier has to faithfully amplify sinusoidal
signals from dc to 20 kHz without introducing any slew-rate induced
distortion, then the input signal level must not exceed.

(B) $R_2 = 6R_1$

(D) $R_2 = \frac{R_1}{5}$

4.100 A zener diode regulator in the figure is to be designed to meet the specifications: $I_L = 10 \text{ mA } V_0 = 10 \text{ V}$ and V_{in} varies from 30 V to 50 V. The zener diode has $V_z = 10 \text{ V}$ and I_{zk} (knee current) =1 mA. For

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

satisfactory operation

(B) $2000\Omega \le R \le 2200\Omega$ (D) $R \ge 4000\Omega$

4.101 The voltage gain $A_v = \frac{v_0}{v_t}$ of the JFET amplifier shown in the figure is $I_{DSS} = 10 \text{ mA } V_p = -5 \text{ V}(\text{Assume } C_1, C_2 \text{ and } C_s \text{ to be very large})$

ONE MARK

4.102 The current gain of a BJT is

(A) $g_m r_0$	(B) $\frac{g_m}{r}$
(C) $g_m r_\pi$	(D) $\frac{g_m}{r_\pi}$

4.103 Thee ideal OP-AMP has the following characteristics.

(A) $R_i = \infty, \ A = \infty, \ R_0 = 0$ (B) $R_i = 0, \ A = \infty, \ R_0 = 0$ (C) $R_i = \infty, \ A = \infty, \ R_0 = \infty$ (D) $R_i = 0, \ A = \infty, \ R_0 = \infty$

4.104 Consider the following two statements :

Statement 1 :

2001

A stable multi vibrator can be used for generating square wave. Statement 2:

Bistable multi vibrator can be used for storing binary information.

- (A) Only statement 1 is correct
- (B) Only statement 2 is correct
- (C) Both the statements 1 and 2 are correct
- (D) Both the statements 1 and 2 are incorrect

2001

TWO MARKS

- 4.105 An *npn* BJT has $g_m = 38 \text{ mA/V}$, $C_{\mu} = 10^{-14} \text{ F}$, $C_{\pi} = 4 \times 10^{-13} \text{ F}$, and DC current gain $\beta_0 = 90$. For this transistor f_T and f_{β} are
 - (A) $f_T = 1.64 \times 10^8$ Hz and $f_\beta = 1.47 \times 10^{10}$ Hz
 - (B) $f_T = 1.47 \times 10^{10}$ Hz and $f_\beta = 1.64 \times 10^8$ Hz
 - (C) $f_{T}=1.33\times10^{12}~{\rm Hz}$ and $f_{\!\beta}=1.47\times10^{10}~{\rm Hz}$
 - (D) $f_T = 1.47 \times 10^{10}$ Hz and $f_\beta = 1.33 \times 10^{12}$ Hz
- 4.106
 - The transistor shunt regulator shown in the figure has a regulated output voltage of 10 V, when the input varies from 20 V to 30 V. The relevant parameters for the zener diode and the transistor are : $V_z = 9.5$, $V_{BE} = 0.3$ V, $\beta = 99$, Neglect the current through R_B . Then the maximum power dissipated in the zener diode (P_z) and the transistor (P_T) are

(A) $P_z = 75 \text{ mW}, P_T = 7.9 \text{ W}$ (B) $P_z = 85 \text{ mW}, P_T = 8.9 \text{ W}$ (C) $P_z = 95 \text{ mW}, P_T = 9.9 \text{ W}$

- (D) $P_z = 115 \text{ mW}, P_T = 11.9 \text{ W}$
- 4.107 The oscillator circuit shown in the figure is

- (A) Hartely oscillator with $f_{oscillation} = 79.6$ MHz
- (B) Colpitts oscillator with $f_{oscillation} = 50.3$ MHz
- (C) Hartley oscillator with $f_{oscillation} = 159.2$ MHz
- (D) Colpitts oscillator with $f_{oscillation} = 159.3$ MHz
- ^{4.108} The inverting OP-AMP shown in the figure has an open-loop gain SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

of 100.

The closed-loop gain
$$\frac{V_0}{V_s}$$
 is
(A) -8 (B) -9
(C) -10 (D) -11

4.109 In the figure assume the OP-AMPs to be ideal. The output v_0 of the circuit is

2000

ONE MARK

4.110 In the differential amplifier of the figure, if the source resistance of the current source I_{EE} is infinite, then the common-mode gain is

(A) zero

(B) infinite (D) $\frac{V_{in1} + V_{in2}}{2 V_T}$

4.111 In the circuit of the figure, V_0 is

(C) indeterminate

$$+1 V \circ R$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

(A) -1 V	(B) $2 V$
(C) + 1 V	(D) $+15 \text{ V}$

- 4.112 Introducing a resistor in the emitter of a common amplifier stabilizes the dc operating point against variations in
 - (A) only the temperature (B) only the β of the transistor 4.118
 - (C) both temperature and β (D) none of the above
- 4.113 The current gain of a bipolar transistor drops at high frequencies because of
 - (A) transistor capacitances
 - (B) high current effects in the base
 - (C) parasitic inductive elements
 - (D) the Early effect

4.114 If the op-amp in the figure, is ideal, then v_0 is

(B) $(V_1 - V_2) \sin \omega t$ (D) $(V_1 + V_2) \sin \omega t$

4.115 The configuration of the figure is a

- (A) precision integrator(B) Hartely oscillator(C) Butterworth high pass filter(D) Wien-bridge oscillator
- Assume that the op-amp of the figure is ideal. If v_i is a triangular wave, then v_0 will be

- (A) square wave(C) parabolic wave
- (B) triangular wave(D) sine wave
- 4.117 The most commonly used amplifier is sample and hold circuits is (A) a unity gain inverting amplifier
 - (B) a unity gain non-inverting amplifier
 - (C) an inverting amplifier with a gain of 10
 - (D) an inverting amplifier with a gain of 100

2000

4.116

TWO MARKS

In the circuit of figure, assume that the transistor is in the active region. It has a large β and its base-emitter voltage is 0.7 V. The value of I_c is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

- (A) Indeterminate since R_c is not given (B) 1 mA
- (C) 5 mA
- If the op-amp in the figure has an input offset voltage of 5 mV and 4.119 an open-loop voltage gain of 10000, then v_0 will be

(D) 10 mA

(A) 0 V(B) 5 mV(D) +50 V or -50 V (C) + 15 V or -15 V

1999

1999

ONE MARK

- The first dominant pole encountered in the frequency response of a 4.120 compensated op-amp is approximately at
 - (A) 5 Hz(B) 10 kHz יי) 100 MHz

(C) 1 MHz	(L	0) 100 MHz

- Negative feedback in an amplifier 4.121 (A) reduces gain
 - (B) increases frequency and phase distortions
 - (C) reduces bandwidth
 - (D) increases noise
- 4.122 In the cascade amplifier shown in the given figure, if the commonemitter stage (Q_1) has a transconductance gm_1 , and the common base stage (Q_2) has a transconductance gm_2 , then the overall transconductance $q(=i_0/v_i)$ of the cascade amplifier is

4.123 Crossover distortion behavior is characteristic of

> (A) Class A output stage (B) Class B output stage

(B) g_{m2}

(C) Class AB output stage (D) Common-base output stage

TWO MARK

An amplifier has an open-loop gain of 100, an input impedance of 4.124 $1 \,\mathrm{k}\Omega$, and an output impedance of $100 \,\Omega$. A feedback network with a feedback factor of 0.99 is connected to the amplifier in a voltage series feedback mode. The new input and output impedances, respectively, are (A) 10Ω and 1Ω (B) 10Ω and $10 k\Omega$

(C) $100 \text{ k}\Omega$ and 1Ω	(D) $100 \mathrm{k}\Omega$ and $1 \mathrm{k}\Omega$

- A dc power supply has a no-load voltage of 30 V, and a full-load 4.125 voltage of 25 V at a full-load current of 1 A. Its output resistance and load regulation, respectively, are (A) 5Ω and 20%(B) 25Ω and 20%
 - (C) 5Ω and 16.7%(D) 25Ω and 16.7%

1998

The circuit of the figure is an example of feedback of the following 4.126

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy www.nodia.co.in

4.127 In a differential amplifier, CMRR can be improved by using an increased

- (A) emitter resistance (B) collector resistance (D) source resistance (C) power supply voltages
- From a measurement of the rise time of the output pulse of an 4.128 amplifier whose is a small amplitude square wave, one can estimate the following parameter of the amplifier
 - (A) gain-bandwidth product (B) slow rate
 - (C) upper 3–dB frequency (D) lower 3–dB frequency
- 4.129 The emitter coupled pair of BJT's given a linear transfer relation between the differential output voltage and the differential output voltage and the differential input voltage V_{id} is less α times the thermal voltage, where α is

(A) 4	(B) 3
(C) 2	(D) 1

- In a shunt-shunt negative feedback amplifier, as compared to the 4.130 basic amplifier
 - (A) both, input and output impedances, decrease
 - (B) input impedance decreases but output impedance increases
 - (C) input impedance increase but output
 - (D) both input and output impedances increases.

1998

4.131

TWO MARKS

A multistage amplifier has a low-pass response with three real poles at $s = -\omega_1 - \omega_2$ and ω_3 . The approximate overall bandwidth B of the amplifier will be given by

(A) $B = \omega_1 + \omega_2 + \omega_3$	(B) $\frac{1}{B} = \frac{1}{\omega_1} + \frac{1}{\omega_2} + \frac{1}{\omega_3}$
(C) $B = (\omega_1 + \omega_2 + \omega_3)^{1/3}$	(D) $B = \sqrt{\omega_1^2 + \omega_2^2 + \omega_3^2}$

ONE MARK

4.132	One input terminal of high gain	comparator circuit is connected to			
	ground and a sinusoidal voltage is applied to the other input. T				
	output of comparator will be				
	(A) a sinusoid	(B) a full rectified sinusoid			
	(C) a half rectified sinusoid	(D) a square wave			
4.133 In a series regulated power supply circuit, the voltage gain A_v 'pass' transistor satisfies the condition					

F	
(A) $A_v \to \infty$	(B) $1 \ll A_v \ll \infty$

- (C) $A_v \approx 1$ (D) $A_v \ll 1$
- 4.134 For full wave rectification, a four diode bridge rectifier is claimed to have the following advantages over a two diode circuit :
 - (A) less expensive transformer,
 - (B) smaller size transformer, and
 - (C) suitability for higher voltage application.

Of these,

- (A) only (1) and (2) are true
- (B) only (1) and (3) are true

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

- (C) only (2) and (3) are true
- (D) (1), (2) as well as (3) are true
- 4.135 In the MOSFET amplifier of the figure is the signal output V_1 and 4.140 V_2 obey the relationship

4.136 For small signal ac operation, a practical forward biased diode can be modelled as

- (A) a resistance and a capacitance in series
- (B) an ideal diode and resistance in parallel
- (C) a resistance and an ideal diode in series

(D) a resistance

1997

ONE MARK

4.137 In the BJT amplifier shown in the figure is the transistor is based in the forward active region. Putting a capacitor across R_E will

- (A) decrease the voltage gain and decrease the input impedance
- (B) increase the voltage gain and decrease the input impedance
- (C) decrease the voltage gain and increase the input impedance
- (D) increase the voltage gain and increase the input impedance
- 4.138 A cascade amplifier stags is equivalent to
 - (A) a common emitter stage followed by a common base stage
 - (B) a common base stage followed by an emitter follower
 - (C) an emitter follower stage followed by a common base stage
 - (D) a common base stage followed by a common emitter stage
- ^{4.139} In a common emitter BJT amplifier, the maximum usable supply voltage is limited by
 - (A) Avalanche breakdown of Base-Emitter junction
 - (B) Collector-Base breakdown voltage with emitter open (BV_{CBO})
 - (C) Collector-Emitter breakdown voltage with base open (BV_{CBO})
 - (D) Zener breakdown voltage of the Emitter-Base junction

1997

TWO MARKS

In the circuit of in the figure is the current i_D through the ideal diode (zero cut in voltage and forward resistance) equals

4.141 The output voltage V_0 of the circuit shown in the figure is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(B) 6 V

(A)
$$-4 V$$

(C) $5 V$

- (D) 5.5 V
- A half wave rectifier uses a diode with a forward resistance Rf. The 4.142 voltage is $V_m \sin \omega t$ and the load resistance is R_L . The DC current is given by

(A)
$$\frac{V_m}{\sqrt{2}R_L}$$

(B) $\frac{V_m}{\pi(R_f + R_L)}$
(C) $\frac{2V_m}{\sqrt{\pi}}$
(D) $\frac{V_m}{R_L}$

ONE MARK

4.147

4.143 In the circuit of the given figure, assume that the diodes are ideal and the meter is an average indicating ammeter. The ammeter will read

(A)
$$0.4\sqrt{2}$$
 A
(B) 0.4 A
(C) $\frac{0.8}{\pi}$ A
(D) $\frac{0.4}{\pi}$ mamp

The circuit shown in the figure is that of

- (A) a non-inverting amplifier (B) an inverting amplifier (C) an oscillator (D) a Schmitt trigger

TWO MARKS

4.148

1996

1996

4.145

In the circuit shown in the given figure N is a finite gain amplifier with a gain of k, a very large input impedance, and a very low output impedance. The input impedance of the feedback amplifier with the feedback impedance Z connected as shown will be

4.146

A Darlington stage is shown in the figure. If the transconductance of Q_1 is g_{m1} and Q_2 is g_{m2} , then the overall transconductance $g_{mc} | \underline{\Delta}$ is given by

Value of R in the oscillator circuit shown in the given figure, so chosen that it just oscillates at an angular frequency of ω . The value of ω and the required value of R will respectively be

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

(A) $10^5 \operatorname{rad}/\operatorname{sec}, 2 \times 10^4 \Omega$ (C) $2 \times 10^4 \, \mathrm{rad/sec}, 10^5 \, \Omega$ (B) $2 \times 10^4 \, \mathrm{rad/sec}, 2 \times 10^4 \, \Omega$ (D) $10^5 \text{ rad}/\text{sec}, 10^5 \Omega$

A zener diode in the circuit shown in the figure is has a knee current of $5 \,\mathrm{mA}$, and a maximum allowed power dissipation of $300 \,\mathrm{mW}$. What are the minimum and maximum load currents that can be drawn safely from the circuit, keeping the output voltage V_0 constant at 6 V?

(A) $0 \,\mathrm{mA}, 180 \,\mathrm{mA}$ (B) $5 \,\mathrm{mA}, 110 \,\mathrm{mA}$ (C) 10 mA, 55 mA(D) 60 mA, 180 mA ******

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

> For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

SOLUTIONS

Option (B) is correct. 4.1

For the given ideal op-amp, negative terminal will be also ground (at zero voltage) and so, the collector terminal of the BJT will be at zero voltage.

i.e., $V_C = 0$ volt

The current in $1 k\Omega$ resistor is given by

$$I = \frac{5 - 0}{1 \,\mathrm{k}\Omega} = 5 \,\mathrm{mA}$$

This current will flow completely through the BJT since, no current will flow into the ideal op-amp (I/P resistance of ideal opamp is infinity). So, for BJT we have

$$V_C = 0$$
$$V_B = 0$$
$$I_C = 5 \text{ mA}$$

i.e., the base collector junction is reverse biased (zero voltage) therefore, the collector current (I_c) can have a value only if baseemitter is forward biased. Hence,

	$V_{BE}=0.7~{ m volts}$
\Rightarrow	$V_B-\ V_E=0.7$
\Rightarrow	$0-V_{ m out}=0.7$
or,	$V_{\rm out} = -0.7 \text{ volt}$

Option (A) is correct.

4.2

The i/p voltage of the system is given as

$$V_{in} = V_1 + V_f$$

= $V_1 + k V_{out}$
= $V_1 + k A_0 V_1$
= $V_1(1 + k A_0)$
($V_{out} = A_0 V_1$)

Therefore, if k is increased then input voltage is also increased so, the input impedance increases. Now, we have

$$V_{out} = A_0 V_1$$

= $A_0 \frac{V_{in}}{(1 + k A_0)}$
= $\frac{A_0 V_{in}}{(1 + k A_0)}$

Since, V_{in} is independent of k when seen from output mode, the output voltage decreases with increase in k that leads to the decrease of output impedance. Thus, input impedance increases and output impedance decreases.

Option (B) is correct. 4.3

From the circuit, we have

or,
$$I_s = I_Z + I_L$$
$$I_Z = I_s - I_L$$

(1)

Since, voltage across zener diode is 5 V so, current through 100Ω resistor is obtained as

$$I_s = \frac{10 - 5}{100} = 0.05 \,\mathrm{A}$$

Therefore, the load current is given by

$$I_L = \frac{5}{R_L}$$

Since, for proper operation, we must have

$$I_Z \ge I_{knes}$$

So, from Eq. (1), we write
$$0.05 \text{ A} - \frac{5}{R_L} \ge 10 \text{ mA}$$
$$50 \text{ mA} - \frac{5}{R_L} \ge 10 \text{ mA}$$
$$40 \text{ mA} \ge \frac{5}{R_L}$$
$$40 \times 10^{-3} \ge \frac{5}{R_L}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

$$1 \sim B_L$$

$$\frac{1}{40 \times 10^{-3}} \le \frac{R_L}{5}$$
$$\frac{5}{40 \times 10^{-3}} \le R_L$$
$$125 \ \Omega \le R_L$$

Therefore, minimum value of $R_L = 125 \Omega$

Now, we know that power rating of Zener diode is given by

$$P_R = V_Z I_{Z(\max)}$$

 $I_{Z(\max)}$ is maximum current through zener diode in reverse bias. Maximum current through zener diode flows when load current is zero. i.e.,

$$I_{Z(\text{max})} = I_s = \frac{10-5}{100} = 0.05$$

 $P_R = 5 \times 0.05 \text{ W}$

Therefore,

or,

 $= 250 \,\mathrm{mW}$

Option (A) is correct.

For the given circuit, we obtain the small signal model as shown in figure below :

 $V_1 = \frac{-g_m}{\frac{1}{R_D} + \frac{1}{R_L}}$

We obtain the node voltage at V_1 as

$$\frac{V_1}{R_D} + \frac{V_1}{R_L + \frac{1}{sC}} + g_m V_i = 0$$

 \Rightarrow

Therefore, the output voltage V_0 is obtained as

$$egin{aligned} V_0 &= rac{V_1 R_L}{R_L + rac{1}{sC}} \ &= rac{R_L}{R_L + rac{1}{sC}} iggl(rac{-g_m \, V_i}{R_L + rac{1}{sC}} iggl(rac{1}{R_D} + rac{1}{R_L + rac{1}{sC}} iggr) \end{aligned}$$

so, the transfer function is

$$\frac{V_0}{V_i} = \frac{-R_D R_L s C g_m}{1 + s C (R_D + R_L)}$$

Then, we have the pole at $\omega = \frac{1}{C(R_D + R_L)}$ It gives the lower cutoff frequency of transfer function. $\omega_0 = \frac{1}{C(R_D + R_L)}$ i.e., fo or,

$$= \frac{1}{2\pi C(R_D + R_L)}$$
$$= \frac{1}{2\pi \times 10^{-6} \times 20 \times 10^3}$$
$$= 7.97$$
$$\approx 8 \text{ Hz}$$

Option (C) is correct. 4.5

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

For the given ideal op-Amps we can assume

$$V_2^- = V_2^+ = V_2$$
 (ideal)
 $V_1^+ = V_1^- = V_1$ (ideal)

So, by voltage division

 \Rightarrow

$$V_1 = \frac{V_{\text{out}} \times 1}{2}$$
$$V_{\text{out}} = 2 V_1$$

and, as the I/P current in Op-amp is always zero therefore, there will be no voltage drop across $1 \,\mathrm{K}\Omega$ in II op-amp $V_2 = 1 \, \mathrm{V}$ i.e., Therefore,

 $\frac{V_1 - V_2}{1} = \frac{V_2 - (-2)}{1}$ $V_1 - 1 = 1 + 2$ $V_1 = 4$ or, Hence,

$$V_{\rm out} = 2 V_1 = 8 \text{ volt}$$

4.6 Option (B) is correct.

For the given circuit, we can make the truth table as below

Y	Z
0	0
1	1
0	0
1	0
	0 1 0

Logic 0 means voltage is v = 0 volt and logic 1 means voltage is 5 volt

For x = 0, y = 0, Transistor is at cut off mode and diode is forward biased. Since, there is no drop across forward biased diode. Z = Y = 0So, For x = 0, y = 1, Again Transistor is in cutoff mode, and diode is forward biased. with no current flowing through resistor. So, Z = Y = 1For x = 1, y = 0, Transistor is in saturation mode and so, z directly connected to ground irrespective of any value of Y.

Z = 0 (ground) i.e.,

Similarly for X = Y = 1

Z = 0 (ground) Hence, from the obtained truth table, we get $Z = \overline{X} Y$

4.7 Option (D) is correct. Given, the input voltage

$$V_{\rm Vz} = 100 \sin \omega t$$

For + ve half cycle

i.e., V_Y is a higher voltage than V_Z

So, the diode will be in cutoff region. Therefore, there will no voltage difference between X and W node.

 $V_{YZ} > 0$

 $V_{WX} = 0$ i.e.,

Now, for -ve half cycle all the four diodes will active and so, X and W terminal is short circuited

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

i.e.,
$$V_{WX} = 0$$

Hence, $V_{WX} = 0$ for all t

Option (C) is correct. The equivalent circuit can be shown as

4.8

Page 85

$$=rac{3R_2}{R_1+R_2}
onumber \ R_{Th} = rac{R_2R_1}{R_2+R_1}$$

Since, $I_C = \beta I_B$ has $\beta \approx \infty$ (very high) so, I_B is negative in comparison to I_C . Therefore, we can write the base voltage

 $V_B = V_{Th}$ So, $V_{Th} - 0.7 - I_C R_E = 0$

or,
$$\frac{3R_2}{R_1 + R_2} - 0.7 - (10^{-3})(500) = 0$$

or,

$$3R_2 = (60 \text{ k}\Omega)(1.2) + 1.2R_2$$

 $\frac{3R_2}{60\,\mathrm{k}\Omega+R_2} = 0.7 + 0.5$

 $R_2 = \frac{60 \times 1.2}{1.8} = 40 \,\mathrm{k}\Omega$

or,
$$1.8R_2 = (60 \text{ k}\Omega) \times (1.2)$$

Hence,

4.9

or,

Option (C) is correct. Given $i_{t} = 1 + 0.1 \cos(1000\pi t) \text{ mA}$

So,
$$I_B = DC$$
 component of i_b

 $= 1 \,\mathrm{mA}$

In small signal model of the transistor $r_{\pi} = \frac{\beta V_T}{I_C} \qquad V_T \rightarrow \text{Thermal voltage}$ $= \frac{V_T}{I_C/\beta} = \frac{V_T}{I_B} \qquad \frac{I_C}{\beta} = I_B$ $= \frac{V_T}{I_B}$

 $r_{\pi} = \frac{25 \text{ mV}}{1 \text{ mA}} = 25 \Omega$ $V_T = 25 \text{ mV}, I_B = 1 \text{ mA}$

So,

4.10

Option (D) is correct.

Let v > 0.7 V and diode is forward biased. By applying Kirchoff's voltage law

$$10 - i \times 1k - v = 0$$

$$10 - \left[\frac{v - 0.7}{500}\right](1000) - v = 0$$

$$10 - (v - 0.7) \times 2 - v = 0$$

$$10 - 3v + 1.4 = 0$$

$$v = \frac{11.4}{3} = 3.8 \text{ V} > 0.7 \quad \text{(Assumption is true)}$$

$$i = \frac{v - 0.7}{500} = \frac{3.8 - 0.7}{500} = 6.2 \text{ mA}$$

4.11 Option (A) is correct.

So,

The circuit composed of a clamper and a peak rectifier as shown.

Clamper clamps the voltage to zero voltage, as shown

$$0$$

2 V
2 V

The peak rectifier adds +1 V to peak voltage, so overall peak voltage lowers down by -1 volt.

$$v_o = \cos \omega t - 1$$

4.12 Option (A) is correct.

So,

1

We put a test source between terminal 1, 2 to obtain equivalent impedance

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

$$Z_{Th} = \frac{V_{test}}{I_{test}}$$

 $-rac{V_{test}}{10 \mathrm{k}}$

Applying KCL at top right node

$$\frac{V_{test}}{9k+1k} + \frac{V_{test}}{100} - 99I_b = I_{test}$$
$$\frac{V_{test}}{10k} + \frac{V_{test}}{100} - 99I_b = I_{test}$$

...(i)

But

$$I_b=-rac{V_{test}}{9k+1k}=-$$

Substituting I_b into equation (i), we have

$$\frac{V_{test}}{10k} + \frac{V_{test}}{10k} + \frac{99 V_{test}}{10k} = I_{test}$$
$$\frac{100 V_{test}}{10 \times 10^3} + \frac{V_{test}}{100} = I_{test}$$
$$\frac{2 V_{test}}{100} = I_{test}$$
$$Z_{Th} = \frac{V_{test}}{I_{test}} = 50 \ \Omega$$

Solving equation (i) and (ii),

$$I_B = 0.01 \,\mathrm{mA}$$

Small Signal Analysis :

Transforming given input voltage source into equivalent current source.

This is a shunt-shunt feedback amplifier. Given parameters,

$$r_{\pi} = \frac{V_T}{I_B} = \frac{25 \text{ mV}}{0.01 \text{ mA}} = 2.5 \text{ k}\Omega$$
$$g_m = \frac{\beta}{r_{\pi}} = \frac{100}{2.5 \times 1000} = 0.04 \text{ s}$$

Writing KCL at output node

$$\frac{v_0}{R_C} + g_m v_\pi + \frac{v_0 - v_\pi}{R_F} = 0$$

$$v_0 \left[\frac{1}{R_C} + \frac{1}{R_F} \right] + v_\pi \left[g_m - \frac{1}{R_F} \right] = 0$$

Substituting $R_C = 12 \text{ k}\Omega$, $R_F = 100 \text{ k}\Omega$, $g_m = 0.04 \text{ s}$ $v_0(9.33 \times 10^{-5}) + v_{\pi}(0.04) = 0$

$$v_0 = -428.72 V_{\pi}$$

...(i)

Writing KCL at input node

$$\begin{aligned} \frac{v_i}{R_s} &= \frac{v_{\pi}}{R_s} + \frac{v_{\pi}}{r_{\pi}} + \frac{v_{\pi} - v_o}{R_F} \\ \frac{v_i}{R_s} &= v_{\pi} \Big[\frac{1}{R_s} + \frac{1}{r_{\pi}} + \frac{1}{R_F} \Big] - \frac{v_0}{R_F} \\ \frac{v_i}{R_s} &= v_{\pi} (5.1 \times 10^{-4}) - \frac{v_0}{R_F} \end{aligned}$$

Substituting V_{π} from equation (i)

$$\frac{v_i}{R_s} = \frac{-5.1 \times 10^{-4}}{428.72} v_0 - \frac{v_0}{R_F}$$
$$\frac{v_i}{10 \times 10^3} = -1.16 \times 10^{-6} v_0 - 1 \times 10^{-5} v_0 \qquad R_s = 10 \text{ k}\Omega$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(source resistance)

$$\frac{v_i}{10 \times 10^3} = -1.116 \times 10^{-5}$$
$$|A_v| = \left|\frac{v_0}{v_i}\right| = \frac{1}{10 \times 10^3 \times 1.116 \times 10^{-5}} \simeq 8.96$$

Option (A) is correct. 4.15

For the parallel RLC circuit resonance frequency is,

$$\omega_r = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10 \times 10^{-6} \times 1 \times 10^{-9}}} = 10 \text{ M rad/s}$$

Thus given frequency is resonance frequency and parallel RLC circuit has maximum impedance at resonance frequency

$$\frac{0 - V_i(j\omega)}{\frac{1}{j\omega C} + R_1} + \frac{0 - V_o(j\omega)}{R_2} = 0$$
$$\frac{V_o(j\omega)}{R_2} = \frac{-V_i(j\omega)}{\frac{1}{j\omega C} + R_1}$$
$$V_o(j\omega) = -\frac{V_i(j\omega)R_2}{R_1 - j\frac{1}{\omega C}}$$
(Low frequencies),
$$\frac{1}{\omega C} \to \infty, \text{ so } V_o = 0$$

At $\omega \to 0$ (Low frequencies),

At $\omega \to \infty$ (higher frequencies)

$$\frac{1}{\omega C} \to 0$$
, so $V_o(j\omega) = -\frac{R_2}{R_1} V_i(j\omega)$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

The filter passes high frequencies so it is a high pass filter.

$$H(j\omega) = \frac{V_o}{V_i} = \frac{-R_2}{R_1 - j\frac{1}{\omega C}}$$
$$|H(\infty)| = \left|\frac{-R_2}{R_1}\right| = \frac{R_2}{R_1}$$

At 3 dB frequency, gain will be $\sqrt{2}$ times of maximum gain $[H(\infty)]$

So,

$$egin{aligned} & \left| H(j\omega_0)
ight| = rac{1}{\sqrt{2}} \left| H(\infty)
ight| \ & rac{R_2}{\sqrt{R_1^2 + rac{1}{\omega_0^2 C^2}}} = rac{1}{\sqrt{2}} \Big(rac{R_2}{R_1} \Big) \ & 2R_1^2 = R_1^2 + rac{1}{\omega_0^2 C^2} \ & R_1^2 = rac{1}{\omega^2 C^2} \ & \omega_0 = rac{1}{R_1 C} \end{aligned}$$

Option (D) is correct. 4.14

Using KVL in input loop,

$$V_C - 100I_B - 0.7 = 0$$

 $V_C = 100I_B + 0.7$...(i)

Gain of the amplifier is $g_m \times (Z_C || R_L)$ where Z_C is impedance of parallel RLC circuit.

At $\omega = \omega_r$, $Z_C = R = 2 \text{ k}\Omega = Z_{Cmax}$. Hence at this frequency (ω_r) , gain is

Gain $|_{\omega=\omega_r} = g_m(Z_C || R_L) = g_m(2\mathbf{k} || 2\mathbf{k}) = g_m \times 10^3$ which is maximum. Therefore gain is maximum at $\omega_r = 10 \text{ M rad/sec.}$

4.16 Option (D) is correct.

The given circuit is shown below :

 i_i R_1 v_o e^-

From diagram we can write

$$I_i = \frac{V_o}{R_1} + \frac{V_o}{sL_1}$$

Transfer function

$$H(s) = \frac{V_o}{I_1} = \frac{sR_1L_1}{R_1 + sL_1}$$
$$H(j\omega) = \frac{j\omega R_1L_1}{R_1 + j\omega L_1}$$

 $H(j\omega) = 0$

 $H(j\omega) = R_1 = \text{constant}.$

or

At $\omega = 0$ At $\omega = \infty$

4.17

Option (C) is correct. Given circuit is shown below.

$$5 \text{ V} \bullet H_1 = 4$$

$$W/L = 4$$

$$W/L = 1$$

$$M_2 = 1$$

For transistor M_2 ,

$$V_{GS} = V_G - V_S = V_x - 0 = V_x$$
$$V_{DS} = V_D - V_S = V_x - 0 = V_x$$

Since $V_{GS} - V_T = V_x - 1 < V_{DS}$, thus M_2 is in saturation. By assuming M_1 to be in saturation we have

$$\begin{split} I_{DS(M_1)} &= I_{DS(M_2)} \\ \frac{\mu_n C_{0x}}{2} (4) \left(5 - V_x - 1 \right)^2 &= \frac{\mu_n C_{0x}}{2} 1 \left(V_x - 1 \right)^2 \\ 4 (4 - V_x)^2 &= (V_x - 1)^2 \\ 2 (4 - V_x) &= \pm (V_x - 1) \end{split}$$
ositive root,

8

or

$$-2V_x = V_x - 1$$

 $V_x = 3 \text{ V}$ At $V_x = 3 \text{ V}$ for $M_1, V_{GS} = 5 - 3 = 2 \text{ V} < V_{DS}$. Thus our assumption is true and $V_x = 3 \text{ V}$.

 $\beta = \frac{\alpha}{1 - \alpha} = 4.9$

 $\alpha = 0.98$

Option (D) is correct.

We have

Now

4.18

In active region, for common emitter amplifier,

4.19

Hence HPF.

 $I_C = \beta I_B + (1+\beta) I_{CO}$...(1)Substituting $I_{CO} = 0.6 \,\mu\text{A}$ and $I_B = 20 \,\mu\text{A}$ in above eq we have, $I_C = 1.01 \,\mathrm{mA}$ Option (C) is correct. In active region $V_{BEon} = 0.7 \text{ V}$ $V_E = V_B - V_{BEon} = -5.7 \text{ V}$ Emitter voltage $I_E = \frac{V_E - (-10)}{4.3k} = \frac{-5.7 - (-10)}{4.3k} = 1 \text{ mA}$ Emitter Current Now $I_C \approx I_E = 1 \,\mathrm{mA}$ Applying KCL at collector $i_1 = 0.5 \,\mathrm{mA}$ $i_1 = C \frac{dV_C}{dt}$ Since $V_C = \frac{1}{C} \int i_1 dt = \frac{i_1}{C} t$...(1)or

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

with time, the capacitor charges and voltage across collector changes from 0 towards negative.

When saturation starts, $V_{CE} = 0.7$ capacitor) Thus from (1) we get, $+5 = \frac{0.5}{5}$

 $V_{CE} = 0.7 \Rightarrow V_C = +5 \text{ V} (\text{across})$

$$5 = \frac{0.5 \text{ mA}}{5} T$$

or

4.20

4.22

$$+5 = \frac{0.5 \text{ mA}}{5 \,\mu\text{A}}$$

$$T = \frac{5 \times 5 \times 10^{-6}}{0.5 \times 10^{-3}} = 50 \,\mathrm{m\,sec}$$

Option (A) is correct.

The current flows in the circuit if all the diodes are forward biased. In forward biased there will be 0.7 V drop across each diode.

Thus
$$I_{DC} = \frac{12.7 - 4(0.7)}{9900} = 1 \,\mathrm{mA}$$

4.21 Option (B) is correct.

The forward resistance of each diode is

$$r = \frac{V_T}{I_C} = \frac{25 \text{ mV}}{1 \text{ mA}} = 25 \Omega$$
$$V_{ac} = V_i \times \left(\frac{4(r)}{4(r) + 9900}\right)$$
$$= 100 \text{ mV} \cos(\omega t) 0.01$$

 $= 1 \cos(\omega t) \,\mathrm{mV}$

Option (A) is correct.

Option (A) is correct.

The equivalent circuit of given amplifier circuit (when C_E is 4.24 connected, R_E is short-circuited)

$$v_s \bigoplus_{\underline{-}} R_B \underbrace{\overset{+}{\underset{\underline{-}}} r_{\pi} \underbrace{\overset{+}{\underset{\underline{-}}} v_{\pi}}_{\underline{-}} \underbrace{\overset{\bullet}{\underset{\underline{-}}} g_m v_{\pi} \underbrace{\overset{\bullet}{\underset{\underline{-}}} R_C}_{\underline{-}}$$

Input impedance $R_i = R_B || r_{\pi}$ Voltage gain $A_V = g_m R_C$ Now, if C_E is disconnected, resistance R_E appears in the circuit

Input impedance $R_{in} = R_B || [r_{\pi} + (\beta + 1)] R_E$ **GATE Electronics & Communication by RK Kanodia Now in 3 Volume**

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

Input impedance increases

Voltage gain $A_V = \frac{g_m R_C}{1 + g_m R_E}$ Voltage gain decreases.

4.23 Option (B) is correct.

Since, emitter area of transistor Q_1 is half of transistor Q_2 , so current

$$I_{E_1} = \frac{1}{2}I_{E_2}$$
 and $I_{B_1} = \frac{1}{2}I_{B_2}$

The circuit is as shown below :

$$R = 9.3 \text{ k}\Omega$$

$$I_{e_1}$$

$$I_{e_1}$$

$$I_{e_1}$$

$$I_{e_1}$$

$$I_{e_1}$$

$$I_{e_1}$$

$$I_{e_2}$$

$$I_{e_2}$$

$$I_{e_2}$$

$$I_{e_2}$$

 $V_B = -10 - (-0.7) = -9.3 \text{ V}$

Collector current

$$I_1 = \frac{0 - (-9.3)}{(9.3 \,\mathrm{k}\Omega)} = 1 \,\mathrm{mA}$$

 $\beta_1 = 700$ (high), So $I_C \approx I_{E_1}$

Applying KCL at base we have $1 - I_{-} - I_{-}$

$$\begin{split} 1 - I_E &= I_{B_1} + I_{B_2} \\ 1 - (\beta_1 + 1) I_{B_1} &= I_{B_1} + I_{B_2} \\ 1 &= (700 + 1 + 1) \frac{I_{B_2}}{2} + I_{B_2} \\ I_{B_2} &\approx \frac{2}{702} \\ I_0 &= I_{C_2} = \beta_2 \cdot I_{B_2} = 715 \times \frac{2}{702} \approx 2 \text{ mA} \end{split}$$

The circuit is as shown below :

4.25 Option (B) is correct. By small signal equivalent circuit analysis

$$V_{S} \bigoplus_{=}^{R_{S}} \overbrace{i_{S}}^{B} \underset{=}{\overset{R_{B}}{\models}} r_{\pi} \underbrace{\overset{R_{B}}{\downarrow}}_{=} r_{\pi} \underbrace{\overset{R_{B}}{\downarrow$$

Input resistance seen by source v_s

$$R_{\rm in} = \frac{v_s}{i_s} = R_s + R_s \mid \mid r_s$$

$$= (1000 \,\Omega) + (93 \,\mathrm{k}\Omega \,|\,|\, 259 \,\Omega) = 1258 \,\Omega$$

4.26 Option (B) is correct. Cut-off frequency due to C_{2}

$$f_o = \frac{1}{2\pi (R_C + R_L) C_2}$$

$$f_o = \frac{f_o}{2 \times 3.14 \times 1250 \times 4.7 \times 10^{-6}} = 271 \,\text{Hz}$$
Lower out off frequency

Lower cut-off frequency

$$f_L \approx \frac{f_o}{10} = \frac{271}{10} = 27.1 \,\mathrm{Hz}$$

4.27 Option (B) is correct. The circuit is as shown below

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

 $I = \frac{20 - 0}{4R} + \frac{V_i - 0}{R} = \frac{5 + V_i}{R}$

Current

If
$$I > 0$$
, diode D_2 conducts
So, for $\frac{5+V_I}{2} > 0 \Rightarrow V_I > -5, D_2$ conducts

Equivalent circuit is shown below +20 V $_{R}$

Output is $V_o = 0$. If I < 0, diode D_2 will be off 5 + V

$$\frac{5+V_I}{R} < 0 \Rightarrow V_I < -5, D_2 \text{ is off}$$

$$R + 4R + R$$

$$V_o = -$$

At
$$V_i = -5$$
 V, $V_o = 0$
At $V_i = -10$ V, $V_o = 5$ V

4.28 Option (A) is correct.

or

Let diode be OFF. In this case 1 A current will flow in resistor and voltage across resistor will be V = 1.V

 $V_{i} - 5$

Diode is off, it must be in reverse biased, therefore

 $V_i - 1 > 0 \rightarrow V_i > 1$

Thus for $V_i > 1$ diode is off and V = 1 VOption (B) and (C) doesn't satisfy this condition.

Let $V_i < 1$. In this case diode will be on and voltage across diode will be zero and $V = V_i$

Thus

 $V = \min(V_i, 1)$

4.29 Option (A) is correct. The R_2 decide only the frequency.

4.30 Option (D) is correct.

For small increase in V_G beyond 1 V the n – channel MOSFET goes into saturation as $V_{GS} \rightarrow + ive$ and p – MOSFET is always in active region or triode region.

4.31 Option (C) is correct.

4.32 Option (D) is correct.

The voltage at non inverting terminal is 5 V because OP AMP is ideal and inverting terminal is at 5 V.

Thus

Thus

$$V_E = I_E R_E = 1m \times 1.4k = 1.4V \qquad I_E = 0.6 + 1.4 = 2V$$

Thus the feedback is negative and output voltage is V = 2V.

 $I_C = \frac{10-5}{5k} = 1 \text{ mA}$

 $V_0 = A_r V_i \approx -\frac{h_{fe} R_C}{h_{ie}} V_i$

Here $R_C = 3 \Omega$ and $h_{ie} = 3 \mathrm{k}\Omega$

$$V_0 \approx -\frac{150 \times 3k}{3k} V_i$$

$$\approx -150 \left(A \cos 20t + B \sin 10^6 t \right)$$

Since coupling capacitor is large so low frequency signal will be filtered out, and best approximation is

$$V_0 \approx -150B\sin 10^6 t$$

4.34 Option (C) is correct.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

For the positive half of V_i , the diode D_1 is forward bias, D_2 is reverse bias and the zener diode is in breakdown state because $V_i > 6.8$. Thus output voltage is

$$V_0 = 0.7 + 6.8 = 7.5 \text{ V}$$

For the negative half of V_i, D_2 is forward bias thus

$$V_0 = -0.7 \text{ V}$$

Option (B) is correct.

Then

4.35

By Current mirror,

$$I_x = \frac{\left(\frac{W}{L}\right)_2}{\left(\frac{W}{L}\right)_1} I_{bias}$$

 $\left(\frac{W}{L}\right)_2 = \left(\frac{W}{L}\right)_2$

 $I_x = I_{bias}$

Since MOSFETs are identical,

Thus

Hence

Option (B) is correct.

The circuit is using ideal OPAMP. The non inverting terminal of OPAMP is at ground, thus inverting terminal is also at virtual ground.

Thus current will flow from -ive terminal (0 Volt) to -1 Volt source. Thus the current I is

$$I = \frac{0 - (-1)}{100k} = \frac{1}{100k}$$

The current through diode is

$$I = I_0 \left(e^{rac{V}{V_t}} - 1
ight)$$

 $= I_C$

Now $V_T = 25$ mV and $I_0 = 1 \mu A$ $I = 10^{-6} \left[e^{\frac{V}{25 \times 10^{-3}}} - 1 \right] = \frac{1}{10^5}$ Thus V = 0.06 Vor $V_0 = I \times 4\mathbf{k} + V = \frac{1}{100k} \times 4k + 0.06 = 0.1$ Now V

Option (B) is correct. 4.37

> The circuit is using ideal OPAMP. The non inverting terminal of OPAMP is at ground, thus inverting terminal is also at virtual ground.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Thus we can write

 $\frac{v_i}{R_1 + sL} = \frac{-v}{\frac{R_2}{sR_2C_2 + 1}}$ R_2 $\frac{v_0}{v_0} = -$

or

$$\frac{1}{(R_1 + sL)(sR_2C_2 + 1)}$$

and from this equation it may be easily seen that this is the standard form of T.F. of low pass filter

$$H(s) = \frac{K}{(R_1 + sL)(sR_2C_2 + 1)}$$

and form this equation it may be easily seen that this is the standard form of T.F. of low pass filter

$$H(s) = \frac{K}{as^2 + bs + b}$$

Option () is correct. 4.38

> The current in both transistor are equal. Thus g_m is decide by M_1 . Hence (C) is correct option.

Option (C) is correct. 4.39

> Let the voltage at non inverting terminal be V_1 , then after applying KCL at non inverting terminal side we have

$$\frac{15 - V_1}{10} + \frac{V_0 - V_1}{10} = \frac{V_1 - (-15)}{10}$$
$$V_1 = \frac{V_0}{3}$$

If V_0 swings from -15 to +15 V then V_1 swings between -5 V to +5

Option (A) is correct. 4.40

or

For the given DC values the Thevenin equivalent circuit is as follows

The Thevenin resistance and voltage are

$$V_{TH} = \frac{10}{10 + 20} \times 9 = 3 \text{ V}$$
$$P_{TH} = \frac{10 \text{ k} \times 20 \text{ k}}{10 \text{ k} \times 20 \text{ k}} = 6.67 \text{ k}$$

and total

Thus

 $R_{TH} = \frac{10 \mathrm{K} \wedge 20 \mathrm{K}}{10 \mathrm{k} + 20 \mathrm{k}} = 6.67 \mathrm{k}\Omega$

Since β is very large, therefore I_B is small and can be ignored

$$I_E = rac{V_{TH} - V_{BE}}{R_E} = rac{3 - 0.7}{2.3k} = 1 ~{
m mA}$$

Option (D) is correct. 4.41

The small signal model is shown in fig below

$$\begin{array}{c} & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline$$

4.42

4.43

Option (C) is correct.

The circuit shown in (C) is correct full wave rectifier circuit.

During Negative Cycle

Option (A) is correct.

In the transconductance amplifier it is desirable to have large input resistance and large output resistance.

During Positive Cycle

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Option (C) is correct. 4.44

We redraw the circuit as shown in fig.

Applying voltage division rule

$$v_{+} = 0.5 \text{ V}$$

We know that	$v_+ = v$
Thus	$v_{-} = 0.5 \text{ V}$
Now	$i = \frac{1 - 0.5}{1k} = 0.5 \text{ mA}$
and	$i = \frac{0.5 - v_0}{2k} = 0.5 \text{ mA}$
or	$v_0 = 0.5 - 1 = -0.5 \text{ V}$

Option (B) is correct. 4.45

> If we assume β very large, then $I_B = 0$ and $I_E = I_C$; $V_{BE} = 0.7$ V. We assume that BJT is in active, so applying KVL in Base-emitter loop

$$I_E = \frac{2 - V_{BE}}{R_E} = \frac{2 - 0.7}{1k} = 1.3 \text{ mA}$$

Since β is very large, we have $I_E = I_C$, thus

$$l_C = 1.3 \text{ mA}$$

Now applying KVL in collector-emitter loop

 $10 - 10I_C - V_{CE} - I_C = 0$

 $V_{CE} = -4.3 \text{ V}$

or Now

$$V_{BC} = V_{BE} - V_{CE}$$

 $I_R = I_D$

$$= 0.7 - (-4.3) = 5$$
 V

Since $V_{BC} > 0.7$ V, thus transistor in saturation.

 $\frac{V_i}{R} = I_s e^{V_D/V_r}$

Option (D) is correct. 4.46

> Here the inverting terminal is at virtual ground and the current in resistor and diode current is equal i.e.

or

or

$$V_D = V_T \ln \frac{V_i}{LR}$$

For the first condition

$$V_D = 0 - V_{o1} = V_T \ln \frac{2}{L_B}$$

For the first condition

$$V_D = 0 - V_{o1} = V_T \ln \frac{4}{I_s R}$$

Subtracting above equation

$$V_{o1} - V_{o2} = V_T \ln \frac{4}{I_s R} - V_T \ln \frac{2}{I_s R}$$
$$V_{o1} - V_{o2} = V_T \ln \frac{4}{2} = V_T \ln 2$$

4.47

or

and

Option (D) is correct. TZ We ha

$$V_{thp} = V_{thp} = 1 \text{ V}$$
$$\frac{W_P}{L_P} = \frac{W_N}{L_N} = 40 \mu \text{A}/\text{V}^2$$

From figure it may be easily seen that V_{as} for each NMOS and PMOS is 2.5 V

$$I_D = K(V_{as} - V_T)^2 = 40 \frac{\mu A}{V^2} (2.5 - 1)^2 = 90 \,\mu A$$

Option (C) is correct. 4.48

We have $V_Z = 7$ volt, $V_K = 0, R_Z = 10\Omega$

Circuit can be modeled as shown in fig below 200 k Ω

$$v_i$$
 $+$ 10 Ω $*$ v_o v_o $7 V$ $+$ $-$

Since V_i is lies between 10 to 16 V, the range of voltage across 200 kΩ

$$V_{200} = V_i - V_Z = 3$$
 to 9 volt

The range of current through 200 k Ω is

$$\frac{3}{200k} = 15$$
 mA to $\frac{9}{200k} = 45$ mA

The range of variation in output voltage

$$15m \times R_Z = 0.15$$
 V to $45m \times R_Z = 0.45$

Thus the range of output voltage is 7.15 Volt to 7.45 Volt

Option (A) is correct. 4.49

The voltage at non-inverting terminal is

$$V_{+} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} V_{i} = \frac{1}{1 + sCR} V_{i}$$
$$V_{-} = V_{+} = \frac{1}{1 + sCR} V_{i}$$

Now

or

or

Applying voltage division rule

$$V_{+} = \frac{R_{1}}{R_{1} + R_{1}} (V_{0} + V_{i}) = \frac{(V_{o} + V_{i})}{2}$$
$$\frac{1}{1 + sCR} V_{i} = \frac{(V_{o} + V_{i})}{2}$$

2

$$\frac{V_o}{V_i} = -1 + \frac{2}{1 + sRC}$$
SPECIAL EDITION (STUDY MATERIAL FORM

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

www.nodia.co.in

$$\frac{V_0}{V_i} = \frac{1 - sRC}{1 + sRC}$$

Option (C) is correct. 4.50

$$\frac{V_0}{V_i} = H(s) = \frac{1 - sRC}{1 + sRC}$$
$$H(j\omega) = \frac{1 - j\omega RC}{1 + j\omega RC}$$
$$\angle H(j\omega) = \phi = -\tan^{-1}\omega RC - \tan^{-1}\omega RC$$
$$= -2\tan^{-2}\omega RC$$
$$\phi_{\min} = -\pi (\operatorname{at} \omega \to \infty)$$
$$\phi_{\max} = 0 (\operatorname{at} \omega = 0)$$

4.51 Option (D) is correct.

Minimum value, Maximum value,

In the transconductance amplifier it is desirable to have large input impedance and large output impedance.

Option (D) is correct. 4.53

The voltage at inverting terminal is

$$V_{-} = V_{+} = 10 \text{ V}$$

Here note that current through the capacitor is constant and that is

$$I = \frac{V_{-}}{1k} = \frac{10}{1k} = 10 \text{ mA}$$

Thus the voltage across capacitor at t = 1 msec is

$$V_C = \frac{1}{C} \int_0^{1m} I dt = \frac{1}{1\mu} \int_0^{1m} 0 dt$$

Option (A) is correct.

4.54

 $= 10^4 \int_0^{Im} dt = 10 \text{ V}$

In forward bias Zener diode works as normal diode.

Thus for negative cycle of input Zener diode is forward biased and it conducts giving $V_R = V_{in}$.

For positive cycle of input Zener diode is reversed biased when $0 < V_{in} < 6$, Diode is OFF and $V_R = 0$ when $V_{in} > 6$ Diode conducts and voltage across diode is 6 V. Thus voltage across is resistor is

$$V_R = V_{in} - 6$$

Only option (B) satisfy this condition.

4.55 Option (C) is correct.

The circuit under DC condition is shown in fig below

Applying KVL we have $V_{CC} - R_C (I_C + I_B) - V_{CE} = 0 \qquad \dots (1)$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

and
$$V_{CC} - R_B I_B - V_{BE} = 0$$
 ...(2)
Substituting $I_C = \beta I_B$ in (1) we have

 $V_{CC} - R_C (\beta I_B + I_B) - V_{CE} = 0$ Solving (2) and (3) we get

$$V_{\rm min}$$
 (2) and (3) we get $V_{\rm max}$ I

$$V_{CE} = V_{CC} - \frac{V_{CC} - V_{BE}}{1 + \frac{R_B}{R_C(1+\beta)}} \qquad \dots (4)$$

Now substituting values we get

$$V_{CE} = 12 - \frac{12 - 0.7}{1 + \frac{53}{1 + (1 + 60)}} = 5.95 \text{ V}$$

4.56 Option (B) is correct.

We have

 $\beta' = \frac{110}{100} \times 60 = 66$

Substituting $\beta' = 66$ with other values in (iv) in previous solutions

$$V_{CE} = 12 - \frac{12 - 0.7}{1 + \frac{53}{1 + (1 + 66)}} = 5.29 \text{ V}$$
$$= \frac{5.29 - 59.5}{5.95} \times 100 = -4.3\%$$

Thus change is

4.57 Option (A) is correct.

4.58 Option (C) is correct.

The Zener diode is in breakdown region, thus

We know that

or

$$V_o = V_{in} \left(1 + \frac{1}{R_1} \right)$$
$$V_{out} = V_o = 6 \left(1 + \frac{12\kappa}{24k} \right) = 9 \text{ V}$$

The current in 12 k Ω branch is negligible as comparison to 10 $\Omega.$ Thus Current

 $V_{+} = V_{Z} = 6 V = V_{in}$

 R_f

$$I_C \approx I_E \approx = \frac{V_{out}}{R_L} = \frac{9}{10} = 0.9 \text{ A}$$

Now
$$V_{CE} = 15 - 9 = 6$$
 V

The power dissipated in transistor is

$$P = V_{CE}I_C = 6 \times 0.9 = 5.4 \text{ W}$$

 $P = V_{CE}I_C = 9 \times 0.9 = 8.1 \text{ W}$

4.59 Option (B) is correct.

Thus,

If the unregulated voltage increase by 20%, them the unregulated voltage is 18 V, but the $V_Z = V_{in} = 6$ remain same and hence V_{out} and I_C remain same. There will be change in V_{CE}

$$V_{CE} - 18 - 9 = 9$$
 V
 $I_C = 0.9$ A

Power dissipation

Thus % increase in power is

$$\frac{8.1 - 5.4}{5.4} \times 100 = 50\%$$

4.60 Option (B) is correct.

Since the inverting terminal is at virtual ground, the current flowing through the voltage source is

$$I_s = \frac{V_s}{10 \text{k}}$$
$$\frac{V_s}{I_s} = 10 \text{ k}\Omega = R_{in}$$

or

4.62

4.63

4.65

...(3)

4.61 Option (D) is correct.

The effect of current shunt feedback in an amplifier is to decrease the input resistance and increase the output resistance as :

$$R_{if} = \frac{R_i}{1 + A\beta}$$
$$R_{of} = R_0 (1 + A\beta)$$

where

 $R_i \rightarrow$ Input resistance without feedback

 $R_{if} \rightarrow$ Input resistance with feedback.

Option (B) is correct.

The CE configuration has high voltage gain as well as high current gain. It performs basic function of amplifications. The CB configuration has lowest R_i and highest R_o . It is used as last step to match a very low impedance source and to drain a high impedance load

Thus cascade amplifier is a multistage configuration of CE-CB

Option (D) is correct.

Common mode gain

$$A_{CM} = -\frac{R_C}{2R_E}$$

And differential mode gain

 $A_{DM} = -g_m R_C$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Thus only common mode gain depends on R_E and for large value of R_E it decreases.

4.64 Option (C) is correct.

$$I_E = I_s \Big(e^{rac{V_{BE}}{nV_T}} - 1 \Big)
onumber \ = 10^{-13} \Big(rac{0.7}{e^{1 imes 26 imes 10^{-3}}} - 1 \Big) = 49 \, \, {
m mA}$$

Page 92

Writing equation for I_{-} have

or

$$\frac{e_0 - V_-}{1M} = I.$$
$$e_0 = I_-(1M) + V_-$$

Writing equation for I_+ we have

 $\frac{0-V_+}{1\mathrm{M}} = I_+$

or

4.66

Since for ideal OPAMP $V_{+} = V_{-}$, from (1) and (2) we have

 $e_0 = I_{-}(1M) - I_{+}(1M)$

 $V_{+} = -I_{+}(1M)$

$$= (I_{-} - I_{+})(1M) = I_{OS}(1M)$$

Thus if e_0 has been measured, we can calculate input offset current I_{OS} only.

Option (C) is correct.

At low frequency capacitor is open circuit and voltage acr s noninverting terminal is zero. At high frequency capacitor act as short circuit and all input voltage appear at non-inverting terminal. Thus, this is high pass circuit.

The frequency is given by

$$\omega = \frac{1}{RC} = \frac{1}{1 \times 10^3 \times 1 \times 10^{-6}} = 1000$$

 $\mathrm{rad/sec}$

4.67 Option (B) is correct.

The circuit under DC condition is shown in fig below

Applying KVL we have

$$V_{CC} - R_B I_B - V_{BE} - R_E I_E = 0$$

or
$$V_{CC} - R_B I_B - V_{BE} - R_E (\beta + 1) I_B = 0$$

Since $I_E = I_B + \beta I_B$

or

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1) R_E}$$

= $\frac{20 - 0.7}{430k + (50 + 1)1k} = 40\mu A$
 $I_C = \beta I_B = 50 \times 40\mu = 2 \text{ mA}$

Now

4.68

$$V_C = PI_B = 50 \times 40 \mu = 2 \text{ mA}$$

 $V_C = V_{CC} - R_C I_C = 20 - 2\text{m} \times 2\text{k} = 16 \text{ V}$

Option (A) is correct.

The maximum load current will be at maximum input voltage i.e.

$$V_{\text{max}} = 30 \text{ V i.e.}$$
$$\frac{V_{\text{max}} - V_Z}{1\text{k}} = I_L + I_Z$$
$$\frac{30 - 5.8}{1\text{k}} = I_L = 0.5 \text{ m}$$

$$I_L = 24.2 - 0.5 = 23.7 \text{ mA}$$

4.69 Option (D) is correct.

or

...(1)

...(2)

4.70 Option (B) is correct.

The small signal model is as shown below

From the figure we have

 $Z_{in} = 2 \operatorname{M}\Omega$ $Z_0 = r_d \| R_D = 20 \operatorname{k} \| 2 \operatorname{k} = \frac{20}{11} \operatorname{k}\Omega$

4.71 Option (A) is correct.

and

The circuit in DC condition is shown below

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Since the FET has high input resistance, gate current can be neglect and we get $V_{GS} = -2$ V

Since $V_P < V_{GS} < 0$, FET is operating in active region

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 10 \left(1 - \frac{(-2)}{(-8)} \right)^2$$

= 5.625 mA

$$V_{DS} = V_{DD} - I_D R_D = 20 - 5.625 \text{m} \times 2 \text{k}$$

Now = 8.75 V

4.72

Option (B) is correct.

The transconductance is

or,

So,

The gain is

$$= \frac{2}{8}\sqrt{5.625 \text{mA} \times 10 \text{mA}} = 1.875 \text{ mS}$$

$$A = -g_m(r_d \| R_D)$$

$$= 1.875 \text{mg} \times \frac{20}{8} K = -2.41$$

 $g_m = \frac{2}{|V_P|\sqrt{I_D I_{DSS}}|}$

$$= 1.875 \text{ms} \times \frac{20}{11} K = -3.41$$

4.73 Option (B) is correct.

Only one diode will be in ON conditions

When lower diode is in ON condition, then

$$V_u = \frac{2k}{2.5k} V_{sat} = \frac{2}{2.5} 10 = 8 V$$

when upper diode is in ON condition

Page 93

or

$$V_u = \frac{2\mathbf{k}}{2.5\mathbf{k}} V_{sat} = \frac{2}{4}(-10) = -5 \text{ V}$$

- Option (B) is correct. 4.74 An ideal OPAMP is an ideal voltage controlled voltage source.
- Option (C) is correct. 4.75 In voltage series feed back amplifier, input impedance increases 4.80 by factor $(1 + A\beta)$ and output impedance decreases by the factor $(1 + A\beta).$

$$R_{if} = R_i (1 + A\beta)$$
$$R_{of} = \frac{R_o}{(1 + A\beta)}$$

Option (A) is correct. 4.76 This is a Low pass filter, because

At
$$\omega = \infty$$

and at $\omega = 0$
$$\frac{V_0}{V_{in}} = 0$$
$$\frac{V_0}{V_{in}} = 1$$

Option (D) is correct. 4.77 When $|I_C| >> |I_{CO}|$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$g_m = \frac{|I_C|}{V_T} = \frac{1\text{mA}}{25\text{mV}} = 0.04 = 40 \text{ mA/V}$$
$$r_\pi = \frac{\beta}{g_m} = \frac{100}{40 \times 10^{-3}} = 2.5 \text{ k}\Omega$$

Option (A) is correct. 4.78

> The given circuit is wein bridge oscillator. The frequency of oscillation is

or

$$2\pi f = \frac{1}{RC}$$
$$C = \frac{1}{2\pi Rf} = \frac{1}{2\pi \times 10^3 \times 10^3} = \frac{1}{2\pi}\mu$$

Option (A) is correct. 4.79 The circuit is as shown below

We know that for ideal OPAMP

 $V_{-} = V_{+}$

$$\frac{V_{-} - V_{s}}{R_{1}} + \frac{V_{-} - V_{0}}{R_{1}} = 0$$
$$2V_{-} - V_{o} = V_{s}$$

or

Applying KCL at non-inverting terminal

$$\frac{V_{+}}{R_2} + I_L + \frac{V_{+} - V_o}{R_2}$$

= 0

or
$$2V_{+} - V_{o} + I_{L}R_{2} = 0$$
 ...(2)
Since $V_{-} = V_{+}$, from (1) and (2) we have
 $V_{s} + I_{L}R_{2} = 0$
or $I_{L} = -\frac{V_{s}}{R_{2}}$

Option (D) is correct.

If I_Z is negligible the load current is 1

$$\frac{2-V_z}{R} = I_L$$

as per given condition

$$100 \text{ mA} \le \frac{12 - V_Z}{R} \le 500 \text{ mA}$$

At $I_L = 100 \text{ mA} \frac{12 - 5}{R} = 100 \text{ mA}$ $V_Z = 5 \text{ V}$
or $R = 700$

At
$$I_L = 500 \text{ mA} \frac{12-5}{R} = 500 \text{ mA}$$
 $V_Z = 5 \text{ V}$

 $R = 14 \,\Omega$ or Thus taking minimum we get

$$R = 14 \,\Omega$$

Option (B) is correct. 4.81

4.82

Option (C) is correct. The Thevenin equivalent is shown below

$$V_T = \frac{R_1}{R_1 + R_2} V_C = \frac{1}{4+1} \times 5 = 1 \text{ V}$$

Since β is large is large, $I_C \approx I_E$, $I_B \approx 0$ and

$$I_E = \frac{V_T - V_{BE}}{R_E} = \frac{1 - 0.7}{300} = 3 \text{ mA}$$
$$V_{CE} = 5 - 2.2 \text{k} I_C - 300 I_E$$
$$= 5 - 2.2 \text{k} \times 1 \text{m} - 300 \times 1 \text{m}$$
$$2.5 \text{ V}$$

Now

$$= 5 - 2.2 k \times 1 m - 30$$

= 2.5 V

Option (B) is correct. 4.83

For the different combinations the table is as follows

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

CE	CE	CC	CB
A_i	High	High	Unity
A_v	High	Unity	High
R_i	Medium	High	Low
R_o	Medium	Low	High

...(1) 4.84 Option (D) is correct.

> This circuit having two diode and capacitor pair in parallel, works as voltage doubler.

Option (B) is correct. 4.85

Page 94

If the input is sinusoidal signal of 8 V (peak to peak) then $V_i = 4\sin\omega t$

The output of comparator will be high when input is higher than $V_{ref} = 2$ V and will be low when input is lower than $V_{ref} = 2$ V. Thus the waveform for input is shown below

From fig, first crossover is at ωt_1 and second crossover is at ωt_2 where

Thus

$$\omega t_1 = \sin^{-1} \frac{1}{2} = \frac{\pi}{6}$$
$$\omega t_2 = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$
Duty Cycle = $\frac{\frac{5\pi}{6} - \frac{\pi}{6}}{2\pi} = \frac{1}{3}$

Thus the output of comparators has a duty cycle of $\frac{1}{3}$.

 $4\sin\omega t_1 = 2V$

Option (C) is correct.

$$CMMR = \frac{A_d}{A_c}$$

$$20\log CMMR = 20\log A_d - 20\log A_c$$

$$= 48 - 2 = 46 \text{ dB}$$

Where $A_d \rightarrow \text{Differential Voltage Gain}$

and $A_C \rightarrow$ Common Mode Voltage Gain

4.87 Option (B) is correct.

or

4.86

The gain of amplifier is

$$A_i = \frac{-g_m}{g_b + j\omega C}$$

Thus the gain of a transistor amplifier falls at high frequencies due to the internal capacitance that are diffusion capacitance and transition capacitance.

^{4.88} Option (A) is correct. We have $R_i = 1k\Omega, \beta = 0.2, A = 50$ Thus, $R_{if} = \frac{R_i}{(1 + i)^2}$

$$R_{if} = \frac{R_i}{(1+A\beta)} = \frac{1}{11} \mathbf{k}\Omega$$

4.89 Option (A) is correct.

The DC equivalent circuit is shown as below. This is fixed bias circuit operating in active region.

In first case

or

$$V_{CC} - I_{C1}R_2 - V_{CE1} = 0$$

 $6 - 1.5 \text{m}R_2 - 3 = 0$

 $R_2 = 2k\Omega$

$$I_{B1} = \frac{I_{C1}}{\beta_1} = \frac{1.5\text{m}}{150} = 0.01 \text{ mA}$$

In second case I_{B2} will we equal to I_{B1} as there is no in R_1 .

$$I_{C2} = \beta_2 I_{B2} = 200 \times 0.01 = 2 \text{ mA}$$

$$V_{CE2} = V_{CC} - I_{C2}R_2 = 6 - 2m \times 2 k\Omega = 2 V$$

4.90 Option (A) is correct.

or

Thus

or

The given circuit is a R - C phase shift oscillator and frequency of its oscillation is

$$f = \frac{1}{2\pi\sqrt{6}RC}$$

4.91 Option (C) is correct.

If we see th figure we find that the voltage at non-inverting terminal is 3 V by the zener diode and voltage at inverting terminal will be 3 V. Thus V_o can be get by applying voltage division rule, i.e.

$$\frac{20}{20+40} V_o = 3$$

$V_0 = 9 \,\, { m V}$ SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

www.nodia.co.in

4.92 Option (B) is correct.

$$3 V \circ \frac{1 k\Omega}{2 V \circ \frac{1 k\Omega}{8 k\Omega}} \circ v_{out}$$

$$V_{+} = \frac{8}{1+8}(3) = \frac{8}{3}k\Omega$$
$$V_{+} = V_{-} = \frac{8}{3}V$$

Now applying KCL at inverting terminal we get

$$\frac{V_{-}-2}{1} + \frac{V_{-}-V_{o}}{5} = 0$$

or

4.93

$$V_o = 6 V - 10$$

= $6 \times \frac{8}{3} - 10 = 6 V$

The equivalent circuit of 3 cascade stage is as shown in fig.

or

$$V_3 = 40 \times 40 V_1$$

$$V_o = 50 V_3 = 50 \times 40 \times 40 V_1$$
$$A_V = \frac{V_o}{V_1} = 50 \times 40 \times 40 = 8000$$

or

 $20 \log A_V = 20 \log 8000 = 98 \text{ dB}$ or

Option (D) is correct. 4.94

> If a constant current is made to flow in a capacitor, the output voltage is integration of input current and that is sawtooth waveform as below :

> > $V_C = \frac{1}{C} \int_0^t i dt$

The time period of wave form is

 $T = \frac{1}{f} = \frac{1}{500} = 2 \text{ m sec}$ $3 = \frac{1}{2 \times 10^6} \int_0^{20 \times 10^{-3}} dt$

Thus

or

4.95

$$2 \times 10^{\circ} \cdot i(2 \times 10^{-3} - 0) = 6 \times 10^{-6}$$

i = 3 mAor

Thus the charging require 3 mA current source for 2 msec.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (C) is correct.

In voltage-amplifier or voltage-series amplifier, the R_i increase and R_o decrease because

$$R_{if} = R_i (1 + A\beta)$$
$$R_{of} = \frac{R_o}{(1 + A\beta)}$$

Option (B) is correct. 4.96

Let x be the gain and it is 20 db, therefore

 $20\log x = 20$

or

Since Gain band width product is
$$10^6$$
 Hz, thus

x = 10

So, bandwidth is

$$BW = \frac{10^6}{\text{Gain}} = \frac{10^6}{10} = 10^5 \text{ Hz} = 100 \text{ kHz}$$

Option (A) is correct. 4.97

> In multistage amplifier bandwidth decrease and overall gain increase. From bandwidth point of view only options (A) may be correct because lower cutoff frequency must be increases and higher must be decreases. From following calculation we have

We have $f_L = 20$ Hz and $f_H = 1$ kHz

For n stage amplifier the lower cutoff frequency is

Hz

$$f_{Ln} = \frac{f_L}{\sqrt{2\frac{1}{n} - 1}} = \frac{20}{\sqrt{2\frac{1}{3} - 1}} = 39.2 \approx 40$$

The higher cutoff frequency is

$$f_{Hn} = f_H \sqrt{2^{\frac{1}{2}} - 1} = 0.5 \text{ kHz}$$

Option (A) is correct. 4.98

> As per Barkhousen criterion for sustained oscillations $|A\beta| \ge 1$ and phase shift must be or $2\pi n$.

Now from circuit

$$A = \frac{V_O(f)}{V_f(f)} = 1 + \frac{R_2}{R_1}$$
$$\beta(f) = \frac{1}{6} \angle 0 = \frac{V_f(f)}{V_O(f)}$$

Thus from above equation for sustained oscillation

$$6 = 1 + \frac{R_2}{R_1}$$

 $R_2 = 5R_1$

or

Op

Le

or

Le

or

=

or

or

4.101

4.100

4.99

Option (C) is correct.
Let the gain of OPAMP be
$$A_V$$
 then we have
 $20 \log A_V = 40 \text{ dB}$
or $A_V = 100$
Let input be $V_i = V_m \sin \omega t$ then we have
 $V_O = V_V V_i = V_m \sin \omega t$
Now $\frac{dV_O}{dt} = A_V V_m \omega \cos \omega t$
Slew Rate $\left(\frac{dV_O}{dt}\right)_{max} = A_V V_m \omega = A_V V_m 2\pi j$
or $V_m = \frac{SR}{A_V V 2\pi f}$
 $= \frac{1}{10^{-6} \times 100 \times 2\pi \times 20 \times 10^3}$
or $V_M = 79.5 \text{ mV}$
Option (A) is correct.
The circuit is shown as below

$$I = I_Z + I_L$$

For satisfactory operations
$$\frac{V_{in} - V_0}{R} > I_Z + I_L$$

When $V_{in} = 30$ V,

1
$$V_{in} = 30$$
 V,
 $\frac{30 - 10}{R} \ge (10 + 1) \text{ mA}$
 $\frac{20}{R} \ge 11 \text{ mA}$

or
$$R \leq 1818 \ \Omega$$
 when $V_{in} = 50 \ V$

$$\frac{50-10}{2} \ge (10+1) \text{ mA}$$

mA

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

	$\frac{40}{R} \ge 11 \times 10^{-3}$
or	$R \leq 3636\Omega$
Thus $R \leq 1818\Omega$	
Option (D) is correct.	
We have	
	$I_{DSS} = 10 \text{ mA} \text{ and } V_P = -5 \text{ V}$

	$I_{DSS} = 10$ mA and $V_P = -5$ V
Now	$V_G = 0$
and	$V_S = I_D R_S = 1 \times 2.5 \Omega = 2.5 V$
Thus	$V_{GS} = V_G - V_S = 0 - 2.5 = -2.5 \text{ V}$

 $[I_Z + I_L = I]$

 $A_V = \frac{V_0}{V_i} = -g_m R_D$

= $-2ms \times 3k = -6$

 $g_m = \frac{2I_{DSS}}{|V_P|} \left[1 - \left(\frac{-2.5}{-5}\right) \right] = 2 \text{ mS}$

Now

So,

4.102

Option (C) is correct.

The current gain of a BJT is

$$h_{fe} = g_m r_\pi$$

4.103 Option (A) is correct.

The ideal op-amp has following characteristic :

$$R_i \to \infty$$
$$R_0 \to 0$$
$$A \to \infty$$

4.104 Option (C) is correct.

and

Both statements are correct because

(1) A stable multivibrator can be used for generating square wave, because of its characteristic

(2) Bi-stable multivibrator can store binary information, and this multivibrator also give help in all digital kind of storing.

4.105 Option (B) is correct.

If f_T is the frequency at which the short circuit common emitter gain attains unity magnitude then

 $= 1.47 \times 10^{10} \text{ Hz}$

or

4.107

If f_B is bandwidth then we have

$$f_B = \frac{f_T}{\beta} = \frac{1.47 \times 10^{10}}{90} = 1.64 \times 10^8 \text{ Hz}$$

 $f_T = \frac{g_m}{2\pi \left(C_{\mu} + C_{\pi}\right)} = \frac{38 \times 10^{-3}}{2\pi \times (10^{-14} + 4 \times 10^{-13})}$

4.106 Option (C) is correct.

If we neglect current through R_B then it can be open circuit as shown in fig.

Maximum power will dissipate in Zener diode when current through it is maximum and it will occur at $V_{in} = 30$ V

$$I = \frac{V_{in} - V_o}{20} = \frac{30 - 10}{20} = 1 \text{ A}$$

$$I \ I_C + I_Z = \beta I_B + I_Z \qquad \text{Since } I_C = \beta I_B$$

$$= \beta I_Z + I_Z = (\beta + 1) I_Z \qquad \text{since } I_B = I_Z$$

$$I_Z = \frac{I}{\beta + 1} = \frac{1}{99 + 1} = 0.01 \text{ A}$$

Power dissipated in zener diode is

$$P_Z = V_Z I_Z = 9.5 \times 0.01 = 95 \text{ mW}$$

 $I_C = \beta I_Z = 99 \times 0.1 = 0.99 \text{ A}$
 $V_{CE} = V_o = 10 \text{ V}$

Power dissipated in transistor is

$$P_T = V_C I_C = 10 \times 0.99 = 9.9 \text{ W}$$

Option (B) is correct.

From the it may be easily seen that the tank circuit is having 2-capacitors and one-inductor, so it is colpits oscillator and frequency is

$$f = \frac{1}{2\pi\sqrt{LC_{eq}}}$$

$$C_{eq} = \frac{C_1C_2}{C_1 + C_2} = \frac{2\times 2}{4} = 1 \text{ pF}$$

$$f = \frac{1}{2\pi\sqrt{10\times 10^{-6}\times 10^{-12}}}$$

$$=\frac{1 \times 10^9}{2\pi \sqrt{10}} = 50.3 \text{ MHz}$$

4.108 Option (D) is correct.

The circuit is as shown below

Let V be the voltage of inverting terminal, since non inverting terminal a at ground, the output voltage is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

$$V_o = A_{OL} V_{-} \qquad \dots (1)$$

Now applying KCL at inverting terminal we have

$$\frac{V - V_s}{R_1} + \frac{V - V_0}{R_2} = 0 \qquad \dots (2)$$

From (1) and (2) we have

$$\frac{V_O}{V_s} = A_{CL} = \frac{-R_2}{R - \frac{R_2 + R_1}{R_{OL}}}$$

Substituting the values we have

$$A_{CL} = \frac{-10k}{1k - \frac{10k + 1k}{100k}} = -\frac{1000}{89} \approx -11$$

4.109 Option (A) is correct.

The first OPAMP stage is the differentiator and second OPAMP stage is integrator. Thus if input is cosine term, output will be also cosine term. Only option (A) is cosine term. Other are sine term. However we can calculate as follows. The circuit is shown in fig

Applying KCL at inverting terminal of first OP AMP we have

$$\frac{V_1}{V_S} = \frac{-\omega jL}{R} = \frac{-100 \times 10 \times 10^{-3}}{10} = \frac{-1}{10}$$
$$V_1 = \frac{-jV_S}{10} = j\cos 100t$$

or

Applying KCL at inverting terminal of second OP AMP we have

$$\frac{V_0}{V_1} = \frac{-1/j\omega C}{100}$$
$$= -\frac{1}{j100 \times 10 \times 10^{-6} \times 100} = j10$$

or

$$V_0 = j10 V_2 = j10 (-j\cos 100t)$$
$$V_0 = 10\cos 100t$$

Option (A) is correct. 4.110 Common mode gain is

$$A_C = \frac{\alpha R_C}{R_{EE}}$$

Since source resistance of the current source is infinite $R_{EE} = \infty$, common mode gain $A_C = 0$

Option (D) is correct. 4.111

> In positive feed back it is working as OP-AMP in saturation region, and the input applied voltage is +ve.

 $V_0 = + V_{sat} = 15 \text{ V}$ So,

Option (C) is correct. 4.112

> With the addition of R_E the DC abis currents and voltages remain closer to the point where they were set by the circuit when the outside condition such as temperature and transistor parameter β change.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

Option (A) is correct. 4.113 At high frequency

or,

$$A_{i} \simeq \frac{g_{bc} + j\omega(C)}{g_{bc} + j\omega(C)}$$

$$A_{i} \propto \frac{1}{\text{Capacitance}}$$

$$A_{i} \propto \frac{1}{\text{frequency}}$$

 g_m

and

Thus due to the transistor capacitance current gain of a bipolar transistor drops.

Option (C) is correct. 4.114

> As OP-AMP is ideal, the inverting terminal at virtual ground due to ground at non-inverting terminal. Applying KCL at inverting terminal

$$sC(v_1\sin\omega t - 0) + sC(V_2\sin\omega t - 0) + sC(V_o - 0) = 0$$

or
$$V_o = -(V_1 + V_2)\sin\omega t$$

Option (D) is correct. 4.115

> There is R-C, series connection in parallel with parallel R-Ccombination. So, it is a wein bridge oscillator because two resistors R_1 and R_2 is also in parallel with them.

Option (A) is correct. 4.116

The given circuit is a differentiator, so the output of triangular wave will be square wave.

- Option (B) is correct. 4.117 In sampling and hold circuit the unity gain non-inverting amplifier is used.
- Option (D) is correct. 4.118 The Thevenin equivalent is shown below

$$V_T = \frac{R_1}{R_1 + R_2} V_C = \frac{5}{10 + 5} \times 15 = 5 \text{ V}$$

 $I_2 \simeq I_2 I_2 \simeq 0 \text{ and}$

Since β is large is large, $I_C \approx I_E, I_B \approx 0$ and

$$I_E = \frac{V_T - V_{BE}}{R_E}$$

= $\frac{5 - 0.7}{0.430 k\Omega} = \frac{4.3}{0.430 K\Omega} = 10 \text{ mA}$

Option (C) is correct. 4.119

So

So,

The output voltage will be input offset voltage multiplied by open by open loop gain. Thus

 $V_0 = 5 \text{mV} \times 10,000 = 50 \text{ V}$

But $V_0 = \pm 15$ V in saturation condition

So, it can never be exceeds ± 15 V

$$V_0 = \pm V_{set} = \pm 15 V_{set}$$

Option (A) is correct. 4.120

Option (A) is correct. 4.121

Negative feedback in amplifier reduces the gain of the system.

Option (A) is correct. 4.122

By drawing small signal equivalent circuit

Common-emitter

by applying KCL at
$$E_2$$

$$g_{m1}\,V_{\pi_1} - rac{V_{\pi_2}}{r_{\pi_2}} = g_{m2}\,V_{\pi_2}$$
 $i_0 = - \,g_{m2}\,V_{\pi_2}$

from eq (1) and (2)

at C_2

 \mathbf{SO}

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$egin{aligned} g_{m1} V_{\pi_1} + rac{i_0}{g_{m2} r_{\pi_2}} &= -i_0 \ g_{m1} V_{\pi_1} &= -i_0 \Big[1 + rac{1}{g_{m2} r_{\pi_2}} \Big] \ g_{m2} r_{\pi_2} &= eta >> 1 \ g_{m1} V_{\pi_1} &= -i_0 \ rac{i_0}{V_{\pi_1}} &= -g_{m1} \ \Big| rac{i_0}{V_i} \Big| &= g_{m1} \end{aligned}$$

Option (B) is correct. 4.123

Crossover behavior is characteristic of calss B output stage. Here 2

 $V_{\pi_1} = V_i$

Page 99

transistor are operated one for amplifying +ve going portion and other for -ve going portion.

 $R_{\rm in} = R_i (1 + \beta_v A_v)$

4.124 Option (C) is correct.

In Voltage ser	ies feedback	mode input	impedance is	given by
-		_	-	

where

and So, $A_v =$ openloop gain $B_i =$ Input impedance

$$R_{\rm in} = 1 \times 10^3 (1 + 0.99 \times 100) = 100 \,\rm k\Omega$$

 $\beta_v = \text{feedback factor},$

Similarly output impedance is given by

 $R_{\text{OUT}} = \frac{R_0}{4\pi^2}$

$$R_{\text{OUT}} = \frac{R_0}{(1 + \beta_v A_v)} \qquad R_0 = \text{output impedance}$$
$$R_{\text{OUT}} = \frac{100}{(1 + 0.99 \times 100)} = 1 \,\Omega$$

Thus

4.125

Option (B) is correct.
Regulation =
$$\frac{V_{\text{no}-\text{load}} - V_{\text{full}-\text{load}}}{V_{\text{full}-\text{load}}}$$

= $\frac{30 - 25}{25} \times 100 = 20\%$

Output resistance
$$=\frac{25}{1}=25\,\Omega$$

4.126 Option (D) is correct.

This is a voltage shunt feedback as the feedback samples a portion of output voltage and convert it to current (shunt).

- 4.127 Option (A) is correct.
 - In a differential amplifier CMRR is given by

$$CMRR = \frac{1}{2} \left[1 + \frac{(1+\beta)I_QR_0}{V_T\beta} \right]$$

So where R_0 is the emitter resistance. So CMRR can be improved by increasing emitter resistance.

4.128 Option (C) is correct. We know that rise time (t_r) is

$$t_r = \frac{0.35}{f_H}$$

where f_H is upper 3 dB frequency. Thus we can obtain upper 3 dB frequency it rise time is known.

4.129 Option (D) is correct. In a BJT differential amplifier for a linear response $V_{id} < V_T$.

4.130 Option (D) is correct. In a shunt negative feedback amplifier. Input impedance

$$R_{\rm in} = \frac{R_i}{(1+\beta)}$$

where

$$a_{i} = \frac{1}{(1 + \beta A)}$$

 $a_{i} = \text{input imperiation}$

 $\mathbf{P}_i =$ input impedance of basic amplifier

$$\beta$$
 = feedback factor

$$A =$$
open loop gain

So, $R_{\rm in} < R_i$ Similarly

$$R_{\rm OUT} = \frac{R_0}{(1+\beta A)}$$

 $R_{\rm OUT} < R_0$

Thus input & output impedances decreases.

4.131 Option (A) is correct.

4.132 Option (D) is correct.

Comparator will give an output either equal to $+ V_{\text{supply}}$ or $- V_{\text{supply}}$. So output is a square wave. 4.133 Option (C) is correct.

In series voltage regulator the pass transistor is in common collector configuration having voltage gain close to unity.

.134 Option
$$(D)$$
 is correct

In bridge rectifier we do not need central tap transformer, so its less expensive and smaller in size and its PIV (Peak inverse voltage) is also greater than the two diode circuit, so it is also suitable for higher voltage application.

4.135 Option (C) is correct.

In the circuit we have

and

$$V_{2} = I_{S} \times \frac{R_{D}}{2}$$

$$V_{1} = I_{S} \times R_{D}$$

$$\frac{V_{2}}{V_{1}} = \frac{1}{2}$$

$$V_{1} = 2V_{2}$$

4.136 Option (C) is correct.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

4.137 Option (C) is correct.

The equivalent circuit of given amplifier circuit (when C_E is connected, R_E is short-circuited)

$$v_s \bigoplus_{\underline{r}} R_B \underbrace{\overset{+}{\underset{\underline{r}}} r_{\pi} \underbrace{\overset{+}{\underset{\underline{r}}} v_{\pi}}_{\underline{r}} \underbrace{\overset{+}{\underset{\underline{r}}} g_m v_{\pi} \underbrace{\overset{+}{\underset{\underline{r}}} R_C}_{\underline{r}}$$

Input impedance $R_i = R_B || r_{\pi}$ Voltage gain $A_V = g_m R_C$ Now, if C_E is disconnected, resistance R_E appears in the circuit

Input impedance $R_{in} = R_B || [r_{\pi} + (\beta + 1)] R_E$ Input impedance increases

Voltage gain $A_V = \frac{g_m R_C}{1 + g_m R_E}$ Voltage gain decreases.

4.138 Option (A) is correct.

In common emitter stage input impedance is high, so in cascaded amplifier common emitter stage is followed by common base stage.

4.139 Option (C) is correct.

We know that collect-emitter break down voltage is less than compare to collector base breakdown voltage.

$$BV_{\rm CEO} < BV_{\rm CBO}$$

both avalanche and zener break down. Voltage are higher than

 BV_{CEO} . So BV_{CEO} limits the power supply.

4.140

If we assume consider the diode in reverse bias then V_n should be greater than V_P .

 $V_P < V_n$

Option (C) is correct.

by calculating

$$V_P = \frac{10}{4+4} \times 4 = 5 \text{ Volt}$$

 $V_n = 2 \times 1 = 2$ Volt

here $V_P > V_n$ (so diode cannot be in reverse bias mode).

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

apply node equation at node a

$$\frac{V_a - 10}{4} + \frac{V_a}{4} + \frac{V_a}{1} = 2$$

 $6 V_a - 10 = 8$
 $V_a = 3 \text{ Volt}$
ent
 $I_b = \frac{0 - 3}{4} + \frac{10 - 3}{4}$
 $I_b = \frac{10 - 6}{4} = 1 \text{ amp}$

so current

4.141

Option (D) is correct.

By applying node equation at terminal (2) and (3) of *OP*-amp

$$2V_{a} - 4 + V_{a} - V_{0} = 0$$

$$V_{0} = 3V_{a} - 4$$

$$\frac{V_{a} - V_{0}}{100} + \frac{V_{a} - 0}{10} = 0$$

$$V_{a} - V_{0} + 10V_{a} = 0$$

$$11V_{a} = V_{0}$$

$$V_{a} = \frac{V_{0}}{11}$$

$$V_{0} = \frac{3V_{0}}{11} - 4$$

$$8V_{0} = 4$$

11

 $V_0 = -5.5$ Volts

 So

4.142

Option (B) is correct. Circuit with diode forward resistance looks

 $v_m \sin \omega t \bigcirc R_L \swarrow V_o$

So the DC current will

$$I_{DC} = \frac{V_m}{\pi \left(R_f + R_L \right)}$$

4.143 Option (D) is correct.

For the positive half cycle of input diode D_1 will conduct & D_2 will be off. In negative half cycle of input D_1 will be off & D_2 conduct so output voltage wave from across resistor (10 k Ω) is –

Ammeter will read rms value of current

$$I_{\rm rms} = \frac{V_m}{\pi R} \text{(half wave rectifier)}$$
$$= \frac{4}{(10 \text{ k}\Omega) \pi} = \frac{0.4}{\pi} \text{ mA}$$

4.144 Option (D) is correct.

In given circuit positive feedback is applied in the op-amp., so it works as a Schmitt trigger.

4.145 Option (D) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Gain with out feedback factor is given by

$$V_0 = k V_i$$

after connecting feedback impedance Z

given input impedance is very large, so after connecting Z we have $I_i = \frac{V_i - V_0}{Z} \qquad \qquad V_0 = k V_i$

Page 101

$$egin{aligned} I_i &= rac{V_i - k V_i}{Z} \ Z_{in} &= rac{V_i}{I_i} = rac{Z}{(1-k)} \end{aligned}$$

input impedance

4.146 Option (A) is correct.

4.147 Option (A) is correct.

$$= \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10 \times 10^{-3} \times .01 \times 10^{-6}}} = 10^5 \text{rad/sec}$$

In this condition
$$B_{c} = B_{c}$$

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$
$$\frac{5}{100} = \frac{R}{1}$$
$$R = 20 \text{ k}\Omega = 2 \times 10^4 \Omega$$

4.148

 V_0 kept constant at so current in 50 Ω resistor

Option (C) is correct.

$$I = \frac{9-6}{50 \,\Omega}$$

 $V_0 = 6$ volt

 $I = 60 \,\mathrm{m} \,\mathrm{amp} \label{eq:I}$ Maximum allowed power dissipation in zener

$$P_Z = 300 \,\mathrm{mW}$$

Maximum current allowed in zener

$$P_Z = V_Z (I_Z)_{\text{max}} = 300 \times 10^{-3}$$

= 6 (I_Z)_{\text{max}} = 300 × 10^{-3}

$$=(I_Z)_{\max}=50 \mathrm{~m~amp}$$

 $(I_Z)_{\min} = 5 \operatorname{m} \operatorname{amp}$

Given knee current or minimum current in zener

In given circuit

 \Rightarrow

$$I = I_{Z} + I_{L}$$

$$I_{L} = I - I_{Z}$$

$$(I_{L})_{\min} = I - (I_{Z})_{\max}$$

$$= (60 - 50) \text{ m amp} = 10 \text{ m amp}$$

$$(I_{L})_{\max} = I - (I_{Z})_{\min}$$

$$= (60 - 5) = 55 \text{ m amp}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

A bulb in a staircase has two switches, one switch being at the 5.1 ground floor and the other one at the first floor. The bulb can be turned ON and also can be turned OFF by any one of the switches irrespective of the state of the other switch. The logic of switching of the bulb resembles (A) and AND gate (B) an OR gate

(D) a NAND gate

For 8085 microprocessor, the following program is executed.

MVI A, $05H;$	
MVI B, 05H;	
PTR: ADD B;	
DCR B;	
JNZ PTR;	
ADI 03H;	
HLT;	
At the end of program,	accumulator contains
(A) 17H	(B) 20H
(C) 23H	(D) $05H$

2013

5.3

5.2

(C) an XOR gate

TWO MARKS

5.6

There are four chips each of 1024 bytes connected to a 16 bit address bus as shown in the figure below, RAMs 1, 2, 3 and 4 respectively are mapped to addresses

(A) 0C00H-0FFFH, 1C00H-1FFFH, 2C00H-2FFFH, 3C00H-3FFFH

- (B) 1800H-1FFFH, 2800H-2FFFH, 3800H-3FFFH, 4800H-4FFFH
- (C) 0500H-08FFH, 1500H-18FFH, 3500H-38FFH, 5500H-58FFH
- (D) 0800H-0BFFH, 1800H-1BFFH, 2800H-2BFFH, 3800H-3BFFH

In this circuit, the race around

(A) does not occur

- (B) occur when CLK = 0
- (C) occur when CLK = 1 and A = B = 1
- (D) occur when CLK = 1 and A = B = 0
- The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input 5.5 A is greater than the 2-bit input B. The number of combinations for which the output is logic 1, is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(A) 4	(B) 6
(C) 8	(D) 10

In the circuit shown

2012

TWO MARKS

In the CMOS circuit shown, electron and hole mobilities are equal, and M_1 and M_2 are equally sized. The device M_1 is in the linear region if

ONE MARK

5.9

(A) $V_{in} < 1.875 \text{ V}$ (B) $1.875 \text{ V} < V_{in} < 3.125 \text{ V}$ (C) $V_{in} > 3.125 \text{ V}$

(D) $0 < V_{in} < 5 V$

5.12

The state transition diagram for the logic circuit shown is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

2011

5.10

The output Y in the circuit below is always '1' when

- (A) two or more of the inputs P, Q, R are '0'
- (B) two or more of the inputs P, Q, R are '1'
- (C) any odd number of the inputs P, Q, R is '0'
- (D) any odd number of the inputs P, Q, R is '1'
- When the output Y in the circuit below is "1", it implies that data 5.11 5.14 has

- (A) changed from "0" to "1" (B) changed from "1" to "0" (C) changed in either direction (D) not changed
- The logic function implemented by the circuit below is (ground

(C) F = XNOR(P, Q)

2011

ONE MARK

TWO MARKS

5.13 The output of a 3-stage Johnson (twisted ring) counter is fed to a digital-to analog (D/A) converter as shown in the figure below. Assume all states of the counter to be unset initially. The waveform which represents the D/A converter output V_o is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Two D flip-flops are connected as a synchronous counter that goes through the following $Q_B Q_A$ sequence $00 \rightarrow 11 \rightarrow 01 \rightarrow 10 \rightarrow 00 \rightarrow \dots$ The connections to the inputs D_A and D_B are (A) $D_A = Q_B, D_B = Q_A$

- (B) $D_A = \overline{Q}_A, D_B = \overline{Q}_B$ (C) $D_A = (Q_A \overline{Q}_B + \overline{Q}_A Q_B), D_B = Q_A$ (D) $D_A = (Q_A Q_B + \overline{Q}_A \overline{Q}_B), D_B = \overline{Q}_B$
- 5.15 An 8085 assembly language program is given below. Assume that the carry flag is initially unset. The content of the accumulator after the execution of the program is

MVI	A, $07H$
RLC	
MOV	B, A
RLC	
RLC	
ADD	В
RRC	
(A) 8C	H
(C) 23H	
(0) 201	1

2010

5.16

ONE MARK

Match the logic gates in Column A with their equivalents in Column B $\,$

5.17 In the circuit shown, the device connected Y5 can have address in the range

5.18 For the output F to be 1 in the logic circuit shown, the input combination should be

(A) A = 1, B = 1, C = 0(B) A = 1, B = 0, C = 0(C) A = 0, B = 1, C = 0(D) A = 0, B = 0, C = 1

5.19

(D) A = 0, B = 0, C = 1

Assuming that the flip-flop are in reset condition initially, the count sequence observed at Q_A , in the circuit shown is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

5.20 The Boolean function realized by the logic circuit shown is

(A) $F = \Sigma m(0, 1, 3, 5, 9, 10, 14)$	(B) $F = \Sigma m(2, 3, 5, 7, 8, 12, 13)$
(C) $F = \Sigma m(1, 2, 4, 5, 11, 14, 15)$	(D) $F = \Sigma m(2, 3, 5, 7, 8, 9, 12)$

5.21 For the 8085 assembly language program given below, the content of the accumulator after the execution of the program is

3000 3002 3003	MOV	А, В,	45H A		
3004 3005	CMC RAR	В			
(A) 00 (C) 67				I	(B) 45H(D) E7H

2009

5.22

ONE MARK

The full form of the abbreviations TTL and CMOS in reference to logic families are

- (A) Triple Transistor Logic and Chip Metal Oxide Semiconductor
- (B) Tristate Transistor Logic and Chip Metal Oxide Semiconductor
- (C) Transistor Transistor Logic and Complementary Metal Oxide Semiconductor
- (D) Tristate Transistor Logic and Complementary Metal Oxide

TWO MARKS

TWO MARKS

Silicon

- 5.23 In a microprocessor, the service routine for a certain interrupt starts from a fixed location of memory which cannot be externally set, but the interrupt can be delayed or rejected Such an interrupt is
 - (A) non-maskable and non-vectored
 - (B) maskable and non-vectored
 - (C) non-maskable and vectored
 - (D) maskable and vectored

2009

TWO MARKS

5.27

5.28

5.24	If $X = 1$ in logic equation $[X + Z\{\overline{Y}\}]$	$\overline{F} + (\overline{Z} + X\overline{Y})] \{ \overline{X} + \overline{X}(X + Y) \} = 1$
	, then	-
	(A) $Y = Z$	(B) $Y = \overline{Z}$
	(C) $Z = 1$	(D) $Z = 0$

5.25 What are the minimum number of 2- to -1 multiplexers required to generate a 2- input AND gate and a 2- input Ex-OR gate 5.29 (A) 1 and 2 (B) 1 and 3

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

(C) 1 and 1 (D) 2 and 2

5.26 What are the counting states (Q_1, Q_2) for the counter shown in the figure below

(A) 11,10,00,11,10,...(B) 01,10,11,00,01...(C) 00,11,01,10,00...(D) 01,10,00,01,10...

Statement for Linked Answer Question 5.18 & 5.19 :

Two products are sold from a vending machine, which has two push buttons P_1 and P_2 .

When a buttons is pressed, the price of the corresponding product is displayed in a 7 - segment display. If no buttons are pressed, '0' is displayed signifying 'Rs 0'.

If only P_1 is pressed, '2' is displayed, signifying 'Rs. 2'

If only P_2 is pressed '5' is displayed, signifying 'Rs. 5'

If both P_1 and P_2 are pressed, 'E' is displayed, signifying 'Error' The names of the segments in the 7 - segment display, and the glow of the display for '0', '2', '5' and 'E' are shown below.

- push buttons pressed/not pressed in equivalent to logic 1/0 respectively.
- (2) a segment glowing/not glowing in the display is equivalent to logic 1/0 respectively.
- If segments a to g are considered as functions of P_1 and P_2 , then which of the following is correct

(A) $g = P_1 + P_2, d = c + e$	(B) $g = P_1 + P_2, d = c + e$
(C) $g = \overline{P_1} + P_2, e = b + c$	(D) $g = P_1 + P_2, e = b + c$

What are the minimum numbers of NOT gates and 2 - input OR gates required to design the logic of the driver for this 7 - Segment display

(A) 3 NOT and 4 OR

(B) 2 NOT and 4 OR (

(C) 1 NOT and 3 OR

(D) 2 NOT and 3 OR $\,$

Refer to the NAND and NOR latches shown in the figure. The inputs (P_1, P_2) for both latches are first made (0, 1) and then, after a few seconds, made (1, 1). The corresponding stable outputs (Q_1, Q_2) are

(A) NAND: first (0, 1) then (0, 1) NOR: first (1, 0) then (0, 0)

(B) NAND : first (1, 0) then (1, 0) NOR : first (1, 0) then (1, 0)

(C) NAND : first (1, 0) then (1, 0) NOR : first (1, 0) then (0, 0)

(D) NAND : first (1, 0) then (1, 1) NOR : first (0, 1) then (0, 1)

2008

5.30

The logic function implemented by the following circuit at the terminal OUT is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) P NOR Q	(B) P NAND Q
(C) P OR Q	(D) P AND Q

5.31 The two numbers represented in signed 2's complement form are P + 11101101 and Q = 11100110. If Q is subtracted from P, the value obtained in signed 2's complement is

(A) 1000001111

- (B) 00000111
- (C) 11111001
- (D) 111111001

5.32 Which of the following Boolean Expressions correctly represents the

(A) $M_1 = (P \text{ OR } Q) \text{ XOR } R$ (B) $M_1 = (P \text{ AND } Q) X \text{ OR } R$ (C) $M_1 = (P \text{ NOR } Q) X \text{ OR } R$

- (D) $M_1 = (P \operatorname{XOR} Q) \operatorname{XOR} R$
- 5.33 For the circuit shown in the figure, D has a transition from 0 to 1 after CLK changes from 1 to 0. Assume gate delays to be negligible Which of the following statements is true

- (A) Q goes to 1 at the CLK transition and stays at 1
- (B) Q goes to 0 at the CLK transition and stays 0
- (C) Q goes to 1 at the CLK tradition and goes to 0 when D goes to 1
- (D) Q goes to 0 at the CLK transition and goes to 1 when D goes to 1
- ^{5.34} For each of the positive edge-triggered J-K flip flop used in the ^{5.36} following figure, the propagation delay is Δt .

Which of the following wave forms correctly represents the output at Q_1 ?

Statement For Linked Answer Question 5.26 & 5.27 :

In the following circuit, the comparators output is logic "1" if $V_1 > V_2$ and is logic "0" otherwise. The D/A conversion is done as

per the relation $V_{DAC} = \sum_{n=1}^{\infty} 2^{n-1} b_n$ Volts, where b_3 (MSB), b_1, b_2 and b_0 (LSB) are the counter outputs. The counter starts from the clear state.

The stable reading of the LED displays is SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click	to	Buy
-------	----	-----

www.nodia.co.in

(A) 06	(B) 07
(C) 12	(D) 13

The magnitude of the error between V_{DAC} and V_{in} at steady state in volts is

(A) 0.2	(B) 0.3
(C) 0.5	(D) 1.0

For the circuit shown in the following, $I_0 - I_3$ are inputs to the 4:1 multiplexers, R(MSB) and S are control bits. The output Z can be represented by

(A) $PQ + P\overline{Q}S + \overline{QRS}$

(B) $P\overline{Q} + PQ\overline{R} + \overline{PQS}$

(C) $P\overline{QR} + \overline{P}QR + PARS + \overline{QRS}$

(D) $PQ\overline{R} + PQR\overline{S} + P\overline{QRS} + \overline{QRS}$

5.38 An 8085 executes the following instructions

2710 LXI H, 30A0 H

2713 DAD H 2414 PCHL

All address and constants are in Hex. Let PC be the contents of the program counter and HL be the contents of the HL register pair just after executing PCHL. Which of the following statements is correct ?

(A)
$$\begin{array}{l} PC = 2715 H \\ HL = 30A0 H \end{array}$$
 (B)
$$\begin{array}{l} PC = 30A0 H \\ HL = 2715 H \end{array}$$

(C) $PC = 6140H$	(D) $PC = 6140H$
(U) HL = 6140H	(L) $HL = 2715H$

2007

5.39

X = 01110 and Y = 11001 are two 5-bit binary numbers represented in two's complement format. The sum of X and Y represented in two's complement format using 6 bits is

(A) 100111	(B) 0010000
(C) 000111	(D) 101001

- 5.40 The Boolean function Y = AB + CD is to be realized using only 2 input NAND gates. The minimum number of gates required is (A) 2 (B) 3
 - (C) 4 (D) 5

TWO MARKS

ONE MARK

5.41 The Boolean expression $Y = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$ can be minimized to

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

- (A) $Y = \overline{ABCD} + \overline{ABC} + \overline{ACD}$ (B) $Y = \overline{ABCD} + BC\overline{D} + A\overline{BCD}$
- (D) I = IDCD + DCD + IDCD
- (C) $Y = \overline{ABCD} + \overline{BCD} + A\overline{BCD}$ (D) $Y = \overline{ABCD} + \overline{BCD} + A\overline{BCD}$
- 5.42 In the following circuit, X is given by

^{5.43} The circuit diagram of a standard *TTL* NOT gate is shown in the figure. $V_i = 25$ V, the modes of operation of the transistors will be

(A) Q_1 : revere active; Q_2 : normal active; Q_3 : saturation; Q_4 : cut-off (B) Q_1 : revere active; Q_2 : saturation; Q_3 : saturation; Q_4 : cut-off (C) Q_1 : normal active; Q_2 : cut-off; Q_3 : cut-off; Q_4 : saturation

(D) Q_1 : saturation; Q_2 : saturation; Q_3 : saturation; Q_4 : normal active

The following binary values were applied to the X and Y inputs of NAND latch shown in the figure in the sequence indicated below : X = 0, Y = 1; X = 0, Y = 0; X = 1; Y = 1

The corresponding stable P, Q output will be.

5.44

5.45

An 8255 chip is interfaced to an 8085 microprocessor system as an I/O mapped I/O as show in the figure. The address lines A_0 and A_1 of the 8085 are used by the 8255 chip to decode internally its thee ports and the Control register. The address lines A_3 to A_7 as well as the IO/\overline{M} signal are used for address decoding. The range of addresses for which the 8255 chip would get selected is

(A) F8H - FBH

(C) F8H - FFH

(B) F8GH - FCH(D) F0H - F7H

Statement for Linked Answer Question 5.37 and 5.38 :

In the Digital-to-Analog converter circuit shown in the figure below, $V_R = 10 V$ and $R = 10 k\Omega$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

5.46	The current is (A) 31.25μ A (C) 125μ A	 (B) 62.5μA (D) 250μA
5.47	The voltage V_0 is (A) -0.781 V (C) -3.125 V	 (B) -1.562 V (D) -6.250 V

Statement for Linked Answer Questions 5.39 & 5.40 :

An 8085 assembly language program is given below. Line 1: MVI A, B5H

2:	MVI B, OEH
3:	XRI 69H
4:	ADD B
5:	ANI 9BH
6:	CPI 9FH
7:	STA 3010H

8: HLT

The contents of the accumulator just execution of the ADD 5.48 instruction in line 4 will be

(A) C3H	(B) EAH
(C) DCH	(D) 69H

After execution of line 7 of the program, the status of the CY and 5.49 Z flags will be

(\mathbf{A})	CY =	0,	Z =	0		(B)	CY	= (0,	Z =	1	
(~)			_			< >				_		

(C) CY = 1, Z = 0(D) CY = 1, Z = 1

For the circuit shown, the counter state $(Q_1 Q_0)$ follows the sequence 5.50

(C) 00,01,11,00,01

2006

ONE MARK

5.55

The number of product terms in the minimized sum-of-product 5.51 expression obtained through the following K - map is (where, "d" denotes don't care states)

(B) 00,01,10,00,01

(D) 00,10,11,00,10

2006

TWO MARKS

An I/O peripheral device shown in Fig. (b) below is to be interfaced 5.52 to an 8085 microprocessor. To select the I/O device in the I/Oaddress range D4 H - D7 H, its chip-select (CS) should be connected to the output of the decoder shown in as below :

For the circuit shown in figures below, two 4 - bit parallel - in serial 5.53

- out shift registers loaded with the data shown are used to feed the data to a full adder. Initially, all the flip - flops are in clear state. After applying two clock pulse, the output of the full-adder should be

(A) $S = 0, C_0 = 0$ (B) S = 0, $C_0 = 1$ (C) $S = 1, C_0 = 0$ (D) S = 1, $C_0 = 1$

A new Binary Coded Pentary (BCP) number system is proposed 5.54 in which every digit of a base-5 number is represented by its corresponding 3-bit binary code. For example, the base-5 number

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

24 will be represented by its BCP code 010100. In this numbering system, the BCP code 10001001101 corresponds of the following number is base-5 system

(A) 423	(B) 1324
(C) 2201	(D) 4231

A 4 - bit D/A converter is connected to a free - running 3 - big UP counter, as shown in the following figure. Which of the following waveforms will be observed at V_0 ?

In the figure shown above, the ground has been shown by the symbol ∇

Following is the segment of a 8085 assembly language program LXI SP, EFFF H

CALL 3000 H : : : 3000 H LXI H, 3CF4

Page	108

PUSH PSW	
SPHL	
POP PSW	
RET	
On completion of RET exe	cution, the contents of SP is
(A) 3CF0 H	(B) 3CF8 H
(C) EFFD H	(D) EFFF H

Two D - flip - flops, as shown below, are to be connected as a 5.57 synchronous counter that goes through the following sequence $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00 \rightarrow \dots$

The inputs D_0 and D_1 respectively should be connected as,

(A) \overline{Q}_1 and Q_0

- (C) $\overline{Q_1} Q_0$ and $\overline{Q_1} Q_0$
- (B) \overline{Q}_0 and Q_1 (D) $\overline{Q}_1 \overline{Q}_0$ and $Q_1 Q_0$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

The point P in the following figure is stuck at 1. The output f will 5.58 be

2005

5.59

Decimal 43 in Hexadecimal and BCD number system is respectively

(A) B2, 0100 011

(B) 2B, 0100 0011 (D) B2, 0100 0100 (C) 2B, 0011 0100

The Boolean function f implemented in the figure using two input 5.60 multiplexes is

(B) $ABC + A\overline{BC}$ (D) $\overline{ABC} + \overline{ABC}$ 2005

5.61

5.62

ONE MARK

5.65

TWO MARKS

The transistors used in a portion of the TTL gate show in the figure have $\beta = 100$. The base emitter voltage of is 0.7 V for a transistor in active region and 0.75 V for a transistor in saturation. If the sink current I = 1 A and the output is at logic 0, then the current I_R will be equal to

(B) 0.70 mA (D) 1.00 mA

The Boolean expression for the truth table shown is

A	В	C	D
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

(C) 0.75 mA

(A) $B(A + C)(\overline{A} + \overline{C})$ (B) B(A + C)(A + C)(C) $\overline{B}(A + \overline{C})(\overline{A} + C)$ (D) $\overline{B}(A + C)(\overline{A} + \overline{C})$

The present output Q_n of an edge triggered JK flip-flop is logic 0. 5.63 If J = 1, then Q_{n+1}

(A) Cannot be determined
(C) will be logic 1

- (B) Will be logic 0
- (D) will rave around
- The given figure shows a ripple counter using positive edge triggered 5.64 flip-flops. If the present state of the counter is $Q_2 Q_1 Q_0 = 001$ then is next state $Q_2 Q_1 Q$ will be

What memory address range is NOT represents by chip # 1 and chip # 2 in the figure A_0 to A_{15} in this figure are the address lines and CS means chip select.

Statement For Linked Answer Questions 5.57 & 5.58 :

(B) 1500 - 16FF

(D) F800 - F9FF

Consider an 8085 microprocessor system.

The following progra	m starts at location 0100H.
LXI SP, OOF	F
LXI H, 0701	
MVI A, 20H	
SUB M	
The content of accur	nulator when the program counter reaches
0109 H is	
(A) 20 H	(B) 02 H
(C) 00 H	(D) FF H
If in addition followi	ng code exists from 019H onwards,
ORI 40 H	
ADD M	
What will be the res	ult in the accumulator after the last instruc-
tion is executed ?	

(A) 40 H	(B) 20 H
(C) 60 H	(D) 42 H

2004

5.66

5.67

ONE MARK

5.76

- 5.68 A master slave flip flop has the characteristic that
 - (A) change in the output immediately reflected in the output
 - (B) change in the output occurs when the state of the master is affected
 - (C) change in the output occurs when the state of the slave is affected
 - (D) both the master and the slave states are affected at the same time
- 5.69 The range of signed decimal numbers that can be represented by 6-bits 1's complement number is

(A) -31 to $+31$	(B) -63 to $+63$
(C) -64 to $+63$	(D) -32 to $+31$

5.70 A digital system is required to amplify a binary-encoded audio signal. The user should be able to control the gain of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is (A) 8 (B) 6

(C) 5 (D)
$$7$$

5.71 Choose the correct one from among the alternatives A, B, C, D after matching an item from Group 1 most appropriate item in Group 2. Group 1 Group 2 P. Shift register 1. Frequency division

Q. Counter	2. Addressing in memory chips
R. Decoder	3. Serial to parallel data conversion
(A) $P-3, Q-2, R-1$	(B) $P-3, Q-1, R-2$
(C) $P-2, Q-1, R-3$	(D) $P-1, Q-2, R-2$

5.72 The figure the internal schematic of a TTL AND-OR-OR-Invert (AOI) gate. For the inputs shown in the figure, the output Y is

(B) 1

(D) \overline{AB}

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

2004 TWO MARKS

5.73 11001, 1001, 111001 correspond to the 2's complement representation of which one of the following sets of number
(A) 25,9, and 57 respectively
(B) -6, -6, and -6 respectively

(C) -7, -7 and -7 respectively

- (D) -25, -9 and -57 respectively
- 5.74 In the modulo-6 ripple counter shown in figure, the output of the 2- input gate is used to clear the J-K flip-flop The 2-input gate is

(A) a NAND gate	(B) a NOR gate
(C) an OR gate	(D) a AND gare

5.75 The minimum number of 2- to -1 multiplexers required to realize a 4- to -1 multiplexers is

(A) 1	(B) 2
(C) 3	(D) 4

- The Boolean expression $AC + B\overline{C}$ is equivalent to _____
 - (A) AC + BC + AC (B) BC + AC + BC + ACB
 - (C) $AC + B\overline{C} + \overline{B}C + ABC$ (D) $ABC + \overline{A}B\overline{C} + AB\overline{C} + A\overline{B}C$

A Boolean function f of two variables x and y is defined as follows : f(0,0) = f(0,1) = f(1,1) = 1; f(1,0) = 0

Assuming complements of x and y are not available, a minimum cost solution for realizing f using only 2-input NOR gates and 2-

GATE	Electronics and Communication Topicwise Solved Paper by RK Kanodia & Ashish Murolia	ı		Page 110
	input OR gates (each having unit cost) would have a total cost of		(A) JNX LOOP, AD	D B, DCR C
	(A) 1 unit (B) 4 unit		(B) ADD B, JNZ LO	OP, DCR C
	(C) 3 unit (D) 2 unit		(C) DCR C, JNZ LO	OP, ADD B
5.78	The 8255 Programmable Peripheral Interface is used as described below.		(D) ADD B, DCR C,	JNZ LOOP
	(i) An A/D converter is interface to a microprocessor through an 8255.		2003	ONE MARK
	The conversion is initiated by a signal from the 8255 on Port C. A signal on Port C causes data to be stobed into Port A.	5.82	(A) 16	ct Boolean expressions of 4 variables is (B) 256
	(ii) Two computers exchange data using a pair of 8255s. Port A		(C) 1023	(D) 65536
	works as a bidirectional data port supported by appropriate hand- shaking signals. The appropriate modes of operation of the 8255 for (i) and (ii)	5.83	The minimum number flash ADC is	er of comparators required to build an 8-bits
	would be		(A) 8	(B) 63
	(A) Mode 0 for (i) and Mode 1 for (ii)		(C) 255	(D) 256
	(B) Mode 1 for (i) and Mode 2 for (ii)	5.84	The output of the 74	series of GATE of TTL gates is taken from a
	(C) Mode for (i) and Mode 0 for (ii)	0.04	BJT in	series of GITTE of TTE gates is taken from a
	(D) Mode 2 for (i) and Mode 1 for (ii)		(A) totem pole and c	ommon collector configuration
	GATE Electronics & Communication		(B) either totem pole	or open collector configuration
			(C) common base cor	ifiguration
	by RK Kanodia		(D) common collector	r configuration
	Now in 3 Volume		Without any addition	al circuitry, an 8:1 MUX can be used to obtain
Pur	chase Online at maximum discount from online store	5.85	⁰	Boolean functions of 3 variables
and get POSTAL and Online	and get POSTAL and Online Test Series Free			variables but non of 4 variables
	visit www.nodia.co.in		(C) all functions of 3	variables and some but not all of 4 variables
			(D) all functions of 4	variables
5.79	The number of memory cycles required to execute the following 8085 instructions	5.86	A 0 to 6 counter cons	ists of 3 flip flops and a combination circuit of

(i) LDA 3000 H
(ii) LXI D, FOF1H
would be
(A) 2 for (i) and 2 for (ii)

(A) 2 for (i) and 2 for (ii)	(B) 4 for (i) and 3 for (ii)
(C) 3 for (i) and 3 for (ii) $($	(D) 3 for (i) and 4 for (ii)

5.80 Consider the sequence of 8085 instructions given below LXI H. 9258

Which one of the following is performed by this sequence ?

- (A) Contents of location 9258 are moved to the accumulator
- (B) Contents of location 9258 are compared with the contents of the accumulator
- (C) Contents of location 8529 are complemented and stored in location 8529 $\,$
- (D) Contents of location 5892 are complemented and stored in location 5892
- 5.81 It is desired to multiply the numbers 0AH by 0BH and store the result in the accumulator. The numbers are available in registers B and C respectively. A part of the 8085 program for this purpose is given below :

MVI A, 00H LOOP -----------HLT END

The sequence of instructions to complete the program would be

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

The circuit in the figure has 4 boxes each described by inputs P, Q, R

and outputs Y, Z with $Y = P \oplus Q \oplus R$ and Z = RQ + PR + QP

TWO MARKS

2 input gate (s). The common circuit consists of

(C) one AND gate and one OR gate

(A) one AND gate

(D) two AND gates

The circuit acts as a

2003

5.87

(B) one OR gate

(A) 4 bit adder giving P + Q

(B) 4 bit subtractor giving P - Q

(C) 4 bit subtractor giving Q-P

5.88

(D) 4 bit adder giving P + Q + R

3	If the function W, X, Y and Z ar	e as follows
	$W = R + \overline{P}Q + \overline{R}S$	$X = PQ\overline{RS} + \overline{PQRS} + P\overline{QRS}$
	$Y = RS + \overline{PR + PQ} + \overline{P}.\overline{Q}$	
	$Z = R + S + \overline{PQ + \overline{P}. \overline{Q}. \overline{R} + P\overline{Q}. \overline{R}}$	\overline{S}
	Then,	
	(A) $W = Z, X = \overline{Z}$	(B) $W = Z, X = Y$
	(C) $W = Y$	(D) $W = Y = \overline{Z}$

5.89 A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then

(A) $R = 10$ ns, $S = 40$ ns	(B) $R = 40$ ns, $S = 10$ ns
(C) $R = 10 \text{ ns } S = 30 \text{ ns}$	(D) $R = 30$ ns, $S = 10$ ns

5.90 In the circuit shown in the figure, A is parallel-in, parallel-out 4 bit register, which loads at the rising edge of the clock C. The input lines are connected to a 4 bit bus, W. Its output acts at input to a 16×4 ROM whose output is floating when the input to a partial table of the contents of the ROM is as follows

Data	0011	1111	0100	1010	1011	1000	0010	1000
Address	0	2	4	6	8	10	11	14

The clock to the register is shown, and the data on the W bus at time t_1 is 0110. The data on the bus at time t_2 is

(C) 1000	(D) 0010
----------	----------

^{5.91} The DTL, TTL, ECL and CMOS famil GATE of digital ICs are compared in the following 4 columns

	(P)	(Q)	(R)	(S)	
Fanout is minimum	DTL	DTL	TTL	CMOS	
Power consumption is	TTL	CMOS	ECL	DTL	
minimum					5.9

Propagation delay is minimum	CMOS	ECL	TTL	TTL

The correct column is

5.92

(A) P	(B) Q
(C) R	(D) S

The circuit shown in figure converts

(A) BCD to binary code(B) Binary to excess - 3 code(C) Excess -3 to gray code(D) Gray to Binary code

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book

binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

In an 8085 microprocessor, the instruction CMP B has been executed while the content of the accumulator is less than that of register B. As a result

- (A) Carry flag will be set but Zero flag will be reset
- (B) Carry flag will be rest but Zero flag will be set
- (C) Both Carry flag and Zero flag will be rest
- (D) Both Carry flag and Zero flag will be set

5.94 The circuit shown in the figure is a 4 bit DAC

2002

5.95

The input bits 0 and 1 are represented by 0 and 5 V respectively. The OP AMP is ideal, but all the resistance and the 5 v inputs have a tolerance of $\pm 10\%$. The specification (rounded to nearest multiple of 5%) for the tolerance of the DAC is

(A) $\pm 35\%$	(B) $\pm 20\%$
(C) $\pm 10\%$	(D) $\pm 5\%$

ONE MARK

4 - bit 2's complement representation of a decimal number is 1000. The number is

(A) + 8	(B) 0
(C) -7	(D) -8

If the input to the digital circuit (in the figure) consisting of a

5.97 The number of comparators required in a 3-bit comparators type ADC (A) 2 (B) 3

(C) 7	(D) 8
-------	-------

2002

TWO MARKS

5.101

5.10

5.103

^{5.98} The circuit in the figure has two CMOS NOR gates. This circuit functions as a:

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

(A) flip-flop

(B) Schmitt trigger

(C) Monostable multivibrator

- (D) astable multivibrator
- The gates G_1 and G_2 in the figure have propagation delays of 10 ns and 20 ns respectively. If the input V_1 , makes an output change from logic 0 to 1 at time $t = t_0$, then the output waveform V_0 is

5.100 If the input X_3, X_2, X_1, X_0 to the ROM in the figure are 8 4 2 1 BCD numbers, then the outputs Y_3, Y_2, Y_1, Y_0 are

- (B) 2 4 2 1 BCD numbers
- (D) none of the above

Consider the following assembly language program

	MVI B, 87H	
	MOV A, B	
START :	JMP NEXT	
	MVI B, 00H	
	XRA B	
	OUT PORT1	
	HLT	
NEXT :	XRA B	
	JP START	
	OUT PORT2	
	HTL	
T 1	· · · ·	

(C) excess - 3 code numbers

The execution of above program in an 8085 microprocessor will result in

- (A) an output of 87H at PORT1
- (B) an output of 87H at PORT2
- (C) infinite looping of the program execution with accumulator data remaining at 00H
- (D) infinite looping of the program execution with accumulator data alternating between 00H and 87H

	2001	ONE MARKS	
02	The 2's complement	representation of -17 is	
	(A) 101110	(B) 101111	
	(C) 111110	(D) 110001	

For the ring oscillator shown in the figure, the propagation delay of each inverter is 100 pico sec. What is the fundamental frequency of the oscillator output

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

5.104 Ab 8085 microprocessor based system uses a $4K \times 8$ bit RAM whose starting address is AA00H. The address of the last byte in this RAM is

(A) OFFFH	(B) 1000H
(C) B9FFH	(D) BA00H

2001

TWO MARKS

In the TTL circuit in the figure, S_2 and S_0 are select lines and X_7 5.105 and X_0 are input lines. S_0 and X_0 are LSBs. The output Y is

(A) indeterminate (B) $A \oplus B$ (C) $\overline{A \oplus B}$ (D) $\overline{C}(\overline{A \oplus B}) + C(A \oplus B)$

In the figure, the LED 5.106

- (A) emits light when both S_1 and S_2 are closed
- (B) emits light when both S_1 and S_2 are open
- (C) emits light when only of S_1 and S_2 is closed
- (D) does not emit light, irrespective of the switch positions.

The digital block in the figure is realized using two positive edge 5.107 triggered D-flip-flop. Assume that for $t < t_0, Q_1 = Q_2 = 0$. The circuit in the digital block is given by

In the DRAM cell in the figure, the V_t of the NMOSFET is 1 V. For 5.108 the following three combinations of WL and BL voltages.

2000

(A) 4

An 8 bit successive approximation analog to digital communication 5.109 has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 μ s. The conversion time for a 2 V input will be (A) 10 μs (B) 20 μs (D) 50 μs (C) 40 μs

The number of comparator in a 4-bit flash ADC is 5.110

SPECIAL EDITION (STUDY MATERIAL FORM)

(B) 5

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(C) 15

(D) 16

For the logic circuit shown in the figure, the required input condition 5.111 (A, B, C) to make the output (X) = 1 is

The number of hardware interrupts (which require an external signal 5.112 to interrupt) present in an 8085 microprocessor are

(A) 1	(B) 4
(C) 5	(D) 13

In the microprocessor, the RST6 instruction transfer the program 5.113 execution to the following location :

(A)30 H	(B) $24 H$
(C) 48 H	(D) 60 H

2000

5.115

TWO MARKS

The contents of register (B) and accumulator (A) of 8085 5.114 microprocessor are 49J are 3AH respectively. The contents of A and status of carry (CY) and sign (S) after execution SUB B instructions are

(A) A = F1, CY = 1, S = 1(B) A = 0F, CY = 1, S = 1(C) A = F0, CY = 0, S = 0(D) A = 1F, CY = 1, S = 1

For the logic circuit shown in the figure, the simplified Boolean expression for the output Y is

ONE MARKS

5.116

For the 4 bit DAC shown in the figure, the output voltage V_0 is

5.117 A sequential circuit using D flip-flop and logic gates is shown in $_{5.124}$ the figure, where X and Y are the inputs and Z is the inputs. The circuit is

- (A) S R Flip-Flop with inputs X = R and Y = S
- (B) S R Flip-Flop with inputs X = S and Y = R
- (C) J K Flip-Flop with inputs X = J and Y = K
- (D) J K Flip-Flop with input X = K and Y = J
- 5.118 In the figure, the J and K inputs of all the four Flip-Flips are made high. The frequency of the signal at output Y is

1999

ONE MARK

- (A) y = AB(B) $y = \overline{A}B$ (C) $y = \overline{A} + B$ (D) y = A + B
- 5.120 A Darlington emitter follower circuit is sometimes used in the output stage of a TTL gate in order to
 - (A) increase its I_{OL} (B) reduce its I_{OH}
 - (C) increase its speed of operation (D) reduce power dissipation
- 5.121 Commercially available ECL gears use two ground lines and one negative supply in order to
 - (A) reduce power dissipation
 - (B) increase fan-out
 - (C) reduce loading effect
 - (D) eliminate the effect of power line glitches or the biasing circuit
- ^{5.122} The resolution of a 4-bit counting ADC is 0.5 volts. For an analog input of 6.6 volts, the digital output of the ADC will be (A) 1011 (B) 1101
 - (C) 1100 (D) 1110

1999

5.123

TWO MARKS

The minimized form of the logical expression $(\overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + \overline{A} B C + A B \overline{C})$ is (A) $\overline{A} \overline{C} + B \overline{C} + \overline{A} B$ (B) $A \overline{C} + \overline{B} C + \overline{A} B$ (C) $\overline{A} C + \overline{B} C + \overline{A} B$ (D) $A \overline{C} + \overline{B} C + A \overline{B}$

For a binary half-subtractor having two inputs A and B, the correct set of logical expressions for the outputs D(=A minus B) and X(= borrow) are

(A)
$$D = AB + \overline{A}B, X = \overline{A}B$$
 (B)
 $D = \overline{A}B + A\overline{B} + A\overline{B}, X = A\overline{B}$

(C)
$$D = \overline{A}B + A\overline{B}, X = \overline{A}B$$
 (D) $D = AB + \overline{A}\overline{B}, X = A\overline{B}$

5.125 The ripple counter shown in the given figure is works as a

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$(A) \mod 3$ up counter	(B) mod-5 up counter
(C) mod-3 down counter	(D) mod-5 down counter

5.126 If $CS = A_{15}A_{14}A_{13}$ is used as the chip select logic of a 4 K RAM in an 8085 system, then its memory range will be (A) 3000 H - 3 FFF H

- (B) 7000 H 7 FFF H
- (C) 5000 H 5 FFF H and 6000 H 6 FFF H
- (D) 6000 H 6 FFF H and 7000 H 7 FFF H

ONE MARK

5.135

The minimum number of 2-input NAND gates required to implement 5.127 of Boolean function $Z = A\overline{B}C$, assuming that A, B and C are available, is (\mathbf{R}) three (A) two

(A) two	(D) three
(C) five	(D) six

- The noise margin of a TTL gate is about 5.128
 - (B) 0.4 V (A) 0.2 V
 - (C) 0.6 V(D) 0.8 V
- In the figure is A = 1 and B = 1, the input B is now replaced by a 5.137 5.129 sequence 101010...., the output x and y will be

1998

- (A) fixed at 0 and 1, respectively
- (B) x = 1010.... while y = 0101....
- (C) x = 1010....and y = 1010....
- (D) fixed at 1 and 0, respectively
- An equivalent 2's complement representation of the 2's complement 5.130 number 1101 is

(A) 110100	(B) 01101
(C) 110111	(D) 111101

The threshold voltage for each transistor in the figure is 2 V. For 5.131 this circuit to work as an inverter, V_i must take the values

- (A) 5 V and 0 V(B) -5 V and 5 V (C) - 0 V and 3 V(D) 3 V and 5 V
- An I/O processor control the flow of information between 5.132
 - (A) cache memory and I/O devices
 - (B) main memory and I/O devices
 - (C) two I/O devices
 - (D) cache and main memories
- Two 2's complement number having sign bits x and y are added 5.133 and the sign bit of the result is z. Then, the occurrence of overflow is indicated by the Boolean function

(A) xyz	(B) $\overline{x}\overline{y}\overline{z}$
(C) $\overline{x} \overline{y} z + x y \overline{z}$	(D) $xy + yz +$

The advantage of using a dual slope ADC in a digital voltmeter is 5.134 that

zx

- (A) its conversion time is small
- (B) its accuracy is high
- (C) it gives output in BCD format
- (D) it does not require a

- For the identity $AB + \overline{A}C + BC = AB + \overline{A}C$, the dual form is (A) $(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$ (B) $(\overline{A} + \overline{B})(A + \overline{C})(\overline{B} + \overline{C}) = (\overline{A} + \overline{B})(A + \overline{C})$ (C) $(A+B)(\overline{A}+C)(B+C) = (\overline{A}+\overline{B})(A+\overline{C})$ (D) $\overline{A}\overline{B} + A\overline{C} + \overline{B}\overline{C} = \overline{A}\overline{B} + A\overline{C}$
- An instruction used to set the carry Flag in a computer can be 5.136 classified as
 - (A) data transfer (B) arithmetic
 - (C) logical (D) program control
 - The figure is shows a mod-K counter, here K is equal to

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click	to	Buy
-------	----	-----

www.nodia.co.in

(A) 1	(B) 2
(C) 3	(D) 4

The current I through resistance r in the circuit shown in the figure 5.138 is

(B) 5

(D) 8

The K-map for a Boolean function is shown in the figure is the

5.139

ONE MARK

(C)

- 1997
 5.140 Each cell of a static Random Access Memory contains (A) 6 MOS transistors
 (B) 4 MOS transistors and 2 capacitors
 (C) 2 MOS transistors and 4 capacitors
 - (D) 1 MOS transistors and 1 capacitors
- 5.141 A 2 bit binary multiplier can be implemented using
 - (A) 2 inputs ANSs only
 - (B) 2 input XORs and 4 input AND gates only
 - (C) Two 2 inputs NORs and one XNO gate
 - (D) XOR gates and shift registers
- 5.142 In standard TTL, the 'totem pole' stage refers to (A) the multi-emitter input stage
 - (B) the phase splitter
 - (C) the output buffer
 - (D) open collector output stage

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

^{5.143} The inverter 74 ALSO4 has the following specifications $I_{OHmax} = -0.4 \text{ A}, I_{OLmax} = 8 \text{ mA}, I_{IHmax} = 20 \text{ mA}, I_{ILmax} = -0.1 \text{ mA}$ The fan out based on the above will be (A) 10 (B) 20

(C) 60	(D) 100

5.144 The output of the logic gate in the figure is

- 5.145 In an $8085 \,\mu\text{P}$ system, the RST instruction will cause an interrupt (A) only if an interrupt service routine is not being executed
 - (B) only if a bit in the interrupt mask is made 0
 - (C) only if interrupts have been enabled by an EI instruction
 - (D) None of the above
- 5.146 The decoding circuit shown in the figure is has been used to generate the active low chip select signal for a microprocessor peripheral. (The address lines are designated as AO to A7 for I/O address)

The peripheral will correspond to I/O address in the range (A) 60 H to 63 H (B) A4 to A 7H

30 H to 33 H	(D) 70 H to 73 H

5.147 The following instructions have been executed by an $8085\,\mu\text{P}$

-	
ADDRESS (HEX)	INSTRUCTION
6010	LXI H, 8 A 79 H
6013	MOV A, L
6015	ADDH
6016	DAA
6017	MOV H, A
6018	PCHL

- (C) 6979 (D) None of the above
- 5.148 A signed integer has been stored in a byte using the 2's complement format. We wish to store the same integer in a 16 bit word. We should
 - (A) copy the original byte to the less significant byte of the word and fill the more significant with zeros
 - (B) copy the original byte to the more significant byte of the word and fill the less significant byte with zeros
 - (C) copy the original byte to the less significant byte of the word and make each fit of the more significant byte equal to the most significant bit of the original byte
 - (D) copy the original byte to the less significant byte as well as the more significant byte of the word

1997

TWO MARKS

5.149 For the NMOS logic gate shown in the figure is the logic function implemented is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(\mathbf{A})	ABCDE
(C)	$\overline{A \cdot (B+C) + D \cdot E}$

(B) $(AB + \overline{C}) \cdot (\overline{D + E})$ (D) $(\overline{A + B}) \cdot C + \overline{D} \cdot \overline{E}$

5.150 In a J–K flip-flop we have J = Q and K = 1. Assuming the flip flop was initially cleared and then clocked for 6 pulses, the sequence at the Q output will be

(A) 010000	(B) 011001
(C) 010010	(D) 010101

- ^{5.151} The gate delay of an NMOS inverter is dominated by charge time rather than discharge time because
 - (A) the driver transistor has larger threshold voltage than the load transistor
 - (B) the driver transistor has larger leakage currents compared to the load transistor
 - (C) the load transistor has a smaller W/L ratio compared to the driver transistor
 - (D) none of the above
- 5.152 The boolean function A + BC is a reduced form of

(A) $AB + BC$	$(B) (A+B) \cdot (A+C)$
(C) $\overline{A}B + A\overline{B}C$	(D) $(A + C) \cdot B$

1996

ONE MARK

- 5.153 Schottky clamping is resorted in TTl gates (A) to reduce propagation delay (B) to increase noise margins
 - (C) to increase packing density (D) to increase fan-out
- 5.154 A pulse train can be delayed by a finite number of clock periods using
 - (A) a serial-in serial-out shift register
 - (B) a serial-in parallel-out shift register
 - (C) a parallel-in serial-out shift register
 - (D) a parallel-in parallel-out shift register

5.155 A 12-bit ADC is operating with a 1μ sec clock period and the total conversion time is seen to be 14μ sec. The ADC must be of the (A) flash type (B) counting type

- (C) intergrating type (D) successive approximation type
- 5.156 The total number of memory accesses involved (inclusive of the opcode fetch) when an 8085 processor executes the instruction LDA 2003 is (A) 1 (B) 2

(C) 3	(D) 4

1996

TWO MARKS

^{5.157} A dynamic RAM cell which hold 5 V has to be refreshed every 20 m sec, so that the stored voltage does not fall by more than 0.5 V. If the cell has a constant discharge current of 1 pA, the storage capacitance of the cell is (A) 4×10^{-6} F (B) 4×10^{-9} F

$(A) 4 \times 10$ F	$(D) 4 \times 10$ F
(C) $4 \times 10^{-12} \mathrm{F}$	(D) $4 \times 10^{-15} \mathrm{F}$

- A 10-bit ADC with a full scale output voltage of 10.24 V is designed to have a \pm LSB/2 accuracy. If the ADC is calibrated at 25°C and the operating temperature ranges from 0°C to 25°C, then the maximum net temperature coefficient of the ADC should not exceed (A) \pm 200 μ V/°C (B) \pm 400 μ V/°C
 - (C) $\pm 600 \,\mu V/^{\circ}C$ (D) $\pm 800 \,\mu V/^{\circ}C$
- A memory system of size 26 K bytes is required to be designed using memory chips which have 12 address lines and 4 data lines each. The number of such chips required to design the memory system is (A) 2 (B) 4

- (C) 8 (D) 13
- 5.160 The following sequence of instructions are executed by an 8085 microprocessor:
 - 1000
 LXI SP, 27 FF

 1003
 CALL 1006
 - 1006 POP H

The contents of the stack pointer (SP) and the HL, register pair on completion of execution of these instruction are

(A) SP = 27 FF, HL = 1003 (B) SP = 27 FD, HL = 1003(C) SP = 27 FF, HL = 1006 (D) SP = 27 FD, HL = 1006

SPECIAL EDITION (STUDY MATERIAL FORM) At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

SOLUTIONS

5.1 Option (C) is correct.

Let A denotes the position of switch at ground floor and B denotes the position of switch at upper floor. The switch can be either in up position or down position. Following are the truth table given for different combinations of A and B

А	В	Y(Bulb)
up(1)	up(1)	OFF(0)
$\operatorname{Down}(0)$	$\operatorname{Down}(0)$	OFF(0)
up(1)	$\operatorname{Down}(0)$	ON(1)
$\operatorname{Down}(0)$	up(1)	ON(1)

When the switches A and B are both up or both down, output will be zero (i.e. Bulb will be OFF). Any of the switch changes its

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

position leads to the ON state of bulb. Hence, from the truth table, we get

 $Y = A \oplus B$

i.e., the XOR gate

5.2 Option (A) is correct.

The program is being executed as follows MVI A, 0.5H; A = 05H

MVI B,
$$0.5$$
H; $B = 05$ H

At the next instruction, a loop is being introduced in which for the instruction "DCR B" if the result is zero then it exits from loop so, the loop is executed five times as follows :

Content in B	Output of ADD B (Stored value at A)
05	05 + 05
04	05 + 05 + 04
03	05 + 05 + 04 + 03
02	05 + 05 + 04 + 03 + 02
01	05 + 05 + 04 + 03 + 02 + 01
00	System is out of loop
• •	07 + 07 + 04 + 09 + 09 + 01 = 144

i.e.,

5.3

A = 05 + 05 + 04 + 03 + 02 + 01 = 144

At this stage, the 8085 microprocessor exits from the loop and reads the next instruction. i.e., the accumulator is being added to 03 H. Hence, we obtain

$$A = A + 03 \text{ H} = 14 + 03 = 17 \text{ H}$$

Option (D) is correct.

For chip-1, we have the following conclusions:

it is enable when (i)	$S_1S_0=0$ 0
and (ii)	Input = 1

For
$$S_1 S_0 = 0.0$$

We have

and for I/p = 1we obtain

$$\overline{A}_{10} = 1 \text{ or } A_{10} = 0$$

 $A_{11} = 1$
 $\overline{A}_{14} = 1 \text{ or } A_{14} = 0$

 $\overline{A}_{15} = 1 \text{ or } A_{15} = 0$

 $A_{13} = A_{12} = 0$

Since, $A_0 - A_9$ can have any value 0 or 1 Therefore, we have the address range as

	A_{15}	A_{14}	A13	A12	A ₁₁	A10	A9	A_8	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
From	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
to	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1

In Hexadecimal
$$\Rightarrow$$
 0800 H to 0BFFH

Similarly, for chip 2, we obtain the range as follows

$$E = 1$$
 for $S_1 S_0 = 0$ 1
 $A_{13} = 0$ and $A_{12} = 1$

and also the I/P = 1 for

so,

 $A_{10} = 0, \ A_{11} = 1, \ A_{14} = 0, \ A_{15} = 0$

so, the fixed I/ps are

A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	A_{10}			
0	0	0	1	1	0			
Therefore, the address range is								

	A_{15}	A_{14}	A_{13}	A_{12}	A ₁₁	A_{10}	A9	A_8	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
From	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
to	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1

In hexadecimal it is from 1800 H to 1BFFH. There is no need to obtain rest of address ranged as only (D) is matching to two results.

Option (A) is correct.

5.4

The given circuit is

Condition for the race-around

It occurs when the output of the circuit (Y_1, Y_2) oscillates between

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

`0' and `1' checking it from the options.

1. Option (A): When CLK = 0

Output of the NAND gate will be $A_1 = B_1 = \overline{0} = 1$. Due to these input to the next NAND gate, $Y_2 = \overline{Y_1} \cdot \overline{1} = \overline{Y_1}$ and $Y_1 = \overline{Y_2} \cdot \overline{1} = \overline{Y_2}$. If $Y_1 = 0$, $Y_2 = \overline{Y_1} = 1$ and it will remain the same and doesn't oscillate.

If $Y_2 = 0$, $Y_1 = \overline{Y_2} = 1$ and it will also remain the same for the clock period. So, it won't oscillate for CLK = 0.

So, here race around doesn't occur for the condition CLK = 0.

2. Option (C): When CLK = 1, A = B = 1

$$A_1 = B_1 = 0$$
 and so $Y_1 = Y_2 = 1$

And it will remain same for the clock period. So race around doesn't occur for the condition.

3. Option (D): When CLK = 1, A = B = 0

So, $A_1 = B_1 = 1$

And again as described for Option (B) race around doesn't occur for the condition.

Option () is correct.

5.5

a_1	a_0	b_1	b_0	Y
0	1	0	0	1
1	0	0	0	1
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1

Total combination = 6

5.6 Option (A) is correct.

Parallel connection of $MOS \Rightarrow OR$ operation Series connection of $MOS \Rightarrow AND$ operation The pull-up network acts as an inverter. From pull down network we write $Y = \overline{(A+B)C} = \overline{(A+B)} + \overline{C} = \overline{A} \ \overline{B} + \overline{C}$

 $F = \underbrace{X\overline{Y} + \overline{X}Y}_{\text{prime implicants}}$

Option (A) is correct. Prime implicants are the terms that we get by solving K-map

5.8

5.7

Option (A) is correct. Given the circuit as below :

So,

Since all the parameters of PMOS and NMOS are equal.

$$\mu_n = \mu_p$$

$$C_{OX} \left(\frac{W}{L}\right)_{M_1} = C_{OX} \left(\frac{W}{L}\right)_{M_2} = C_{OX} \left(\frac{W}{L}\right)$$

Given that M_1 is in linear region. So, we assume that M_2 is either in cutoff or saturation.

Case 1 : M_2 is in cut off

So, $I_2 = I_1 = 0$

Where I_1 is drain current in M_1 and I_2 is drain current in M_2 .

$$I_{1} = \frac{\mu_{p} C_{OX}}{2} \left(\frac{W}{L}\right) \left[2 V_{SD} \left(V_{SG} - V_{Tp}\right) - V_{SD}^{2}\right]$$
$$0 = \frac{\mu_{p} C_{OX}}{2} \left(\frac{W}{L}\right) \left[2 V_{SD} \left(V_{SG} - V_{Tp}\right) - V_{SD}^{2}\right]$$
it we get,
$$2(V_{SG} - V_{Tp}) = V_{SD}$$

 $\Rightarrow 2(5 - V_{in} - 1) = 5 - V_D$ $\Rightarrow V_{in} = \frac{V_D + 3}{2}$ For $I_1 = 0, V_D = 5 V$ So, $V_{in} = \frac{5 + 3}{2} = 4 V$ So for the NMOS $V_{GS} = V_{in} - 0 = 4 - 0 = 4 V$ and $V_{GS} > V_{Tn}$ So it can't be in cutoff region.

Case 2 : M_2 must be in saturation region.

Since,

Solving

 \Rightarrow

So,

SPECIAL EDITION (STUDY MATERIAL FORM)

 $I_1 = I_2$

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy www.nodia.co.in

	$\frac{\mu_p C_{OX}}{2} \frac{W}{L} [2 (V_{SG} - V_{Tp}) V_{SD} - V_{SD}^2] = \frac{\mu_n C_{OX}}{2} \frac{W}{L} (V_{GS} - V_{Tn})^2$
\Rightarrow	$2\left(V_{SG}-V_{Tp} ight)V_{SD}-V_{SD}^2=\left(V_{GS}-V_{Tn} ight)^2$
\Rightarrow	$2(5 - V_{in} - 1)(5 - V_D) - (5 - V_D)^2 = (V_{in} - 0 - 1)^2$
\Rightarrow	$2(4 - V_{in})(5 - V_D) - (5 - V_D)^2 = (V_{in} - 1)^2$
Substit	tuting $V_D = V_{DS} = V_{GS} - V_{Tn}$ and for N -MOS $\Rightarrow V_D = V_{in} - 1$
\Rightarrow	$2\left(4-V_{\it in} ight)(6-V_{\it in})-(6-V_{\it in})^2=(V_{\it in}-1)^2$
\Rightarrow	$48 - 36 - 8 V_{in} = - 2 V_{in} + 1$
\Rightarrow	$6V_{in}=11$
\Rightarrow	$V_{in}=rac{11}{6}=1.833~{ m V}$

So for M_2 to be in saturation $V_{in} < 1.833$ V or $V_{in} < 1.875$ V

5.9 Option (D) is correct.

Let Q_{n+1} is next state and Q_n is the present state. From the given below figure.

 $D = Y = \overline{A}X_0 + AX_1$ $Q_{n+1} = D = \overline{A}X_0 + AX_1$ $Q_{n+1} = \overline{A} \ \overline{Q_n} + AQ_n \quad X_0 = \overline{Q}, \ X_1 = Q$ $Q_{n+1} = \overline{Q_n} \quad \text{(toggle of previous state)}$ $Q_{n+1} = Q_n$

If A = 0, If A = 1, So state diagram is

5.10

Option (B) is correct. The given circuit is shown below:

 $\overline{(\overline{PQ}\ \overline{QR})} \overline{PR} = \overline{(\overline{PQ+QR}\ \overline{PR})}$ $=\overline{PQ+QR}+\overline{PR}$ = PQ + QR + PR

If any two or more inputs are '1' then output y will be 1.

Option (A) is correct. 5.11

> For the output to be high, both inputs to AND gate should be high. The D-Flip Flop output is the same, after a delay.

Let initial input be 0; (Consider Option A) then $\overline{Q} = 1$ (For 1st D-Flip Flop). This is given as input to 2nd FF. Let the second input be 1. Now, considering after 1 time interval; The output of 1^{st} Flip Flop is 1 and 2^{nd} FF is also 1. Thus Output

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

5.14

Option (D) is correct. 5.12

$$\begin{split} F &= \overline{S_1} \overline{S_0} I_0 + \overline{S_1} S_0 I_1 + S_1 \overline{S_0} I_2 + S_1 S_0 I_3 \\ I_0 &= I_3 = 0 \\ F &= \overline{P} Q + P \overline{Q} = \operatorname{XOR} \left(P, \ Q \right) \qquad \left(\begin{array}{c} S_1 = P, S_0 = Q \end{array} \right) \end{split}$$

Option (A) is correct. 5.13

All the states of the counter are initially unset.

State Initially are shown below in table :

Q_2	Q_1	Q_0		
0	0	0	0	
1	0	0	4	
1	1	0	6	
1	1	1	7	
0	1	1	3	
0	0	1	1	
0	0	0	0	
Option (D) is	correct.			
The sequence				
$00 \rightarrow 11$	$1 \rightarrow 01 \rightarrow 10 \rightarrow$	$\rightarrow 00 \rightarrow \dots$		
Q_B	Q_A	Q_{2}	$_{B}(t+1)$	$Q_A(t+1)$
0	0	1		1
1	1		0	1

5.18

	0				
	1				
$Q_B($	(t+1)				
Q	^B 0	1			
Q_A Q_A 0	1	1			
1	0	0			
$Q_B(t+1) = \overline{Q}_A$ Q_A					

5.15

$$D_A = \overline{Q}_A \overline{Q}_B + Q_A Q_B$$

1

0

1

0

Option (C) is correct.

0

1

1

0

g, $C = 0$
; $A = 0000 \ 0111$
; Rotate left without carry. $A = 00001110$
; $B = A = 00001110$
; $A = 00011100$
; $A = 00111000$
$; A = \underbrace{00111000}_{+ \underline{00001110}}$
; 0100 0110
; Rotate Right with out carry, $A = 0010 \ 0011$

Thus $A = 23 \,\mathrm{H}$

Option () is correct. 5.16

Option (B) is correct. 5.17 Since $\overline{G_2}$ is active low input, output of NAND gate must be 0

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

 $\overline{G_2} = \overline{\overline{A_{15}} \cdot \overline{A_{14}} A_{13} \overline{A_{12}} A_{11}} = 0$ $A_{15}A_{14}A_{13}A_{12}A_{11} = 00101$ So, To select Y_5 Decoder input $ABC = A_8 A_9 A_{10} = 101$ Address range $A_{15}A_{14}A_{13}A_{12}A_{11}A_{10}A_{9}A_{8}\dots\dotsA_{0}$ $0011101....A_0$ \overrightarrow{D} (2D00 - 2DFF)Option (A) (B) (C) are correct. $F = (A \oplus B) \odot (A \odot B) \odot C$ In the circuit

0

0

GATE Electronics and Communication Topicwise Solved Paper by RK Kanodia & Ashish Murolia For two variables $A \oplus B = \overline{A \odot B}$ So, $(A \oplus B) \odot (A \odot B) = 0$ (always) $F = 0 \odot C = 0 \cdot C + 1 \cdot \overline{C} = \overline{C}$ So, F = 1 when $\overline{C} = 1$ or C = 0Option (D) is correct. 5.19 Let $Q_A(n), Q_B(n), Q_C(n)$ are present states and $Q_A(n+1), Q_B(n+1),$ $Q_C(n+1)$ are next states of flop-flops. In the circuit $Q_A(n+1) = Q_B(n) \odot Q_C(n)$ $Q_B(n+1) Q_A(n)$ $Q_C(n+1) Q_B(n)$ Initially all flip-flops are reset 1st clock pulse $Q_A = 0 \odot 0 = 1$ $Q_B = 0$ $Q_C = 0$ 2nd clock pulse $Q_A = 0 \odot 0 = 1$ $Q_{B} = 1$ $Q_C = 0$ 3rd clock pulse $Q_A = 1 \odot 0 = 0$ $Q_{B} = 1$ $Q_C = 1$ 4th clock pulse $Q_A = 1 \odot 1 = 1$ $Q_B = 0$ $Q_C = 1$ $Q_A = 01101.....$ So, sequence Option (D) is correct. 5.20 Output of the MUX can be written as $F = I_0 \overline{S_0} \overline{S_1} + I_1 \overline{S_0} S_1 + I_2 S_0 \overline{S_1} + I_3 S_0 S_1$ Here, $I_0 = C, I_1 = D, I_2 = \overline{C}, I_3 = \overline{CD}$ and $S_0 = A, S_1 = B$ $F = C \overline{A} \overline{B} + D \overline{A} B + \overline{C} A \overline{B} + \overline{C} \overline{D} A \overline{B}$ So, Writing all SOP terms $F = \underline{\overline{A} \ \overline{B} \ C \ \overline{D}}_{m_3} + \underline{\overline{A} \ \overline{B} \ \overline{C} \ \overline{D}}_{m_2} + \underline{\overline{A} \ \overline{B} \ \overline{C} \ \overline{D}}_{m_8} + \underline{\overline{A} \ \overline{B} \ \overline{C} \ \overline{D}}_{m_8} + \underline{A \ \overline{B} \ \overline{C} \ \overline{D}}_{m_{12}} + \underline{A \ \overline{$ $F = \sum m(2,3,5,7,8,9,12)$

Option (C) is correct. 5.21

- By executing instruction one by one
- MVI A, 45 H \Rightarrow MOV 45 H into accumulator, A = 45 H
 - STC \Rightarrow Set carry, C = 1
 - $CMC \Rightarrow Complement carry flag, C = 0$

 $RAR \Rightarrow Rotate$ accumulator right through carry

A = 00100010XRA B \Rightarrow XOR A and B

- $A = A \oplus B = 00100010 \oplus 01000101 = 01100111 = 674$ Option (C) is correct. 5.22 TTL \rightarrow Transistor - Transistor logic $CMOS \rightarrow Complementary Metal Oxide Semi-conductor$ Option (D) is correct. 5.23 Vectored interrupts : Vectored interrupts are those interrupts in which program control transferred to a fixed memory location. Maskable interrupts : Maskable interrupts are those interrupts which can be rejected or delayed by microprocessor if it is performing some critical task. Option (D) is correct. 5.24 We have $[X + Z\{\overline{Y} + (\overline{Z} + X\overline{Y})\}][\overline{X} + \overline{Z}(X + Y)] = 1$ Substituting X = 1 and $\overline{X} = 0$ we get
 - $[1 + Z\{\overline{Y} + (\overline{Z} + 1\,\overline{Y})\}][0 + \overline{Z}(1 + Y)] = 1$ $[1][\overline{Z}(1)] = 1$ 1 + A = 1 and 0 + A = Aor $\overline{Z} = 1 \leftrightarrow Z = 0$ or
- Option (A) is correct. 5.25

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy www.nodia.co.in

The AND gate implementation by 2:1 mux is as follows

$$A - \begin{bmatrix} I_1 \\ MUX \\ I_0 \end{bmatrix} - Y = AB$$

$$B \qquad Y = \overline{A}I_0 + AI_1 = AB$$

The EX - OR gate implementation by 2:1 mux is as follows

$$Y = BI_0 + BI_1 = AB + BA$$

Option (A) is correct. 5.26

The given circuit is as follows.

The truth table is as shown below. Sequence is 00, 11, 10, 00 ...

CLK	J_1	K_1	Q_1	J_2	K_2	Q_2
1	1	1	0	1	1	0
2	1	1	1	1	1	1
3	0	0	1	0	1	0
4	1	1	0	1	1	0

Option (B) is correct. The given situation is as follows

$$f = \frac{a}{d} b \qquad f = \frac{a}{c} b \qquad \frac{a}{g} b \qquad f = \frac{a}{d} b \qquad \frac{a}{g} b \qquad \frac{a}{d} c \qquad \frac{a}{g} b \qquad \frac{a}{d} c \qquad \frac{a}$$

The truth table is as shown below

P_1	P_2	a	b	С	d	e	f	g	
0	0	1	1	1	1	1	1	0	5.31
0	1	1	0	1	1	0	1	1	
1	0	1	1	0	1	1	0	1	
1	1	1	0	0	1	1	1	1	

From truth table we can write

GATE Flectronics &

$$a = 1$$

1 110

$$b = \overline{P}_1 \overline{P}_2 + P_1 \overline{P}_2 = \overline{P}_2 \qquad 1 \text{ NOT Gate}$$

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$c = \overline{P_1}\overline{P_2} + \overline{P_1}P_2 = \overline{P_1}$$
 1 NOT Gate

$$d = 1 = c + e$$

and

$$c = \overline{P_1}\overline{P_2} = P_1 + \overline{P_2}$$
 1 OR GATE

$$f = \overline{P_1}\overline{P_2} = \overline{P_1} + P_2$$
 1 OR GATE

$$g = \overline{P_1}\overline{P_2} = P_1 + P_2$$
 1 OR GATE

Thus we have $g = P_1 + P_2$ and d = 1 = c + e. It may be observed easily from figure that

Led g does not glow only when both P_1 and P_2 are 0. Thus

$$g = P_1 + P_2$$

LED d is 1 all condition and also it depends on

$$d = c + e$$

5.28 Option (D) is correct.

As shown in previous solution 2 NOT gates and 3-OR gates are required.

5.29 Option (C) is correct.

For the NAND latche the stable states are as follows

For the NOR latche the stable states are as follows

5.30 Option (D) is correct.

From the figure shown below it may be easily seen upper MOSFET are shorted and connected to V_{dd} thus OUT is 1 only when the node S is 0,

Since the lower MOSFETs are shorted to ground, node S is 0 only when input P and Q are 1. This is the function of AND gate.

Option (B) is correct.

MSB of both number are 1, thus both are negative number. Now we get

$$11101101 = (-19)_{10}$$
$$11100110 = (-26)_{10}$$

and

5.32

5.33

P - Q = (-19) - (-26) = 7

$$(7)_{10} = 00000111$$

Option (D) is correct.

The circuit is as shown below

$$X = \overline{PQ}$$

$$Y = (P + Q)$$
So
$$Z = \overline{PQ}(P + Q)$$

$$= (\overline{P} + \overline{Q})(P + Q) = \overline{P}Q + P\overline{Q} = P \oplus Q$$

and $M_1 = Z \oplus R = (P \oplus Q) \oplus R$

Option (A) is correct.

The circuit is as shown below

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

The truth table is shown below. When CLK make transition Q goes to 1 and when D goes to 1, Q goes to 0

5.34 Option (B) is correct.

Since the input to both JK flip-flop is 11, the output will change every time with clock pulse. The input to clock is

The output Q_0 of first FF occurs after time ΔT and it is as shown below

The output Q_1 of second FF occurs after time ΔT when it gets input (i.e. after ΔT from t_1) and it is as shown below

Option (D) is correct. 5.35

or

 $V_{DAC} = \sum_{n=0}^{3} 2^{n-1} b_n = 2^{-1} b_0 + 2^0 b_1 + 2^1 b_2 + 2^2 b_3$ We have $V_{DAC} = 0.5 b_0 + b_1 + 2b_2 + 4b_3$

The counter outputs will increase by 1 from 0000 till $V_{th} > V_{DAC}$. The output of counter and V_{DAC} is as shown below

Clock	$b_3 b_3 b_2 b_0$	V_{DAC}
1	0001	0
2	0010	0.5
3	0011	1
4	0100	1.5
5	0101	2
6	0110	2.5
7	0111	3
8	1000	3.5
9	1001	4
10	1010	4.5
11	1011	5
12	1100	5.5
13	1101	6
14	1110	6.5

and when $V_{ADC} = 6.5$ V (at 1101), the output of AND is zero and the counter stops. The stable output of LED display is 13.

Option (B) is correct. 5.36

The $V_{ADC} - V_{in}$ at steady state is

= 6.5 - 6.2 = 0.3 V

Option (A) is correct. 5.37

$$Z = I_0 \overline{RS} + I_1 \overline{RS} + I_2 R\overline{S} + I_3 RS$$

= $(P + \overline{Q}) \overline{RS} + P\overline{RS} + PQR\overline{S} + PRS$
= $P\overline{RS} + \overline{QRS} + P\overline{RS} + PQR\overline{S} + PRS$

The k – Map is as shown below

$\searrow R_{*}$	$\diagdown RS$									
PO	00	01	11	10						
00	1									
01										
11	1	1	1	1						
10	1	1	1							
	; ;									

$$Z = PQ + P\overline{Q}S + \overline{Q}\overline{R}\overline{S}$$

Option (C) is correct. 2710H LXI H, 30A0H $2713\mathrm{H}$ DAD H 2714H PCHL

5.38

; Load 16 bit data 30A0 in HL pair ; 6140H \rightarrow HL ; Copy the contents 6140H of HL in PC

Thus after execution above instruction contests of PC and HL are same and that is 6140H

Option (C) is correct.

5.39

5.40

and

MSB of Y is 1, thus it is negative number and X is positive number $v = 01110 = (14)_{10}$ Now we have

$$X = 01110 = (14)_{10}$$
$$Y = 11001 = (-7)_{10}$$

X + Y = (14) + (-7) = 7

In signed two's complements from 7 is $(7)_{10} = 000111$

Option (B) is correct.

$$Y = AB + CD = \overline{AB} \cdot \overline{CD}$$

This is SOP form and we require only 3 NAND gate

Option (A) is correct. 5.41 The circuit is as shown below

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

and

$$Y = \overline{AB} + A\overline{B}$$

$$X = \overline{Y}C + \overline{YC} = (\overline{AB} + A\overline{B})C + (\overline{AB} + A\overline{B})\overline{C}$$

$$= (\overline{AB} + AB)C + (\overline{AB} + A\overline{B})\overline{C}$$

$$= \overline{AB}C + ABC + \overline{A}B\overline{C} + A\overline{B}C$$

Option (D) is correct. 5.42

$$Y = \overline{ABCD} + \overline{ABCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD}$$
$$= \overline{ABCD} + A\overline{BCD} + A\overline{BCD} + \overline{ABCD}$$
$$= \overline{ABCD} + A\overline{BCD} + \overline{BCD}(A + \overline{A})$$
$$= \overline{ABCD} + A\overline{BCD} + \overline{BCD}$$
$$A + \overline{A} = 1$$

Option (B) is correct. 5.43

In given TTL NOT gate when $V_i = 2.5$ (HIGH), then

- $Q_1 \rightarrow$ Reverse active
- $Q_2 \rightarrow \text{Saturation}$
- $Q_3 \rightarrow \text{Saturation}$

$$Q_4 \rightarrow \text{cut}$$
 - off region

Option (C) is correct. 5.44

- ()	
For $X = 0, Y = 1$	P = 1, Q = 0
For $X = 0, Y = 0$	P = 1, Q = 1
For $X = 1, Y = 1$	P = 1, Q = 0 or P = 0, Q = 1

5.45 Option (C) is correct.

Chip 8255 will be selected if bits A_3 to A_7 are 1. Bit A_0 to A_2 can

be 0 or.

1. Thus address range is

\sim									
1	1	1	1	1	0	0	0	F8	ЗH
1	1	1	1	1	1	1	1	FI	FH

5.46 Option (B) is correct.

Since the inverting terminal is at virtual ground the resistor network can be reduced as follows

The current from voltage source is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$I = \frac{V_R}{R} = \frac{10}{10k} = 1 \text{ mA}$$

This current will be divide as shown below

Now

5.47 Option (C) is correct.

The net current in inverting terminal of OP - amp is $1 \quad 1 \quad 5I$

$$I_{-} = \frac{1}{4} + \frac{1}{16} = \frac{5I}{16}$$
$$V_{0} = -R \times \frac{5I}{16} = -3.125$$

 $i = \frac{I}{16} = \frac{1 \times 10^{-3}}{16} = 62.5 \ \mu \ A$

So that

5.48 Option (B) is correct.

Line

1: MVI A, B5H	; Move B5H to A
2: MVI B, 0EH	; Move 0EH to B
3 : XRI 69H	; [A] XOR 69H and store in A
	; Contents of A is CDH
4: ADDB	$; {\rm Add} the {\rm contents} of {\rm A} to {\rm contents} of {\rm B} and$
	; store in A, contents of A is EAH
5: ANI 9BH	; [a] AND 9BH, and store in A,
	; Contents of A is 8 AH
6: CPI 9FH	; Compare 9FH with the contents of A

	,	Since	8	AH	<	9BH,	CY	=	
--	---	-------	---	----	---	------	----	---	--

7: STA 3010 H ; Store the contents of A to location 3010

Thus the contents of accumulator after execution of ADD instruction is EAH.

Option (C) is correct. The CY = 1 and Z = 0

Η

5.49

5.50

Option (A) is correct.

For this circuit the counter state (Q_1, Q_0) follows the sequence 00, 01, 10, 00 ... as shown below

Clock	$D_1 D_0$	$Q_1 Q_0$	Q_1 NOR Q_0
		00	1
1st	01	10	0
2nd	10	01	0
3rd	00	00	0

 1	0	0	1
0	d	0	0
0	0	d	1
 1	0	0	1

5.51 Option (A) is correct.

As shown below there are 2 terms in the minimized sum of product expression.

1	0	0	1
0	d	0	0
0	0	d	1
1	0	0	1

5.52 Option (B) is correct.

The output is taken from the 5th line.

5.53 Option (D) is correct.

After applying two clock poles, the outputs of the full adder is S=1 , $C_0=1$

	A	B	C_i	S	C_o
1st	1	0	0	0	1
2nd	1	1	1	1	1

5.54 Option (D) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

100010011001

4 2 3 1

5.55 Option (B) is correct.

In this the diode D_2 is connected to the ground. The following table shows the state of counter and D/A converter

$Q_2 Q_1 Q_0$	$D_3 = Q_2$	$D_2 = 0$	$D_1 = Q_1$	$D_0 = Q_0$	V_o
000	0	0	0	0	0
001	0	0	0	1	1
010	0	0	1	0	2
011	0	0	1	1	3

100	1	0	0	0	8
101	1	0	0	1	9
110	1	0	1	0	10
111	1	0	1	1	11
000	0	0	0	0	0
001	0	0	0	1	1

; Load SP with data EFFH

; Jump to location 3000 H

Thus option (B) is correct

Option (B) is correct.

5.56

LXI, EFFF H CALL 3000 H :

3000H LXI H, 3CF4; Load HL with data 3CF4HPUSH PSW; Store contnets of PSW to StackPOP PSW; Restore contents of PSW from stackPRE; stop

Before instruction SPHL the contents of SP is 3CF4H. After execution of POP PSW, SP + 2 \rightarrow SP After execution of RET, SP + 2 \rightarrow SP Thus the contents of SP will be 3CF4H + 4 = 3CF8H

5.57 Option (A) is correct. The inputs D_0 and D_1 respectively should be connected as $\overline{Q_1}$ and Q_0

where $Q_0 \to D_1$ and $\overline{Q_1} \to D_0$

5.58 Option (D) is correct. If the point P is stuck at 1, then output f is equal to A

5.59 Option (B) is correct. Dividing 43 by 16 we get

$$\begin{array}{r} 16\overline{\smash{\big)}43} \\ \underline{32} \\ 11 \end{array}$$

11 in decimal is equivalent is B in hexamal. Thus $43_{10} \leftrightarrow 2B_{16}$ Now $4_{10} \leftrightarrow 0100_2$ $3_{10} \leftrightarrow 0011_2$ Thus $43_{10} \leftrightarrow 01000011_{BCD}$

5.60

The diagram is as shown in fig

Option (A) is correct.

$$f = B\overline{C} + \overline{B}C$$

$$f = fA + \overline{f}0 = fA = AB\overline{C} + A\overline{B}C$$

5.61 Option (C) is correct.

The circuit is as shown below

If output is at logic 0, the we have $V_0 = 0$ which signifies BJT Q_3 is in saturation and applying KVL we have

$$V_{BE3} = I_R imes 1k$$

 $0.75 = I_R imes 1k$
 $I_R = 0.75 \text{ mA}$

5.62 Option (A) is correct.

or

or

We have
$$f = \overline{A}BC + AB\overline{C}$$

 $= B(\overline{A}C + A\overline{C}) = B(A + C)(\overline{A} + \overline{C})$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

5.63 Option (C) is correct.

Characteristic equation for a jk flip-flop is written as

	$Q_{n+1} = J\overline{Q}_n + \overline{K}Q_n$	
Where	Q_n is the present output	
	Q_{n+1} is next output	
So,	$Q_{n+1} = 1\overline{0} + \overline{K} \cdot 0$	$Q_n = 0$
	$Q_{n+1} = 1$	

5.64 Option (C) is correct.

Since $T_2 T_1 T_0$ is at 111, at every clock $Q_2 Q_1 Q_0$ will be changes. Ir present state is 011, the next state will be 100.

5.65 Option (D) is correct.

5.

5.66	Option (C) is correct.	
	0100H LXI SP, 00FF	; Load SP with 00FFG
	0103H LXI H, 0701	; Load HL with $0107H$
	0106H MVI A, 20H	; Move A with 20 H
	0108 H SUB M	; Subtract the contents of memory
		; location whose address is stored in HL
		; from the A and store in A
	0109H ORI 40H	; 40H OR $[A]$ and store in A
	010BH ADD M	; Add the contents of memeory location
		; whose address is stored in HL to A
		; and store in A
	HL contains 0107H and co	ontents of 0107H is 20H

Thus after execution of SUB the data of A is 20H - 20H = 00

Option (C) is correct.

Before ORI instruction the contents of A is 00H. On execution the ORI 40H the contents of A will be 40H

> 00H = 0000000040H = 01000000ORI 01000000

$$40H + 20 H = 60 H$$

5.68 Option (C) is correct.

A master slave D-flip flop is shown in the figure.

In the circuit we can see that output of flip-flop call be triggered only by transition of clock from 1 to 0 or when state of slave latch is affected.

5.69 Option (A) is correct.

The range of signed decimal numbers that can be represented by n - bits 1's complement number is $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$. Thus for n = 6 we have

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

Range =
$$-(2^{6-1}-1)$$
 to $+(2^{6-1}-1)$
= -31 to $+31$

5.70 Option (D) is correct.

or

The minimum number of bit require to encode 100 increment is $2^n \ge 100$

 $n \ge 7$

5.71 Option (B) is correct. Shift Register \rightarrow Serial to parallel data conversion Counter \rightarrow Frequency division Decoder \rightarrow Addressing in memory chips.

5.72 Option (A) is correct. For the TTL family if terminal is floating, then it is at logic 1.

Thus $Y = (\overline{AB+1}) = \overline{AB} = 0$

5.73 Option (C) is correct.

11001	1001	111001
00110	0110	000110
+1	+1	+1
00111	0111	$\overline{000111}$
7	7	7

Thus 2's complement of 11001, 1001 and 111001 is 7. So the number given in the question are 2's complement correspond to -7.

5.74 Option (C) is correct.

In the modulo - 6 ripple counter at the end of sixth pulse (i.e. after 101 or at 110) all states must be cleared. Thus when CB is 11 the all states must be cleared. The input to 2-input gate is \overline{C} and \overline{B} and the desired output should be low since the CLEAR is active low Thus when \overline{C} and \overline{B} are 0, 0, then output must be 0. In all other case the output must be 1. OR gate can implement this functions.

5.75 Option (C) is correct. Number of MUX is $\frac{4}{3} = 2$ and $\frac{2}{2} = 1$. Thus the total number 3 multiplexers is required.

Option (D) is correct.

5.76

$$AC + B\overline{C} = AC1 + B\overline{C}1$$

= $AC(B + \overline{B}) + B\overline{C}(A + \overline{A})$
= $ACB + AC\overline{B} + B\overline{C}A + B\overline{C}\overline{A}$

5.77 Option (D) is correct.

or

We have $f(x,y) = \overline{xy} + \overline{x}y + xy = \overline{x}(\overline{y} + y) + xy$ = $\overline{x} + xy$

 $f(x,y) = \overline{x} + y$

Here compliments are not available, so to get \overline{x} we use NOR gate. Thus desired circuit require 1 unit OR and 1 unit NOR gate giving total cost 2 unit.

5.78 Option (D) is correct.

For 8255, various modes are described as following.

Mode 1 : Input or output with hand shake

In this mode following actions are executed

- 1. Two port (A & B) function as 8 bit input output ports.
- 2. Each port uses three lines from C as a hand shake signal
- 3. Input & output data are latched.

Form (ii) the mode is 1.

Mode 2 : Bi-directional data transfer

This mode is used to transfer data between two computer. In this mode port A can be configured as bidirectional port. Port A uses five signal from port C as hand shake signal. For (1), mode is 2

5.79 Option (B) is correct.

LDA 16 bit \Rightarrow Load accumulator directly this instruction copies data byte from memory location (specified within the instruction) the accumulator.

It takes 4 memory cycle-as following.

- 1. in instruction fetch
- 2. in reading 16 bit address
- 1. in copying data from memory to accumulator

LXI D, $(F0F1)_4 \Rightarrow$ It copies 16 bit data into register pair D and E. It takes 3 memory cycles.

5.80 Option (A) is correct.

-		
	LXI H, $9258H$; 9258H \rightarrow HL
	MOV A, M	; (9258H) \rightarrow A
	CMa	; $\overline{A} \to A$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

MOV M, A ; $A \rightarrow M$ This program complement the data of memory location 9258H.

5.81 Option (D) is correct.

MVI A, 00H	; Clear accumulator
LOOP ADD B	; Add the contents of B to A
DCR C	; Decrement C
JNZ LOOP	; If C is not zero jump to loop
HLT	
END	

This instruction set add the contents of B to accumulator to contents of C times.

$$= R + S + \overline{P}Q + \overline{P}R + P\overline{Q}S + \overline{Q}RS$$

Option (D) is correct. The number of distinct boolean expression of n variable is 2^{2^n} . Thus $2^{2^4} = 2^{16} = 65536$

5.83 Option (C) is correct. In the flash analog to digital converter, the no. of comparators is equal to 2^{n-1} , where *n* is no. of bit.s

 $2^{n-1} = 2^8 - 1 = 255$

5.84 Option (B) is correct.

So,

5.82

When output of the 74 series gate of TTL gates is taken from BJT then the configuration is either totem pole or open collector configuration .

5.85 Option (D) is correct.

A 2^{n} :1 MUX can implement all logic functions of (n+1) variable without andy additional circuitry. Here n = 3. Thus a 8 : 1 MUX can implement all logic functions of 4 variable.

^{5.86} Option (D) is correct.

Counter must be reset when it count 111. This can be implemented by following circuitry

5.87 Option (B) is correct.

We have

 $Y = P \oplus Q \oplus R$ $Z = RQ + \overline{P}R + Q\overline{P}$

Here every block is a full subtractor giving P - Q - R where R is borrow. Thus circuit acts as a 4 bit subtractor giving P - Q.

5.88 Option (A) is correct.

$$W = R + \overline{P}Q + \overline{R}S$$

$$X = PQ\overline{RS} + \overline{P}QRS + P\overline{QRS}$$

$$Y = RS + \overline{PR} + \overline{PQ} + \overline{PQ}$$

$$= RS + PR \cdot \overline{PQ} \cdot \overline{\overline{PQ}}$$

$$= RS + (\overline{P} + \overline{R})(\overline{P} + Q)(P + Q)$$

$$= RS + (\overline{P} + \overline{P}Q + \overline{PR} + Q\overline{R})(P + Q)$$

$$= RS + \overline{P}Q + Q\overline{R}(P + \overline{P}) + Q\overline{R}$$

$$= RS + \overline{P}Q + Q\overline{R}$$

$$Z = R + S + \overline{PQ} + \overline{PQR} + \overline{PQS}$$

$$= R + S + \overline{PQ} \cdot \overline{\overline{PQR}} \cdot \overline{PQS}$$

$$= R + S + (\overline{P} + \overline{Q})(P + Q + R)(\overline{P} + Q + S)$$

$$= R + S + \overline{P}Q + \overline{P}Q + \overline{P}QS + \overline{P}R + \overline{P}QR + \overline{P}RS + P\overline{Q} + P\overline{Q}S + \overline{P}QR + \overline{Q}RS$$

$$= R + S + \overline{P}Q + \overline{P}QS + \overline{P}R + \overline{P}QR + \overline{P}RS + P\overline{Q}S + \overline{P}QR + \overline{Q}RS$$

$$= R + S + \overline{P}Q(1 + S) + \overline{P}R(1 + \overline{P}) + \overline{P}RS + P\overline{Q}S + \overline{P}QR + \overline{Q}RS = R + S + \overline{P}Q + \overline{P}R + \overline{P}RS + P\overline{Q}S + \overline{P}QR + \overline{Q}RS + \overline{P}QR + \overline{Q}RS$$

$$= R + S + \overline{P}Q + \overline{P}R + \overline{P}RS + P\overline{Q}S + \overline{P}QR + \overline{Q}RS = 5.96$$

$$= R + S + \overline{P}Q + \overline{P}R(1 + \overline{Q}) + P\overline{Q}S + \overline{Q}RS$$

Thus
$$W = Z$$
 and $X = Z$

5.89

5.90

5.91

Option (B) is correct.

 $t_{pd} = 10$ nsec

Propagation delay of 4 bit ripple counter

$$R = 4t_{pd} = 40 \text{ ns}$$

and in synchronous counter all flip-flop are given clock simultaneously, so

$$S = t_{pd} = 10$$
ns

Option (C) is correct.

After $t = t_1$, at first rising edge of clock, the output of shift register is 0110, which in input to address line of ROM. At 0110 is applied to register. So at this time data stroed in ROM at 1010 (10), 1000 will be on bus.

When W has the data 0110 and it is 6 in decimal, and it's data value at that add is 1010

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book

binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

then 1010 i.e. 10 is acting as odd, at time t_2 and data at that movement is 1000.

Option (B) is correct. The DTL has minimum fan out and CMOS has minimum power consumption. Propagation delay is minimum in ECL.

```
5.92 Option (D) is correct.
Let input be 1010; output will be 1101
Let input be 0110; output will be 0100
Thus it convert gray to Binary code.
```

5.93 Option (A) is correct.

If A < R CY is set and zero flag will be reset.

5.94 Option (A) is correct.

$$V_o = - V_1 \left[\frac{R}{R} b_o + \frac{R}{2R} b_1 + \frac{R}{4R} b_2 + \frac{R}{4R} b_3 \right]$$

Exact value when $V_1 = 5$, for maximum output

$$V_{oExact} = -5\left[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}\right] = -9.375$$

Maximum V_{out} due to tolerance

$$V_{o\max} = -5.5 \left[\frac{110}{90} + \frac{110}{2 \times 90} + \frac{110}{4 \times 90} + \frac{110}{8 \times 90} \right]$$

= -12.604
= 34.44\% = 35\%

Tolerance

Option (D) is correct.

If the 4- bit 2's complement representation of a decimal number is 1000, then the number is -8

Option (B) is correct. Output of 1 st XOR = $= \overline{X} \cdot 1 + X \cdot \overline{1} = \overline{X}$ Output of 2 nd XOR = $\overline{XX} + XX = 1$

So after 4,6,8,...20 XOR output will be 1.

5.97 Option (C) is correct. In the comparator type ADC, the no. of comparators is equal to 2^{n-1} , where n is no. of bit.s

7

So,
$$2^3 - 1 =$$

5.98 Option (C) is correct. The circuit is as shown below

The circuit shown is monostable multivibrator as it requires an external triggering and it has one stable and one quasistable state.

5.99 Option (B) is correct.

They have prorogation delay as respectively,

 $G_1 \rightarrow 10$ nsec

 $G_2 \rightarrow 20$ nsec

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

For abrupt change in V_i from 0 to 1 at time $t = t_0$ we have to assume the output of *NOR* then we can say that option (B) is correct waveform.

5.100 Option (B) is correct. Let $X_3 X_2 X_1 X_0$ be 1001 then $Y_3 Y_2 Y_1 Y_0$ will be 1111. Let $X_3 X_2 X_1 X_0$ be 1000 then $Y_3 Y_2 Y_1 Y_0$ will be 1110 Let $X_3 X_2 X_1 X_0$ be 0110 then $Y_3 Y_2 Y_1 Y_0$ will be 1100 So this converts 2-4-2-1 BCD numbers.

5.101 Option (B) is correct

Option	I(D) is	s correct.	
		MVI B, 87H	; $B = 87$
		MOV A, B	; $A = B = 87$
STAR	Γ :	JMP NEXT	; Jump to next
		XRA B	; $A \oplus B \to A$,
			; $A = 00, B = 87$
		JP START	; Since $A = 00$ is positive
			; so jump to START
		JMP NEXT	;Jump to NEXT ; unconditionally
NEXT	`:	XRA	; B ; $A \oplus B \rightarrow A, A = 87$,
			; B = 87 H
	$_{\rm JP}$	START	; will not jump as D_7 , of A is 1
	OUT	PORT2	; $A = 87 \rightarrow PORT2$

5.102 Option (B) is correct.

The two's complement representation of 17 is

$$17 = 010001$$

Its 1's complement is 101110

 $+ 1 \frac{1}{101111}$

5.103 Option (C) is correct.

The propagation delay of each inverter is t_{pd} then The fundamental frequency of oscillator output is

$$f = \frac{1}{2nt_{pd}} = \frac{1}{2 \times 5 \times 100 \times 10^{-12}} = 1 \text{ GHz}$$

5.104 Option (C) is correct.

 $4K{\times}8$ bit means 1024_{10} location of byte are present

Now $1024_{10} \leftrightarrow 1000_H$

It starting address is $AA00_H$ then address of last byte is

 $AA00_H + 1000_H - 0001_H = B9FF_H$

Option (D) is correct.

5.105

or

$$Y = I_0 + I_3 + I_5 + I_6$$

= $\overline{CB}A + \overline{C}AB + C\overline{B}A + CB\overline{A}$
$$Y = \overline{C}(\overline{A \oplus B}) + C(A \oplus B)$$

5.106 Option (D) is correct.

For the LED to glow it must be forward biased. Thus output of NAND must be LOW for LED to emit light. So both input to NAND must be HIGH. If any one or both switch are closed, output of AND will be LOW. If both switch are open, output of XOR will be LOW. So there can't be both input HIGH to NAND. So LED doesn't emit light.

5.107 Option (C) is correct.

The output of options (C) satisfy the given conditions

5.108 Option (B) is correct.

5.109 Option (B) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Conversion time of successive approximate analog to digital converters is independent of input voltage. It depends upon the number of bits only. Thus it remains unchanged.

Option (C) is correct.

5.110

In the flash analog to digital converter, the no. of comparators is equal to 2^{n-1} , where n is no. of bits.

So,
$$2^4 - 1 = 15$$

5.111 Option (D) is correct.

As the output of AND is X = 1, the all input of this AND must be 1. Thus

$$\overline{A}B + A\overline{B} = 1 \qquad \dots (1)$$

$$\overline{BC} + BC = 1 \qquad \dots(2)$$
$$C = 1 \qquad \dots(3)$$

From (2) and (3), if C = 1, then B = 1

If B = 1, then from (1) A = 0. Thus A = 0, B = 1 and C = 1

5.112 Option (C) is correct.

Interrupt is a process of data transfer by which an external device can inform the processor that it is ready for communication. 8085 microprocessor have five interrupts namely TRAP, INTR, RST 7.5, RST 6.5 and RST 5.5

5.113 Option (A) is correct.

For any RST instruction, location of program transfer is obtained in following way.

RST x

 $\Rightarrow (x \ast 8)_{10} \rightarrow \text{convert in hexadecimal}$ $\Rightarrow (6 \ast 8)_{10} = (48)_{10} = (30)_{\text{H}}$

5.114 Option (A) is correct.

So for RST 6

Accumulator contains $A = 49 \,\mathrm{H}$

Register
$$B = 3 \text{ AH}$$

SUB B = A minus B

$$A = 49 \text{ H} = 01001001$$

$$B = 3 \text{ AH} = 00111010$$

2's complement of $(-B) = 11000110$

$$A - B = A + (-B)$$

$$01001001$$

$$\Rightarrow +11000110$$

$$000011111$$

Carry = 1
so here output $A = 0$ F
Carry $CY = 1$
Sign flag $S = 1$

5.115 Option (C) is correct.

The circuit is as shown below :

$$Y = \overline{\overline{B} + (\overline{B + \overline{C}})} = B(B + \overline{C}) = B$$

5.116

The circuit is as shown below

Option (B) is correct.

The voltage at non-inverting terminal is

$$V_{+} = \frac{1}{8} + \frac{1}{2} = \frac{5}{8}$$
$$V_{-} = V_{+} = \frac{5}{8} \qquad \dots (1)$$

Now applying voltage divider rule

$$V_{-} = \frac{1k}{1k + 7k} V_{\circ} = \frac{1}{8} V_{o} \qquad \dots (2)$$

From (1) and (2) we have

$$V_o = 8 \times \frac{5}{8} = 5 V$$

Option (D) is correct.

The truth table is shown below

$$Z = \overline{X}Q + Y\overline{Q}$$

Comparing from the truth table of J - K FF

$$Y = J,$$
$$X = K$$

X	Y	Z
0	0	Q
0	1	0
1	0	1

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

	• • • • • • • • • • • • • • • • • • •	•
www.no		in

5.118 Option (B) is correct.

In the figure the given counter is mod-10 counter, so frequency of output is $\frac{10k}{10} = 1k$

5.119 Option (D) is correct.

We have $y = A + \overline{A}B$

we know from Distributive property

x + yz = (x + y)(x + z)

Thus

5.120 Option (C) is correct.

Darligton emitter follower provides a low output impedance in both logical state (1 or 0). Due to this low output impedance, any stray capacitance is rapidly charged and discharged, so the output state changes quickly. It improves speed of operation.

 $y = (A + \overline{A})(A + B) = A + B$

5.121 Option (D) is correct.

For ADC we can write

Analog input = (decimal eq of digital output) \times resol

 $6.6 = (\text{decimal eq. of digital output}) \times 0.5$

 $\frac{6.6}{0.5} = \text{decimal eq of digital. output}$

13.2 =decimal equivalent of digital output so out-

put of ADC is = 1101.

5.123 Option (A) is correct.

We use the K-map as below.

A	$\overline{C}\overline{B}\overline{C}$	$\overline{B} C$	BC	$B \overline{C}$	
$\left[\overline{A}\right]$	1		1		-
A					

So given expression equal to

 $=\overline{A}\overline{C}+B\overline{C}+\overline{A}B$

Option (C) is correct. 5.124 For a binary half-subtractor truth table si given below.

A	B	D = A minus B	Borrow (X)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

from truth table we can find expressions of D & X

$$D = A \oplus B = \overline{A}B + A\overline{B}$$

$$X = \overline{A}B$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (D) is correct. 5.125

From the given figure we can write the output

Option (B) is correct.

For the state 010 all preset = 1 and output $Q_A Q_B Q_C = 111$ so here total no. of states = 5 (down counter)

5.126

We have 4 K RAM (12 address lines)

so here chip select logic $CS = A_{15}A_{14}A_{13}$

address range (111) $A_{15}A_{14}A_{13}A_{12}$ $A_{11}A_{10}A_{9}A_{8}A_{7}A_{6}A_{5}$ $A_{4}A_{3}A_{2}A_{1}A_{0}$ initial address \Rightarrow 7 0 0 0 H final address \Rightarrow 7 F F F H

 $Z = A\overline{B}C$

so address range is $(7\ 0\ 0\ 0\ H - 7\ F\ F\ H)$

Option (C) is correct. 5.127

Now

Thus

5.128

we have

Given boolean function is

 $\overline{Z} = A\overline{B}C = A\overline{CB} = \overline{AC} + B$ $Z = \overline{AC} + B$

 $Z = \overline{X + Y}$ (1 NOR gate) $X = \overline{AC}$ (1 NAND gate)

where To implement a NOR gate we required 4 NAND gates as shown below in figure.

here total no. of NAND gates required

= 4 + 1 = 5

Option (B) is correct.

For TTL worst cases low voltages are

 $V_{OL}(\max) = 0.4 V$ $V_{IL}(\max) = 0.8 V$ Worst case high voltages are $V_{OH}(\min) = 2.4 \text{ V}$

$$V_{IH}(\min) = 2 V$$

The difference between maximum input low voltage and maximum output low voltage is called noise margin. It is 0.4 V in case of TTL.

Option (D) is correct. 5.129

From the figure we can see

If	A = 1	B = 0
then	y = 1	x = 0
If	A = 1	B = 1
then also	y = 1	x = 0

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

so for sequence B = 101010... output x and y will be fixed at 0 and 1 respectively.

Option (D) is correct. 5.130

> Given 2's complement no. 1101; the no. is 0011 for 6 digit output we can write the no. is -0000112's complement representation of above no. is 111101

Option (A) is correct. 5.131

Option (B) is correct. 5.132

> An I/O Microprocessor controls data flow between main memory and the I/O device which wants to communicate.

Option (D) is correct. 5.133

5.134 Option (B) is correct. Dual slope ADC is more accurate.

5.135 Option (A) is correct. Dual form of any identity can be find by replacing all AND function to OR and vice-versa. so here dual form will be

$$(A+B)(A+C)(B+C) = (A+B)(A+C)$$

- 5.136 Option (B) is correct.
- Carry flag will be affected by arithmetic instructions only.
- 5.137 Option (C) is correct. This is a synchronous counter. we can find output as

So It counts only three states. It is a mod-3 counter.

$$K = 3$$

- 5.138 Option (B) is correct.
- 5.139 Option (A) is correct.

Essential prime implicates for a function is no. of terms that we get by solving K-map. Here we get 4 terms when solve the K-map.

R

so no of prime implicates is 4

5.140 Option (A) is correct.

5.141 Option (B) is correct.

For a 2 bit multiplier

R

This multiplication is identical to AND operation and then addition.

- 5.142 Option (C) is correct. In totem pole stage output resistance will be small so it acts like a output buffer.
- 5.143 Option (B) is correct. Consider high output state

fan out
$$= \frac{I_{OH} \max}{I_{IH} \max} = \frac{400 \text{ mA}}{20 \text{ mA}} = 20$$

Consider low output state

fan out
$$= \frac{I_{OL} \max}{I_{IL} \max} = \frac{8 \text{ mA}}{0.1 \text{ mA}} = 80$$

Thus fan out is 20

5.144 Option (A) is correct.

The given gate is ex-OR so output

 $F = A\overline{B} + \overline{A}B$ Here input B = 0 so, $F = A1 + \overline{A}0 = A$

Option (C) is correct.

5.145

5.148

5.149

EI = Enabled Interput flag,RST will cause an Interrupt only it we enable EI.

5.146 Option (A) is correct.

Here only for the range 60 to 63 H $\overline{\text{chipselect}}$ will be 0, so peripheral will correspond in this range only $\overline{\text{chipselect}} = 1$ for rest of the given address ranges.

5.147 Option (B) is correct.

By executing instructions one by one

LXI H, 8A79 H (Load HL pair by value 8A79)

$$\mathbf{H} = 8\mathbf{A}\mathbf{H} \quad L = 79 \,\mathbf{H}$$

MOV A, L (copy contain of L to accumulator)

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

 $A = 79 \,\mathrm{H}$ ADDH (add contain of H to accumulator) 01111001 A = 79 H =H = 8AH = add 10001010= A = $0\,0\,0\,0\,0\,0\,11$ Carry = 1DAA (Carry Flag is set, so DAA adds 6 to high order four bits) 01111001 DAA add 10001010 A = 0000011 = 63 HMOV H, A (copy contain of A to H) H = 63 HPCHL (Load program counter by HL pair) PC = 6379 HOption (C) is correct. Option (C) is correct. NMOS In parallel makes OR Gate & in series makes AND so here we can have $F = \overline{A(B+C) + DE}$ we took complement because there is another NMOS given above (works as an inverter) Option (D) is correct.

5.150 Option (D) is correct. For a *J*-*K* flip flop we have characteristic equation as $Q(t+1) = J\overline{Q}(t) + \overline{K}Q(t)$ Q(t) & Q(t+1) are present & next states. In given figure $J = \overline{Q}(t), \quad K = 1$ so $Q(t+1) = \overline{Q}(t) \overline{Q}(t) + 0Q(t)$ $Q(t+1) = \overline{Q}(t)$ [complement of previous state] we have initial input Q(t) = 0

so for 6 clock pulses sequence at output Q will be 010101

Option (C) is correct. 5.151

Option (B) is correct. 5.152

By distributive property in boolean algebra we have

$$(A + BC) = (A + B)(A + C)$$
$$(A + B)(A + C) = AA + AC + AB + BC$$
$$= A(1 + C) + AB + BC$$
$$= A + AB + BC$$
$$= A(1 + B) + BC = A + BC$$

Option (A) is correct. 5.153

> The current in a p n junction diode is controlled by diffusion of majority carriers while current in schottky diode dominated by the flow of majority carrier over the potential barrier at metallurgical junction. So there is no minority carrier storage in schottky diode, so switching time from forward bias to reverse bias is very short compared to p n junction diode. Hence the propagation delay will reduces.

Option (B) is correct. 5.154

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (D) is correct. 5.155

> The total conversion time for different type of ADC are given as- τ is clock period

> > For flash type $\Rightarrow 1\tau$ Counter type $\Rightarrow (2^n - \tau) = 4095 \,\mu \,\mathrm{sec}$ n = no.of bitsIntegrating type conver time $> 4095 \,\mu \,\text{sec}$ successive approximation type $n\tau = 12 \,\mu \sec$

> > > here n = 12 so $n\tau = 12$ $12\tau = 12$

so this is succ. app. type ADC.

Option (D) is correct. 5.156

> LDA 2003 (Load accumulator by a value 2003 H) so here total no. of memory access will be 4.

- 1 =Fetching instruction
- 2 = Read the value from memory
- 1 = write value to accumulator

Option (D) is correct. 5.157 Storage capacitance

$$C = \frac{i}{\left(\frac{dv}{dt}\right)} = \frac{1 \times 10^{-12}}{\left(\frac{5 - 0.5}{20 \times 10^{-3}}\right)}$$
$$= \frac{1 \times 10^{-12} \times 20 \times 10^{-3}}{4.5} = 4.4 \times 10^{-15} \,\mathrm{F}$$

Option (A) is correct. 5.158

Accuracy
$$\pm \frac{1}{2}LSB = T_{coff} \times \Delta T$$

 $\frac{1}{2} \times \frac{10.24}{2^{10}} = T_{coff} \times \Delta T$

or

or
= 200
$$\mu$$
V/°C $T_{coff} = \frac{10.24}{2 \times 1024 \times (50 - 25)$ °C

Option (D) is correct. 5.159

or

5.160

No. of chips
$$= \frac{26 \times 2^{10} \times 8}{2^{12} \times 4} = 13$$

Option (C) is correct. Given instruction set 1000 LXI SP 27FF 1003 CALL 1006 1006 POP H First Instruction will initialize the SP by a value

1

27FF
$$SP \leftarrow 27FF$$

PC = 1006

CALL 1006 will "Push PC" and Load PC by value 1006 PUSH PC will store value of PC in stack

$$27 \text{ FF}$$

$$SP \rightarrow 10$$

$$SP^{1} \rightarrow 06$$

now POP H will be executed which load HL pair by stack values

$$HL = 1006$$
 and
 $SP = SP' + 2$
 $SP = SP' + 2 = SP - 2 + 2 = SP$
 $SP = 27FF$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

UNIT SIGNALS & SYSTEMS

2013

ONE MARK

- Two systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected 6.1 in cascade. Then the overall impulse response of the cascaded system is given by
 - (A) product of $h_1(t)$ and $h_2(t)$
 - (B) sum of $h_1(t)$ and $h_2(t)$
 - (C) convolution of $h_1(t)$ and $h_2(t)$
 - (D) subtraction of $h_2(t)$ from $h_1(t)$
- The impulse response of a system is h(t) = tu(t). For an input 6.2 u(t-1), the output is

(A)
$$\frac{t^2}{2}u(t)$$
 (B) $\frac{t(t-1)}{2}u(t-1)$
(C) $\frac{(t-1)^2}{2}u(t-1)$ (D) $\frac{t^2-1}{2}u(t-1)$

- For periodic signal 6.3 \mathbf{a} $v(t) = 30 \sin 100t + 10 \cos 300t + 6 \sin (500t + \pi/4)$, the fundamental frequency in rad/s
 - (A) 100 (B) 300 (C) 500 (D) 1500
- A band-limited signal with a maximum frequency of $5 \, \text{kHz}$ is to 6.4 be sampled. According to the sampling theorem, the sampling frequency which is not valid is

(A) 5 kHz	(B) 12 kHz
(C) 15 kHz	(D) $20 \mathrm{kHz}$

- Which one of the following statements is NOT TRUE for a continuous 6.5 time causal and stable LTI system?
 - (A) All the poles of the system must lie on the left side of the $j\omega$ axis
 - (B) Zeros of the system can lie anywhere in the s-plane
 - (C) All the poles must lie within |s| = 1
 - (D) All the roots of the characteristic equation must be located on the left side of the $j\omega$ axis.
- Assuming zero initial condition, the response y(t) of the system 6.6 given below to a unit step input u(t) is

Let $g(t) = e^{-\pi t^2}$, and h(t) is a filter matched to g(t). If g(t) is 6.7 applied as input to h(t), then the Fourier transform of the output is (B) $e^{-\pi f^2/2}$ (A) $e^{-\pi f^2}$ (D) $e^{-2\pi f^2}$ (C) $e^{-\pi |f|}$

TWO MARKS

The impulse response of a continuous time system is given by $h(t) = \delta(t-1) + \delta(t-3)$. The value of the step response at t = 2 is $(\mathbf{A}) \mathbf{0}$ (B) 1(C) o

2013

6.8

6.9

6.10

A system described by the differential equation

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y(t) = x(t). \text{ Let } x(t) \text{ be a rectangular pulse given by}$$

$$x(t) = \begin{cases} 1 & 0 < t < 2 \\ 0 & otherwise \end{cases}$$

Assuming that y(0) = 0 and $\frac{dy}{dt} = 0$ at t = 0, the Laplace transform of y(t) is

A)
$$\frac{e^{-2s}}{s(s+2)(s+3)}$$
 (B) $\frac{1-e^{-2s}}{s(s+2)(s+3)}$
C) $\frac{e^{-2s}}{(s+2)(s+3)}$ (D) $\frac{1-e^{-2s}}{(s+2)(s+3)}$

A system described by a linear, constant coefficient, ordinary, first

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy www.nodia.co.in

order differential equation has an exact solution given by y(t) for t > 0, when the forcing function is x(t) and the initial condition is y(0). If one wishes to modify the system so that the solution becomes -2y(t) for t > 0, we need to

- (A) change the initial condition to -y(0) and the forcing function to 2x(t)
- (B) change the initial condition to 2y(0) and the forcing function to -x(t)
- (C) change the initial condition to $j\sqrt{2}y(0)$ and the forcing function to $j\sqrt{2}x(t)$
- (D) change the initial condition to -2y(0) and the forcing function to -2x(t)

The DFT of a vector $\begin{bmatrix} a & b & c & d \end{bmatrix}$ is the vector $\begin{bmatrix} \alpha & \beta & \gamma & \delta \end{bmatrix}$. Consider the product

$$\begin{bmatrix} p \ q \ r \ s \end{bmatrix} = \begin{bmatrix} a \ b \ c \ d \end{bmatrix} \begin{bmatrix} a \ b \ c \ d \\ d \ a \ b \ c \\ c \ d \ a \ b \\ c \ d \ a \end{bmatrix}$$

The DFT of the vector $\begin{bmatrix} p \ q \ r \ s \end{bmatrix}$ is a scaled version of
(A) $\begin{bmatrix} \alpha^2 \ \beta^2 \ \gamma^2 \ \delta^2 \end{bmatrix}$ (B) $\begin{bmatrix} \sqrt{\alpha} \ \sqrt{\beta} \ \sqrt{\gamma} \ \sqrt{\delta} \end{bmatrix}$
(C) $\begin{bmatrix} \alpha + \beta \ \beta + \delta \ \delta + \gamma \ \gamma + \alpha \end{bmatrix}$ (D) $\begin{bmatrix} \alpha \ \beta \ \gamma \ \delta \end{bmatrix}$

2012

ONE MARK

The unilateral Laplace transform of f(t) is $\frac{1}{s^2 + s + 1}$. The unilateral Laplace transform of tf(t) is

(A)
$$-\frac{s}{(s^2+s+1)^2}$$

(B) $-\frac{2s+1}{(s^2+s+1)^2}$
(C) $\frac{s}{(s^2+s+1)^2}$
(D) $\frac{2s+1}{(s^2+s+1)^2}$

6.12

6.11

(A)
$$\frac{1}{3} < |z| < 3$$

(B) $\frac{1}{3} < |z| < \frac{1}{2}$
(C) $\frac{1}{2} < |z| < 3$
(D) $\frac{1}{3} < |z|$

2012

6.14

The input x(t) and output y(t) of a system are related as $y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) d\tau$. The system is

- (A) time-invariant and stable (B) stable and not time-invariant
- (C) time-invariant and not stable (D) not time-invariant and not stable

(D) 2

- 6.15 The Fourier transform of a signal h(t) is $H(j\omega) = (2\cos\omega)(\sin 2\omega)/\omega$. The value of h(0) is (A) 1/4 (B) 1/2
 - (C) 1

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

6.16 Let y[n] denote the convolution of h[n] and g[n], where $h[n] = (1/2)^n u[n]$ and g[n] is a causal sequence. If y[0] = 1 and y[1] = 1/2, then g[1] equals (A) 0 (B) 1/2(C) 1 (D) 3/2

2011

ONE MARK

6.17 The differential equation $100 \frac{d^2y}{dt^2} - 20 \frac{dy}{dt} + y = x(t)$ describes a system with an input x(t) and an output y(t). The system, which is initially relaxed, is excited by a unit step input. The output y(t) can be represented by the waveform

- 6.18 The trigonometric Fourier series of an even function does not have the
 - (A) dc term
 - (C) sine terms
- (B) cosine terms
- (D) odd harmonic terms

TWO MARKS

A system is defined by its imp	ulse response $h(n) = 2^n u(n-2)$. The
system is	
(A) stable and causal	(B) causal but not stable
(C) stable but not causal	(D) unstable and non-causal
If the unit step response of a	network is $(1 - e^{-\alpha t})$, then its unit
impulse response is	
(A) $\alpha e^{-\alpha t}$	(B) $\alpha^{-1}e^{-\alpha t}$
(C) $(1 - \alpha^{-1}) e^{-\alpha t}$	(D) $(1-\alpha)e^{-\alpha t}$

2011

6.20

6.21

6.22

TWO MARKS

An input $x(t) = \exp(-2t) u(t) + \delta(t-6)$ is applied to an LTI system with impulse response h(t) = u(t). The output is (A) $[1 - \exp(-2t)] u(t) + u(t+6)$

(B) $[1 - \exp(-2t)] u(t) + u(t-6)$

- (C) $0.5 [1 \exp(-2t)] u(t) + u(t+6)$ (D) $0.5 [1 - \exp(-2t)] u(t) + u(t-6)$
- Two systems $H_1(Z)$ and $H_2(Z)$ are connected in cascade as shown below. The overall output y(n) is the same as the input x(n) with a one unit delay. The transfer function of the second system $H_2(Z)$ is

$$x(n) \longrightarrow H_1(z) = \frac{(1 - 0.4z^{-1})}{(1 - 0.6z^{-1})} \longrightarrow H_2(z) \longrightarrow y(n)$$
(A) $\frac{1 - 0.6z^{-1}}{z^{-1}(1 - 0.4z^{-1})}$
(B) $\frac{z^{-1}(1 - 0.6z^{-1})}{(1 - 0.4z^{-1})}$
(C) $\frac{z^{-1}(1 - 0.4z^{-1})}{(1 - 0.6z^{-1})}$
(D) $\frac{1 - 0.4z^{-1}}{z^{-1}(1 - 0.6z^{-1})}$

6.23 The first six points of the 8-point DFT of a real valued sequence are 5, 1-j3, 0, 3-j4, 0 and 3+j4. The last two points of the DFT are respectively (A) 0, 1-j3 (B) 0, 1+j3

(C)
$$1 + j3$$
, 5 (D) $1 - j3$, 5

2010

ONE MARK

6.24 The trigonometric Fourier series for the waveform f(t) shown below contains

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) only cosine terms and zero values for the dc components

- (B) only cosine terms and a positive value for the dc components
- (C) only cosine terms and a negative value for the dc components
- (D) only sine terms and a negative value for the dc components

6.25 Consider the z-transform
$$x(z) = 5z^2 + 4z^{-1} + 3$$
; $0 < |z| < \infty$. The 6.32 inverse z- transform $x[n]$ is

(A) $5\delta[n+2] + 3\delta[n] + 4\delta[n-1]$ (B) $5\delta[n-2] + 3\delta[n] + 4\delta[n+1]$

(C)
$$5u[n+2] + 3u[n] + 4u[n-1]$$

(D)
$$5u[n-2] + 3u[n] + 4u[n+1]$$

^{6.26} Two discrete time system with impulse response $h_1[n] = \delta[n-1]$ and $h_2[n] = \delta[n-2]$ are connected in cascade. The overall impulse response of the cascaded system is

(A)
$$\delta[n-1] + \delta[n-2]$$
 (B) $\delta[n-4]$

(C)
$$\delta[n-3]$$
 (D) $\delta[n-1]\delta[n-2]$

- 6.27 For a N-point FET algorithm $N = 2^m$ which one of the following statements is TRUE ?
 - (A) It is not possible to construct a signal flow graph with both input and output in normal order
 - (B) The number of butterflies in the m^{th} stage in N/m
 - (C) In-place computation requires storage of only 2N data
 - (D) Computation of a butterfly requires only one complex multiplication.

2010

TWO MARKS

6.33

6.28 Given $f(t) = L^{-1} \left[\frac{3s+1}{s^3 + 4s^2 + (k-3)s} \right]$. If $\lim_{t \to \infty} f(t) = 1$, then the value (A) 1 (B) 2

(C) 3 (D) 4

6.29 A continuous time LTI system is described by

 $\frac{d^2 y(t)}{dt^2} + 4 \frac{dy(t)}{dt} + 3y(t) = 2 \frac{dx(t)}{dt} + 4x(t)$ Assuming zero initial conditions, the response y(t) of the above

system for the input $x(t) = e^{-2t}u(t)$ is given by (A) $(e^t - e^{3t})u(t)$ (B) $(e^{-t} - e^{-3t})u(t)$ (C) $(e^{-t} + e^{-3t})u(t)$ (D) $(e^t + e^{3t})u(t)$

$$H(z) = \frac{2 - \frac{3}{4}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{2}z^{-1}}$$

Consider the following statements:

- S1: The system is stable and causal for ROC: |z| > 1/2S2: The system is stable but not causal for ROC: |z| < 1/4S3: The system is neither stable nor causal for ROC: 1/4 < |z| < 1/2Which one of the following statements is valid ? (A) Both S1 and S2 are true (B) Both S2 and S3 are true
- (C) Both S1 and S3 are true (D) S1, S2 and S3 are all true

2009

6.30

ONE MARK

- 6.31 The Fourier series of a real periodic function has only
 - (P) cosine terms if it is even
 - (Q) sine terms if it is even
 - (R) cosine terms if it is odd
 - (S) sine terms if it is odd

- Which of the above statements are correct?
- (A) P and S (B) P and R
- (C) Q and S (D) Q and R

A function is given by $f(t) = \sin^2 t + \cos 2t$. Which of the following is true ?

- (A) f has frequency components at 0 and $\frac{1}{2\pi}$ Hz
- (B) f has frequency components at 0 and $\frac{1}{\pi}$ Hz
- (C) f has frequency components at $\frac{1}{2\pi}$ and $\frac{1}{\pi}$ Hz
- (D) f has frequency components at $\frac{0.1}{2\pi}$ and $\frac{1}{\pi}$ Hz

The ROC of z-transform of the discrete time sequence

$$x(n) = \left(\frac{1}{3}\right)^n u(n) - \left(\frac{1}{2}\right)^n u(-n-1) \text{ is}$$

< $|z| < \frac{1}{2}$ (B) $|z| > \frac{1}{2}$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(C) $|z| < \frac{1}{3}$

2009

6.34

(A) $\frac{1}{3}$

(D) 2 < |z| < 3

TWO MARKS

Given that F(s) is the one-side Laplace transform of f(t), the Laplace transform of $\int_0^t f(\tau) d\tau$ is

(A)
$$sF(s) - f(0)$$
 (B) $\frac{1}{s}F(s)$
(C) $\int_0^s F(\tau) d\tau$ (D) $\frac{1}{s}[F(s) - f(0)]$

- 6.35 A system with transfer function H(z) has impulse response h(.) defined as h(2) = 1, h(3) = -1 and h(k) = 0 otherwise. Consider the following statements.
 - S1: H(z) is a low-pass filter.
 - S2: H(z) is an FIR filter.

Which of the following is correct?

- (A) Only S2 is true
- (B) Both S1 and S2 are false
- (C) Both S1 and S2 are true, and S2 is a reason for S1
- (D) Both S1 and S2 are true, but S2 is not a reason for S1

6.36 Consider a system whose input x and output y are related by the equation $y(t) = \int_{-\infty}^{\infty} x(t-\tau) g(2\tau) d\tau$ where h(t) is shown in the graph.

Which of the following four properties are possessed by the system ?

BIBO : Bounded input gives a bounded output.

Causal : The system is causal,		
LP : The system is low pass.		
LTI : The system is linear and	time-invariant.	
(A) Causal, LP	(B) BIBO, LTI	
(C) BIBO, Causal, LTI	(D) LP, LTI	6.43

6.37 The 4-point Discrete Fourier Transform (DFT) of a discrete time sequence $\{1,0,2,3\}$ is

(A) [0, -2+2j, 2, -2-2j] (B) [2, 2+2j, 6, 2-2j](C) [6, 1-3j, 2, 1+3j] (D) [6, -1+3j, 0, -1-3j]

6.38 An LTI system having transfer function $\frac{s^2+1}{s^2+2s+1}$ and input $x(t) = \sin(t+1)$ is in steady state. The output is sampled at a rate ω_s rad/s to obtain the final output $\{x(k)\}$. Which of the following is true ?

(A) y(.) is zero for all sampling frequencies ω_s

- (B) y(.) is nonzero for all sampling frequencies ω_s
- (C) y(.) is nonzero for $\omega_s > 2$, but zero for $\omega_s < 2$

(D) y(.) is zero for $\omega_s > 2$, but nonzero for $\omega_2 < 2$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

```
2008
```

ONE MARK

6.45

6.39 The input and output of a continuous time system are respectively denoted by x(t) and y(t). Which of the following descriptions corresponds to a causal system ?

(A) y(t) = x(t-2) + x(t+4) (B) y(t) = (t-4)x(t+1)(C) y(t) = (t+4)x(t-1) (D) y(t) = (t+5)x(t+5)

6.40 The impulse response h(t) of a linear time invariant continuous time system is described by $h(t) = \exp(\alpha t) u(t) + \exp(\beta t) u(-t)$ where u(-t) denotes the unit step function, and α and β are real constants. This system is stable if

(A) α is positive and β is positive

- (B) α is negative and β is negative
- (C) α is negative and β is negative
- (D) α is negative and β is positive

2008

TWO MARKS

6.46

6.47

6.41 A linear, time - invariant, causal continuous time system has a rational transfer function with simple poles at s = -2 and s = -4 and one simple zero at s = -1. A unit step u(t) is applied at the input of the system. At steady state, the output has constant value of 1. The impulse response of this system is

(A)
$$[\exp(-2t) + \exp(-4t)] u(t)$$

(B)
$$[-4\exp(-2t) - 12\exp(-4t) - \exp(-t)]u(t)$$

(C) $[-4\exp(-2t) + 12\exp(-4t)]u(t)$

(D)
$$[-0.5 \exp(-2t) + 1.5 \exp(-4t)] u(t)$$

6.42 The signal x(t) is described by

$$x(t) = \begin{cases} 1 & \text{for} - 1 \le t \le +1 \\ 0 & \text{otherwise} \end{cases}$$

Two of the angular frequencies at which its Fourier transform be-

comes zero are	
(A) π , 2π	(B) $0.5\pi, 1.5\pi$
(C) 0, π	(D) 2π , 2.5π

A discrete time linear shift - invariant system has an impulse response h[n] with h[0] = 1, h[1] = -1, h[2] = 2, and zero otherwise The system is given an input sequence x[n] with x[0] = x[2] = 1, and zero otherwise. The number of nonzero samples in the output sequence y[n], and the value of y[2] are respectively

(A) 5, 2 (C) 6, 1 (B) 6, 2 (D) 5, 3

Let x(t) be the input and y(t) be the output of a continuous time system. Match the system properties P1, P2 and P3 with system relations R1, R2, R3, R4 Properties Palations

Properties	Relations
P1 : Linear but NOT time - invariant	$R1: y(t) = t^2 x(t)$
P2 : Time - invariant but NOT linear	R2: y(t) = t x(t)
P3 : Linear and time - invariant	R3: y(t) = x(t)
	$\mathbf{R4}: y(t) = x(t-5)$
(A) $(P1, R1), (P2, R3), (P3, R4)$	
(B) (P1, R2), (P2, R3), (P3, R4)	
(C) $(P1, R3), (P2, R1), (P3, R2)$	
(D) $(P1, R1), (P2, R2), (P3, R3)$	
$\{x(n)\}$ is a real - valued periodic seque	ence with a period $N. x(n)$
and $X(k)$ form N-point Discrete Fouri	_ ()

The DFT
$$Y(k)$$
 of the sequence $y(n) = \frac{1}{N} \sum_{r=0}^{N-1} x(r) x(n+r)$ is
(A) $|X(k)|^2$
(B) $\frac{1}{N} \sum_{r=0}^{N-1} X(r) X(k+r)$
(C) $\frac{1}{N} \sum_{r=0}^{N-1} X(r) X(k+r)$
(D) 0

Statement for Linked Answer Question 6.31 and 6.32:

In the following network, the switch is closed at $t = 0^{-}$ and the sampling starts from t = 0. The sampling frequency is 10 Hz.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

The samples x(n), n = (0, 1, 2, ...) are given by (A) $5(1 - e^{-0.05n})$ (B) $5e^{-0.05n}$ (C) $5(1 - e^{-5n})$ (D) $5e^{-5n}$

The expression and the region of convergence of the z-transform of the sampled signal are

(A)
$$\frac{5z}{z - e^5}$$
, $|z| < e^{-5}$
(B) $\frac{5z}{z - e^{-0.05}}$, $|z| < e^{-0.05}$
(C) $\frac{5z}{z - e^{-0.05}}$, $|z| > e^{-0.05}$
(D) $\frac{5z}{z - e^{-5}}$, $|z| > e^{-5}$

Statement for Linked Answer Question 6.33 & 6.34:

The impulse response h(t) of linear time - invariant continuous

time system is given by $h(t) = \exp(-2t)u(t)$, where u(t) denotes the unit step function.

The frequency response $H(\omega)$ of this system in terms of angular 6.48 frequency ω , is given by $H(\omega)$

(A)
$$\frac{1}{1+j2\omega}$$
 (B) $\frac{\sin\omega}{\omega}$
(C) $\frac{1}{2+j\omega}$ (D) $\frac{j\omega}{2+j\omega}$

The output of this system, to the sinusoidal input $x(t) = 2\cos 2t$ for 6.49 all time t, is

(A) 0	(B) $2^{-0.25}\cos(2t - 0.125\pi)$
(C) $2^{-0.5}\cos(2t - 0.125\pi)$	(D) $2^{-0.5} \cos(2t - 0.25\pi)$

ONE MARK

6.58

6.59

- If the Laplace transform of a signal $Y(s) = \frac{1}{s(s-1)}$, then its final 6.50 value is
 - (A) 1(B) 0 $(\sim) 1$

2007

2007

TWO MARKS

- The 3-dB bandwidth of the low-pass signal $e^{-t}u(t)$, where u(t) is the 6.51 unit step function, is given by
 - (B) $\frac{1}{2\pi}\sqrt{\sqrt{2}-1}$ Hz (A) $\frac{1}{2\pi}$ Hz (C) ∞ (D) 1 Hz
- A 5-point sequence x[n] is given as x[-3] = 1, x[-2] = 1, x[-1] = 0, 6.52 x[0] = 5 and x[1] = 1. Let $X(e^{i\omega})$ denoted the discrete-time Fourier transform of x[n]. The value of $\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$ is

	• — //
(A) 5	(B) 10π
(C) 16π	(D) $5 + j10\pi$

The z-transform X(z) of a sequence x[n] is given by $X[z] = \frac{0.5}{1-2z^{-1}}$. 6.53 It is given that the region of convergence of X(z) includes the unit circle. The value of x[0] is

(A) - 0.5	(B) 0
(C) 0.25	(D) 05

6.54	A Hilbert transformer is a	
	(A) non-linear system	(B) non-causal system
	(C) time-varying system	(D) low-pass system

The frequency response of a linear, time-invariant system is given by 6.55 $H(f) = \frac{5}{1+j10\pi f}$. The step response of the system is

(A)
$$5(1 - e^{-5t})u(t)$$

(B) $5[1 - e^{-\frac{t}{5}}]u(t)$
(C) $\frac{1}{2}(1 - e^{-5t})u(t)$
(D) $\frac{1}{5}(1 - e^{-\frac{t}{5}})u(t)$

2006

ONE MARK

Let $x(t) \leftrightarrow X(j\omega)$ be Fourier Transform pair. The Fourier Transform 6.56 of the signal x(5t-3) in terms of $X(j\omega)$ is given as (A) $1 e^{-\frac{\jmath\omega}{F}} V(\jmath\omega)$ (B) $\frac{1}{2} e^{\frac{j\omega}{5}} Y(j\omega)$

(A)
$$\overline{5}e^{-5}X\left(\frac{j\omega}{5}\right)$$

(B) $\overline{5}e^{-5}X\left(\frac{j\omega}{5}\right)$
(C) $\frac{1}{5}e^{-j\omega}X\left(\frac{j\omega}{5}\right)$
(D) $\frac{1}{5}e^{j\omega}X\left(\frac{j\omega}{5}\right)$

- The Dirac delta function $\delta(t)$ is defined as 6.57
 - (A) $\delta(t) = \begin{cases} 1\\ 0 \end{cases}$ t = 0otherwise

(B)
$$\delta(t) = \begin{cases} \infty & t = 0\\ 0 & \text{otherwise} \end{cases}$$

(C) $\delta(t) = \begin{cases} 1 & t = 0\\ 0 & \text{otherwise} \end{cases}$ and $\int_{-\infty}^{\infty} \delta(t) dt = 1$
(D) $\delta(t) = \begin{cases} \infty & t = 0\\ 0 & \text{otherwise} \end{cases}$ and $\int_{-\infty}^{\infty} \delta(t) dt = 1$

If the region of convergence of $x_1[n] + x_2[n]$ is $\frac{1}{3} < |z| < \frac{2}{3}$ then the region of convergence of $x_1[n] - x_2[n]$ includes

(A)
$$\frac{1}{3} < |z| < 3$$

(B) $\frac{2}{3} < |z| < 3$
(C) $\frac{3}{2} < |z| < 3$
(D) $\frac{1}{3} < |z| < \frac{2}{3}$

In the system shown below, $x(t) = (\sin t) u(t)$ In steady-state, the response y(t) will be

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

(B) $\frac{1}{\sqrt{2}}\sin\left(t+\frac{\pi}{4}\right)$

TWO MARKS

(D) $\sin t - \cos t$

(A)
$$\frac{1}{\sqrt{2}} \sin\left(t - \frac{\pi}{4}\right)$$

(C) $\frac{1}{\sqrt{2}} e^{-t} \sin t$

2006

6.61

6.62

6.63

Consider the function
$$f(t)$$
 having Laplace transform

$$F(s) = \frac{\omega_0}{s^2 + \omega_0^2} \operatorname{Re}[s] > 0$$

The final value of $f(t)$ would be
A) 0 (B) 1
C) $-1 \le f(\infty) \le 1$ (D) ∞

A system with input x[n] and output y[n] is given as $y[n] = (\sin \frac{5}{6}\pi n) x[n]$. The system is

- (A) linear, stable and invertible
- (B) non-linear, stable and non-invertible
- (C) linear, stable and non-invertible
- (D) linear, unstable and invertible

The unit step response of a system starting from rest is given by $c(t) = 1 - e^{-2t}$ for $t \ge 0$. The transfer function of the system is

(A)
$$\frac{1}{1+2s}$$
 (B) $\frac{2}{2+s}$
(C) $\frac{1}{2+s}$ (D) $\frac{2s}{1+2s}$

- The unit impulse response of a system is $f(t) = e^{-t}, t \ge 0$. For this system the steady-state value of the output for unit step input is equal to
 - (A) 1(B) 0(C) 1
 - (D) ∞

Page 137

Page 138

TWO MARKS

Choose the function
$$f(t)$$
; $-\infty < t < \infty$ for which a Fourier series cannot be defined.
(A) $3\sin(25t)$

(B) $4\cos(20t+3) + 2\sin(710t)$

(C) $\exp(-|t|)\sin(25t)$

2005

6.64

6.65 The function x(t) is shown in the figure. Even and odd parts of a unit step function u(t) are respectively,

Now in 3 Volume Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

- The region of convergence of z transform of the sequence $\begin{pmatrix} \frac{5}{6} \end{pmatrix}^n u(n) - \left(\frac{6}{5}\right)^n u(-n-1) \text{ must be}$ (A) $|z| < \frac{5}{6}$ (B) $|z| > \frac{5}{6}$ (C) $\frac{5}{6} < |z| < \frac{6}{5}$ (D) $\frac{6}{5} < |z| < \infty$
- 6.67 Which of the following can be impulse response of a causal system ?

6.68 Let $x(n) = (\frac{1}{2})^n u(n), y(n) = x^2(n)$ and $Y(e^{j\omega})$ be the Fourier transform of y(n) then $Y(e^{j0})$

(A)
$$\frac{1}{4}$$

(C) 4

(D)
$$\frac{4}{3}$$

6.69 The power in the signal $s(t) = 8\cos(20\pi - \frac{\pi}{2}) + 4\sin(15\pi t)$ is (A) 40 (B) 41(C) 42

ONE MARK

(D) 82

2005

6.70

6.72

The output y(t) of a linear time invariant system is related to its input x(t) by the following equations

$$y(t) = 0.5x(t - t_d + T) + x(t - t_d) + 0.5x(t - t_d + T)$$

The filter transfer function $H(\omega)$ of such a system is given by (A) $(1 + \cos \omega T) e^{-j\omega t_d}$

(B) $(1 + 0.5 \cos \omega T) e^{-j\omega t_d}$

(C) $(1 - \cos \omega T) e^{-j\omega t_d}$

(D) $(1 - 0.5 \cos \omega T) e^{-j\omega t_d}$

6.71 Match the following and choose the correct combination. Group 1

- E. Continuous and aperiodic signal
- F. Continuous and periodic signal
- G. Discrete and aperiodic signal
- H. Discrete and periodic signal Group 2
- 1. Fourier representation is continuous and aperiodic
- 2. Fourier representation is discrete and aperiodic
- 3. Fourier representation is continuous and periodic
- 4. Fourier representation is discrete and periodic
- (A) E 3, F 2, G 4, H 1
- (B) E 1, F 3, G 2, H 4
- (C) E 1, F 2, G 3, H 4
- (D) E 2, F 1, G 4, H 3
- A signal $x(n) = \sin(\omega_0 n + \phi)$ is the input to a linear time- invariant system having a frequency response $H(e^{j\omega})$. If the output of the system $Ax(n - n_0)$ then the most general form of $\angle H(e^{j\omega})$ will be $(A) - n_0\omega_0 + \beta$ for any arbitrary real
 - (B) $-n_0\omega_0 + 2\pi k$ for any arbitrary integer k
 - (C) $n_0\omega_0 + 2\pi k$ for any arbitrary integer k
 - (D) $-n_0\omega_0\phi$

Statement of linked answer question 6.59 and 6.60 : A sequence x(n) has non-zero values as shown in the figure.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

6.73 The sequence $y(n) = \begin{cases} x(\frac{n}{2}-1), & \text{For } n \text{ even} \\ & & \text{will be} \\ 0, & \text{For } n \text{ odd} \end{cases}$

- The Fourier transform of y(2n) will be 6.74 (A) $e^{-j2\omega} \left[\cos 4\omega + 2\cos 2\omega + 2\right]$ (B) $\cos 2\omega + 2\cos \omega + 2$ (C) $e^{-j\omega} \left[\cos 2\omega + 2\cos \omega + 2\right]$ (D) $e^{-j2\omega} [\cos 2\omega + 2\cos + 2]$
- For a signal x(t) the Fourier transform is X(f). Then the inverse 6.75 Fourier transform of X(3f+2) is given by

(A) $\frac{1}{2}x(\frac{t}{2})e^{j3\pi t}$	(B) $\frac{1}{3}x\left(\frac{t}{3}\right)e^{-\frac{j4\pi t}{3}}$
(C) $3x(3t) e^{-j4\pi t}$	(D) $x(3t+2)$

2004

ONE MARK

- The impulse response h[n] of a linear time-invariant system is given 6.76 by h[n] = u[n+3] + u[n-2) - 2n[n-7] where u[n] is the unit step sequence. The above system is
 - (A) stable but not causal (B) stable and causal (C) causal but unstable (D) unstable and not causal
- The z-transform of a system is $H(z) = \frac{z}{z-0.2}$. If the ROC is |z| < 0.26.77 , then the impulse response of the system is (A) $(0.2)^n u[n]$ (B) $(0.2)^n u[-n-1]$ (D) $-(0.2)^n u[-n-1]$ $(C) - (0.2)^n u[n]$
- The Fourier transform of a conjugate symmetric function is always 6.78 6.84 (A) imaginary (B) conjugate anti-symmetric (D) conjugate symmetric
 - (C) real

2004

TWO MARKS

Consider the sequence x[n] = [-4 - j51 + j25]. The conjugate anti-6.79 symmetric part of the sequence is (A) [-4 - j2.5, j2, 4 - j2.5]

(B) [-j2.5, 1, j2.5](C) [-j2.5, j2, 0](D) [-4, 1, 4]

A causal LTI system is described by the difference equation 6.80 $2y[n] = \alpha y[n-2] - 2x[n] + \beta x[n-1]$

- (A) $|\alpha| = 2, |\beta| < 2$ (B) $|\alpha| > 2, |\beta| > 2$ (D) $|\beta| < 2$, any value of α (C) $|\alpha| < 2$, any value of β
- The impulse response h[n] of a linear time invariant system is given 6.81 as

$$h[n] = \begin{cases} -2\sqrt{2} & n = 1, -1 \\ 4\sqrt{2} & n = 2, -2 \\ 0 & \text{otherwise} \end{cases}$$

If the input to the above system is the sequence $e^{j\pi n/4}$, then the output is

(A)
$$4\sqrt{2} e^{j\pi n/4}$$
 (B) $4\sqrt{2} e^{-j\pi n/4}$
(C) $4e^{j\pi n/4}$ (D) $-4e^{j\pi n/4}$

Let x(t) and y(t) with Fourier transforms F(f) and Y(f) respectively 6.82 be related as shown in Fig. Then Y(f) is

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(A)
$$-\frac{1}{2}X(f/2) e^{-j\pi f}$$

(B) $-\frac{1}{2}X(f/2) e^{j2\pi f}$
(C) $-X(f/2) e^{j2\pi f}$
(D) $-X(f/2) e^{-j2\pi f}$

2003

6.83

6.86

The Laplace transform of i(t) is given by

$$I(s) = \frac{2}{s(1+s)}$$

At $t \to \infty$, The value of $i(t)$ tends to
(A) 0 (B) 1
(C) 2 (D) ∞

The Fourier series expansion of a real periodic signal with fundamental frequency f_0 is given by $g_p(t) = \sum c_n e^{j2\pi f_0 t}$. It is given that $c_3 = 3 + j5$. Then c_{-3} is (A) 5 + j3(B) -3 - i5(C) -5 + j3(D) 3 - j5

- Let x(t) be the input to a linear, time-invariant system. The required output is $4\pi(t-2)$. The transfer function of the system should be (A) $4e^{j4\pi f}$ (B) $2e^{-j8\pi f}$ (D) $2e^{j8\pi f}$ (C) $4e^{-j4\pi f}$
- A sequence x(n) with the z-transform $X(z) = z^4 + z^2 2z + 2 3z^{-4}$ is applied as an input to a linear, time-invariant system with the impulse response $h(n) = 2\delta(n-3)$ where

ONE MARK

$\delta(n) - \begin{bmatrix} 1 \\ \end{bmatrix}$	n = 0
$\delta(n) = \begin{cases} 1, \\ 0, \end{cases}$	otherwise
The output at $n = 4$ is	
(A) - 6	(B) zero
(C) 2	(D) -4

2003

TWO MARKS

Let P be linearity, Q be time-invariance, R be causality and S be 6.87 stability. A discrete time system has the input-output relationship,

 $y(n) = \begin{cases} x(n) & n \ge 1\\ 0, & n = 0\\ x(n+1) & n \le -1 \end{cases}$

where x(n) is the input and y(n) is the output. The above system has the properties (A) P, S but not Q, R

(B) P, Q, S but not R

(C) P, Q, R, S

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(D) Q, R, S but not P

Common Data For Q. 6.73 & 6.74 :

The system under consideration is an RC low-pass filter (RC-LPF) with $R = 1 \text{ k}\Omega$ and $C = 1.0 \mu\text{F}$.

6.88	Let $H(f)$ denote the frequency re-	esponse of the RC-LPF. Let f_1 be	
	the highest frequency such that (in Hz) is	$0 \le f \le f_1 \frac{ H(f_1) }{H(0)} \ge 0.95$. Then f_1	6.97
	(A) 324.8	(B) 163.9	
	(C) 52.2	(D) 104.4	
			6.98

Let $t_q(f)$ be the group delay function of the given RC-LPF and 6.89 $f_2 = 100$ Hz. Then $t_q(f_2)$ in ms, is (A) 0.717(B) 7.17 (C) 71.7 (D) 4.505

2002 **ONE MARK** Convolution of x(t+5) with impulse function $\delta(t-7)$ is equal to 6.90 (A) x(t-12)(B) x(t+12)(D) x(t+2)(C) x(t-2)

Which of the following cannot be the Fourier series expansion of a 6.91 periodic signal?

(A) $x(t) = 2\cos t + 3\cos 3t$

(B) $x(t) = 2\cos\pi t + 7\cos t$

(C) $x(t) = \cos t + 0.5$

- (D) $x(t) = 2\cos 1.5\pi t + \sin 3.5\pi t$
- The Fourier transform $F\{e^{-1}u(t)\}$ is equal to $\frac{1}{1+j2\pi f}$. Therefore, $F\left\{\frac{1}{1+j2\pi t}\right\}$ is 6.92

(A) $e^f u(f)$ (B) $e^{-f} u(f)$ (C) $e^{f}u(-f)$ (D) $e^{-f}u(-f)$

A linear phase channel with phase delay T_p and group delay T_q must 6.93 have (Λ) T

(A)
$$T_p = T_g = \text{constant}$$

(B) $T_p \propto f$ and $T_q \propto f$

(C) $T_p = \text{constant}$ and $T_q \propto f$ (f denote frequency)

(D) $T_p \propto f$ and $T_p = \text{constant}$

2002

6.94

6.95

6.96

TWO MARKS

- The Laplace transform of continuous time signal x(t) is $X(s) = \frac{5-s}{s^2-s-2}$. If the Fourier transform of this signal exists, the x(t) is (A) $e^{2t}u(t) - 2e^{-t}u(t)$ (B) $-e^{2t}u(-t) + 2e^{-t}u(t)$ (C) $-e^{2t}u(-t) - 2e^{-t}u(t)$ (D) $e^{2t}u(-t) - 2e^{-t}u(t)$
- If the impulse response of discrete time system is $h[n] = -5^n u[-n-1],$
 - then the system function H(z) is equal to
 - (A) $\frac{-z}{z-5}$ and the system is stable
 - (B) $\frac{z}{z-5}$ and the system is stable
 - (C) $\frac{-z}{z-5}$ and the system is unstable
 - (D) $\frac{z}{z-5}$ and the system is unstable

2001

ONE MARK

TWO MARKS

The transfer function of a system is given by $H(s) = \frac{1}{s^2(s-2)}$. The impulse response of the system is (A) $(t^{2} * e^{-2t}) u(t)$ (B) $(t^* e^{2t}) u(t)$ (D) $(te^{-2t})u(t)$ (C) $(te^{-2}t)u(t)$

The region of convergence of the z – transform of a unit step function is $(\Delta) \mid \gamma \mid \sim 1$ $(B) | \gamma | < 1$

(A) z > 1	(D) $ z < 1$
(C) (Real part of z) > 0	(D) (Real part of z) < 0

Let $\delta(t)$ denote the delta function. The value of the integral $\int_{-\infty}^{\infty} \delta(t) \cos\left(\frac{3t}{2}\right) dt$ is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) 1	(B) -1
(C) 0	(D) $\frac{\pi}{2}$
	e energy of the signal $f(2t)$ is equal
to	
(A) 1	(B) $E/2$
(C) $2E$	(D) $4E$

2001

The impulse response functions of four linear systems S1, S2, S3, S4 are given respectively by

$$h_1(t) = 1, h_2(t) = u(t),$$

 $h_3(t) = \frac{u(t)}{t+1}$ and
 $h_4(t) = e^{-3t}u(t)$

where u(t) is the unit step function. Which of these systems is time invariant, causal, and stable?

- (A) S1 (B) S2
- (C) S3 (D) S4

2000

6.101 G

Given that $L[f(t)] = \frac{s+2}{s^2+1}$, $L[g(t)] = \frac{s^2+1}{(s+3)(s+2)}$ $h(t) = \int_0^t f(\tau) g(t-\tau) d\tau$. L[h(t)] is (A) $\frac{s^2+1}{s+3}$ (B) $\frac{1}{s+3}$

- (C) $\frac{s^2 + 1}{(s+3)(s+2)} + \frac{s+2}{s^2 + 1}$ (D) None of the above
- 6.102 The Fourier Transform of the signal $x(t) = e^{-3t^2}$ is of the following form, where A and B are constants :

(A) $A e^{-B f }$	(B) $A e^{-Bf}$
(C) $A + B f ^2$	(D) $A e^{-Bf}$

- 6.103 A system with an input x(t) and output y(t) is described by the relations : y(t) = tx(t). This system is
 - (A) linear and time invariant
 - (B) linear and time varying
 - (C) non linear and time invariant
 - (D) non linear and time varying
- 6.104 A linear time invariant system has an impulse response e^{2t} , t > 0. If the initial conditions are zero and the input is e^{3t} , the output for t > 0 is
 - (A) $e^{3t} e^{2t}$
 - (B) e^{5t}
 - (C) $e^{3t} + e^{2t}$
 - (D) None of these

2000

TWO MARKS

ONE MARK

and

6.105 One period (0, T) each of two periodic waveforms W_1 and W_2 are shown in the figure. The magnitudes of the n^{th} Fourier series coefficients of W_1 and W_2 , for $n \ge 1, n$ odd, are respectively proportional to

6.107 A system has a phase response given by $\phi(\omega)$, where ω is the angular frequency. The phase delay and group delay at $\omega = \omega_0$ are respectively given by

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy www.nodia.co.in

(A)
$$-\frac{\phi(\omega_0)}{\omega_0}$$
, $-\frac{d\phi(\omega)}{d\omega}\Big|_{\omega=\omega_0}$ (B) $\phi(\omega_o)$, $-\frac{d^2\phi(\omega_0)}{d\omega^2}\Big|_{\omega=\omega_o}$
(C) $\frac{\omega_o}{\phi(\omega_o)}$, $-\frac{d\phi(\omega)}{d(\omega)}\Big|_{\omega=\omega_o}$ (D) $\omega_o\phi(\omega_o)$, $\int_{-\infty}^{\omega_o}\phi(\lambda)$

1999

The z-transform F(z) of the function $f(nT) = a^{nT}$ is (A) $\frac{z}{z-a^{T}}$ (B) $\frac{z}{z+a^{T}}$ (C) $\frac{z}{z-a^{-T}}$ (D) $\frac{z}{z+a^{-T}}$ If [f(t)] = F(s), then [f(t-T)] is equal to (A) $e^{sT}F(s)$ (B) $e^{-sT}F(s)$ (C) $\frac{F(s)}{1-e^{sT}}$ (D) $\frac{F(s)}{1-e^{-sT}}$

- 6.110 A signal x(t) has a Fourier transform $X(\omega)$. If x(t) is a real and odd function of t, then $X(\omega)$ is
 - (A) a real and even function of ω
 - (B) a imaginary and odd function of ω
 - (C) an imaginary and even function of ω
 - (D) a real and odd function of ω

1999

TWO MARKS

ONE MARK

6.111 The Fourier series representation of an impulse train denoted by

$$s(t) = \sum_{n=-\infty}^{\infty} d(t - nT_0) \text{ is given by}$$
(A)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp -\frac{j2\pi nt}{T_0}$$
(B)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp -\frac{j\pi nt}{T_0}$$
(C)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp \frac{j\pi nt}{T_0}$$
(D)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp \frac{j2\pi nt}{T_0}$$

6.112 The z-transform of a signal is given by

6.108

6.109

$C(z) = rac{1 z^{-1} (1-z^{-4})}{4 \left(1-z^{-1} ight)^2}$	
Its final value is	
(A) 1/4	(B) zero
(C) 1.0	(D) infinity

	1998		ONE MARK
6.113	If $F(s) = \frac{\omega}{s^2 + \omega^2}$, then the value (A) cannot be determined (C) is unity	of $\underset{t \to \infty}{\lim} f(t)$ (B) is zero (D) is infinite	

6.114 The trigonometric Fourier series of a even time function can have only
(A) cogine terms
(B) size terms

(A) cosine terms	(B) sine terms
(C) cosine and sine terms	(D) d.c and cosine terms

6.115 A periodic signal x(t) of period T_0 is given by

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < \frac{T_0}{2} \end{cases}$$

The dc component of x(t) is

A)
$$\frac{T_1}{T_0}$$
 (B) $\frac{T_1}{2T_0}$
C) $\frac{2T_1}{T_0}$ (D) $\frac{T_0}{T_1}$

6.116 The unit impulse response of a linear time invariant system is the unit step function u(t). For t > 0, the response of the system to an excitation $e^{-at}u(t)$, a > 0 will be

(A)
$$ae^{-at}$$

(B) $(1/a)(1 - e^{-at})$
(C) $a(1 - e^{-at})$
(D) $1 - e^{-at}$

6.117 The z-transform of the time function $\sum_{k=0}^{\infty} \delta(n-k)$ is

(A)
$$\frac{z-1}{z}$$
 (B) $\frac{z}{z-1}$
(C) $\frac{z}{(z-1)^2}$ (D) $\frac{(z-1)^2}{z}$

^{6.118} A distorted sinusoid has the amplitudes $A_1, A_2, A_3, ...$ of the fundamental, second harmonic, third harmonic,.... respectively. The total harmonic distortion is

(A)
$$\frac{A_2 + A_3 + \dots}{A_1}$$
 (B) $\frac{\sqrt{A_2^2 + A_3^2 + \dots}}{A_1}$
(C) $\frac{\sqrt{A_2^2 + A_3^2 + \dots}}{\sqrt{A_1^2 + A_2^2 + A_3^2 + \dots}}$ (D) $\left(\frac{A_2^2 + A_3^2 + \dots}{A_1}\right)$

6.119 The Fourier transform of a function x(t) is X(f). The Fourier transform of $\frac{dX(t)}{df}$ will be

(A)
$$\frac{dX(f)}{df}$$
 (B) $j2\pi fX(f)$
(C) $jfX(f)$ (D) $\frac{X(f)}{jf}$

6.120

6.121

The function f(t) has the Fourier Transform $g(\omega)$. The Fourier Transform

$$ff(t) g(t) \left(= \int_{-\infty}^{\infty} g(t) e^{-j\omega t} dt \right)$$
is
(A) $\frac{1}{2\pi} f(\omega)$ (B) $\frac{1}{2\pi} f(-\omega)$
(C) $2\pi f(-\omega)$ (D) None of the above

The Laplace Transform of $e^{\alpha t} \cos(\alpha t)$ is equal to

(A)
$$\frac{(s-\alpha)}{(s-\alpha)^2 + \alpha^2}$$
 (B) $\frac{(s+\alpha)}{(s-\alpha)^2 + \alpha^2}$
(C) $\frac{1}{(s-\alpha)^2}$ (D) None of the above

1996

 6.122
 The trigonometric Fourier series of an even function of time does not have the

 (A) dc term
 (B) cosine terms

 (C) sine terms
 (D) odd harmonic terms

- 6.123 The Fourier transform of a real valued time signal has
 - (A) odd symmetry(B) even symmetry(C) conjugate symmetry(D) no symmetry

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

ONE MARK

ONE MARK

SOLUTIONS

6.1 Option (C) is correct.

If the two systems with impulse response $h_1(t)$ and $h_2(t)$ are connected in cascaded configuration as shown in figure, then the overall response of the system is the convolution of the individual impulse responses.

6.2 Option (C) is correct. Given, the input

$$x(t) = u(t-1)$$

It's Laplace transform is

$$X(s) = \frac{e^{-s}}{s}$$

The impulse response of system is given

h(t) = t u(t)

Its Laplace transform is

$$H(s) = \frac{1}{s^2}$$

Hence, the overall response at the output is

$$Y(s) = X(s)H(s)$$
$$= \frac{e^{-s}}{s^3}$$

its inverse Laplace transform is

$$y(t) = \frac{(t-1)^2}{2}u(t-1)$$

6.3 Option (A) is correct. Given, the signal

 $v(t) = 30\sin 100t + 10\cos 300t + 6\sin(500t + \frac{\pi}{4})$

So we have

$$\omega_1 = 100 \text{ rad/s}$$

 $\omega_2 = 300 \text{ rad/s}$

 $\omega_3 = 500 \text{ rad/s}$

Therefore, the respective time periods are

$$T_1 = \frac{2\pi}{\omega_1} = \frac{2\pi}{100} \sec$$
$$T_2 = \frac{2\pi}{\omega_2} = \frac{2\pi}{300} \sec$$
$$T_3 = \frac{2\pi}{500} \sec$$

So, the fundamental time period of the signal is L.C.M. $(T_1, T_2 T_3) = \frac{LCM(2\pi, 2\pi, 2\pi)}{HCF(100, 300, 500)}$ or, $T_0 = \frac{2\pi}{100}$

Hence, the fundamental frequency in rad/sec is $\omega_0 = \frac{2\pi}{10} = 100 \text{ rad/s}$

6.4 Option (A) is correct.

Given, the maximum frequency of the band-limited signal

$$f_m = 5 \text{ kHz}$$

According to the Nyquist sampling theorem, the sampling frequency must be greater than the Nyquist frequency which is given as

$$f_N=2f_m=2 imes 5=10~{
m kHz}$$

So, the sampling frequency f_s must satisfy

$$f_{N} \geq f_{N}$$

 $f_s \geq 10 \, \mathrm{kHz}$

only the option (A) doesn't satisfy the condition therefore, 5 kHz is not a valid sampling frequency.

Option (C) is correct.

6.5

For a system to be casual, the R.O.C of system transfer function H(s) which is rational should be in the right half plane and to the right of the right most pole.

For the stability of LTI system. All poles of the system should lie in the left half of S-plane and no repeated pole should be on imaginary axis. Hence, options (A), (B), (D) satisfies an LTI

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

system stability and causality both.

But, Option (C) is not true for the stable system as, |S| = 1 have one pole in right hand plane also.

6.6 Option (B) is correct.

The Laplace transform of unit step fun^n is

$$U(s) = \frac{1}{s}$$

So, the O/P of the system is given as
$$(1)(1)$$

$$Y(s) = \left(\frac{1}{s}\right)\left(\frac{1}{s}\right)$$

 $-\frac{1}{s^2}$

For zero initial condition, we check

$$u(t) = \frac{dy(t)}{dt}$$

$$\Rightarrow \qquad U(s) = SY(s) - y(0)$$

$$\Rightarrow \qquad U(s) = s\left(\frac{1}{s^2}\right) - y(0)$$
or,
$$U(s) = \frac{1}{s}$$

$$(y(0) = 0)$$

Hence, the O/P is correct which is

$$Y(s) = \frac{1}{s^2}$$

its inverse Laplace transform is given by y(t) = tu(t)

No Option is correct.

where

6.7

The matched filter is characterized by a frequency response that is given as

$$H(f) = G^*(f)\exp(-j2\pi fT)$$
$$g(t) \xrightarrow{f} G(f)$$

Now, consider a filter matched to a known signal g(t). The fourier transform of the resulting matched filter output $g_0(t)$ will be $G_0(f) = H(f)G(f)$

 $= G^*(f) G(f) \exp(-j2\pi fT)$ $= |G(f)|^2 \exp(-j2\pi fT)$ T is duration of g(t)Assume $\exp(-j2\pi fT) = 1$ So, $G_0(f) = |G(f)|^2$ Since, the given Gaussian function is $g(t) = e^{-\pi t^2}$ Fourier transform of this signal will be $g(t) = e^{-\pi t^2} \xrightarrow{f} e^{-\pi f^2} = G(f)$ Therefore, output of the matched filter is $G_0(f) = |e^{-\pi f^2}|^2$

Option (B) is correct. Given, the impulse response of continuous time system $h(t) = \delta(t-1) + \delta(t-3)$ From the convolution property, we know $x(t) * \delta(t-t_0) = x(t-t_0)$ So, for the input x(t) = u(t) (Unit step funⁿ) The output of the system is obtained as

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$y(t) = u(t) * h(t)$$

= $u(t) * [\delta(t-1) + \delta(t-3)]$
= $u(t-1) + u(t-3)$
 $y(2) = u(2-1) + u(2-3)$

at t = 2

6.9

6.8

Option (B) is correct.

Given, the differential equation

= 1

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y(t) = x(t)$$

Taking its Laplace transform with zero initial conditions, we have

$$s^{2} Y(s) + 5s Y(s) + 6 Y(s) = X(s)$$

....(1)

Now, the input signal is

$$(1) \quad 0 < t <$$

$$x(t) = \begin{cases} 0 & \text{otherwise} \end{cases}$$

i.e., x(t) = u(t) - u(t-2)Taking its Laplace transform, we obtain $X(s) = \frac{1}{s} - \frac{e^{-2s}}{s}$

$$s) = \frac{1}{s} - \frac{c}{s}$$
$$= \frac{1 - e^{-2s}}{s}$$

Substituting it in equation (1), we get V(x)

$$Y(s) = \frac{X(s)}{s^2 + 5s + 6} = \frac{1 - e^{2s}}{s(s^2 + 5s + 6)}$$
$$= \frac{1 - e^{-2s}}{s(s+2)(s+3)}$$

 $\mathbf{2}$

6.10 Option (D) is correct.

The solution of a system described by a linear, constant coefficient,

ordinary, first order differential equation with forcing function x(t) is y(t) so, we can define a function relating x(t) and y(t) as below

$$P\frac{dy}{dt} + Qy + K = x(t)$$

where P, Q, K are constant. Taking the Laplace transform both the sides, we get

$$P \, sY(s) - Py(0) + Q \, Y(s) = X(s) \qquad \dots (1)$$

Now, the solutions becomes
$$y_1(t) = -2y(t)$$

or,
$$Y_1(s) = -2 \, Y(s)$$

So, Eq. (1) changes to
$$P \, sY_1(s) - P \, y_1(0) + Q \, Y_1(s) = X_1(s)$$

or,
$$-2PSY(s) - P \, y_1(0) - 2Q \, Y_1(s) = X_1(s) \qquad \dots (2)$$

Comparing Eq. (1) and (2), we conclude that

 $X_1(s) = -2X(s)$

$$y_1(0) = -2y(0)$$

Which makes the two equations to be same. Hence, we require to change the initial condition to -2y(0) and the forcing equation to -2x(t)

6.11

Given, the DFT of vector
$$\begin{bmatrix} a & b & c & d \end{bmatrix}$$
 as

D.F.T.{
$$\begin{bmatrix} a & b & c & d \end{bmatrix}$$
} = $\begin{bmatrix} \alpha & \beta & \gamma & \delta \end{bmatrix}$

Also, we have

$$\begin{bmatrix} p & q & r & s \end{bmatrix} = \begin{bmatrix} a & b & c & d \end{bmatrix} \begin{bmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{bmatrix} \qquad \dots (1)$$

For matrix circular convolution, we know

$$x[n] * h[n] = \begin{bmatrix} h_0 & h_2 & h_1 \\ h_1 & h_0 & h_2 \\ h_2 & h_1 & h_0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_1 \end{bmatrix}$$

where $\{x_0, x_1, x_2\}$ are three point signals for x[n] and similarly for h[n], h_0 , h_1 and h_2 are three point signals. Comparing this transformation to Eq(1), we get

$$\begin{bmatrix} p & q & r & s \end{bmatrix} = \begin{bmatrix} a & d & c \\ b & a & d \\ c & b & a \\ d & c & b \end{bmatrix}^T \begin{bmatrix} a & b & c & d \end{bmatrix}$$
$$= \begin{bmatrix} a & b & c & d \end{bmatrix}^T * \begin{bmatrix} a & b & c & d \end{bmatrix}^T$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

=	a b c d	*	$egin{array}{c} a \\ b \\ c \\ d \end{array}$	
	d		d	

Now, we know that

$$x_1[n] * x_2[n] = X_{1DFT}[k] X_{2,DFT}[k]$$

So,

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} * \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} * \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix}$$

$$= \begin{bmatrix} \alpha^2 & \beta^2 & \gamma^2 & \delta^2 \end{bmatrix}$$

Option (D) is correct. 6.12 Using s-domain differentiation property of Laplace transform.

If

So,

$$f(t) \xleftarrow{\mathcal{L}} F(s)$$
$$tf(t) \xleftarrow{\mathcal{L}} - \frac{dF(s)}{ds}$$

6.13

 $\mathcal{L}[tf(t)] = \frac{-d}{ds} \left[\frac{1}{s^2 + s + 1} \right] = \frac{2s + 1}{(s^2 + s + 1)^2}$ Option (C) is correct. $x[n] = \left(\frac{1}{3}\right)^{|n|} - \left(\frac{1}{2}\right)^{n} u[n]$

$$x[n] = \left(\frac{1}{3}\right)^n u[n] + \left(\frac{1}{3}\right)^{-n} u[-n-1] - \left(\frac{1}{2}\right)^n u(n)$$

Taking z-transform X[z]

$$\begin{aligned} & \operatorname{A}[z] \\ &= \sum_{n=-\infty}^{\infty} \left(\frac{1}{3}\right)^n z^{-n} u[n] + \sum_{n=-\infty}^{\infty} \left(\frac{1}{3}\right)^{-n} z^{-n} u[-n-1] - \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} u[n] \\ &= \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n z^{-n} + \sum_{n=-\infty}^{-1} \left(\frac{1}{3}\right)^{-n} z^{-n} - \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} \\ &= \sum_{\substack{n=0\\i=1}}^{\infty} \left(\frac{1}{3z}\right)^n + \sum_{\substack{m=1\\i=1\\i=1}}^{\infty} \left(\frac{1}{3z}z\right)^m - \sum_{\substack{n=0\\i=1\\i=1}}^{\infty} \left(\frac{1}{2z}z\right)^n \quad \text{Taking } m = -n \end{aligned}$$
Series I converges if $\left|\frac{1}{3z}\right| < 1$ or $|z| > \frac{1}{3}$
Series II converges if $\left|\frac{1}{3z}z\right| < 1$ or $|z| < 3$
Series III converges if $\left|\frac{1}{2z}\right| < 1$ or $|z| > \frac{1}{2}$
Region of convergence of $X(z)$ will be intersection of above three
So, $\operatorname{ROC} : \frac{1}{2} < |z| < 3$

6.14

6.15

$$y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) \, d\tau$$

Time Invariance :

Option (D) is correct.

Let, $x(t) = \delta(t)$

$$y(t) = \int_{-\infty}^{t} \delta(t) \cos(3\tau) d\tau = u(t) \cos(0) = u(t)$$

For a delayed input $(t - t_0)$ output is

$$y(t,t_0) = \int_{-\infty}^{t} \delta(t-t_0) \cos(3\tau) d\tau = u(t) \cos(3t_0)$$

Delayed output,

Stability :

$$y(t-t_0)=u(t-t_0)$$

$$y(t, t_0) \neq y(t - t_0)$$
 System is not time invariant

Consider a bounded input $x(t) = \cos 3t$

$$y(t) = \int_{-\infty}^{t} \cos^2 3t = \int_{-\infty}^{t} \frac{1 - \cos 6t}{2} = \frac{1}{2} \int_{-\infty}^{t} dt - \frac{1}{2} \int_{-\infty}^{t} \cos 6t \, dt$$

 $\infty, \ y(t) \to \infty \text{ (unbounded)}$ System is not stable.

As
$$t \to \infty$$
, $y(t) \to \infty$ (unbounded) System is not s

Option (C) is correct.

$$H(j\omega) = \frac{(2\cos\omega)(\sin 2\omega)}{\omega} = \frac{\sin 3\omega}{\omega} + \frac{\sin\omega}{\omega}$$

We know that inverse Fourier transform of $\sin c$ function is a rectangular function.

So, inverse Fourier transform of
$$H(j\omega)$$

$$h(t) = h_1(t) + h_2(t)$$

$$h(0) = h_1(0) + h_2(0) = \frac{1}{2} + \frac{1}{2} = 1$$

Option (A) is correct. 6.16 Convolution sum is defined as

$$y[n] = h[n] * g[n] = \sum_{k=-\infty}^{\infty} h[n] g[n-k]$$

For causal sequence, $y[n] = \sum_{k=0}^{\infty} h[n] g[n-k]$

$$y[n] = h[n] g[n] + h[n] g[n-1] + h[n] g[n-2] + \dots$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

For
$$n = 0$$
,
 $y[0] = h[0] g[0] + h[1] g[-1] + \dots$
 $y[0] = h[0] g[0] g[-1] = g[-2] = \dots 0$
 $y[0] = h[0] g[0]$...(i)
For $n = 1$,
 $y[1] = h[1] g[1] + h[1] g[0] + h[1] g[-1] + \dots$
 $y[1] = h[1] g[1] + h[1] g[0]$
 $\frac{1}{2} = \frac{1}{2} g[1] + \frac{1}{2} g[0] h[1] = (\frac{1}{2})^1 = \frac{1}{2}$
 $1 = g[1] + g[0]$
 $g[1] = 1 - g[0]$
From equation (i),
 $g[0] = \frac{y[0]}{h[0]} = \frac{1}{1} = 1$
So,
 $g[1] = 1 - 1 = 0$

Option (A) is correct.

We have
$$100\frac{d^2y}{dt^2} - 20\frac{dy}{dt} + y = x(t)$$

Applying Laplace transform we get

$$100s^{2} Y(s) - 20s Y(s) + Y(s) = X(s)$$

or

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{100s^2 - 20s + 1}$$

$$= \frac{1/100}{s^2 - (1/5)s + 1/100} = \frac{A}{s^2 + 2\xi\omega_n s + \omega^2}$$

Here $\omega_n = 1/10$ and $2\xi\omega_n = -1/5$ giving $\xi = -1$ Roots are s = 1/10, 1/10 which lie on Right side of s plane thus unstable.

Option (C) is correct.

For an even function Fourier series contains dc term and cosine term (even and odd harmonics).

Function $h(n) = a^n u(n)$ stable if |a| < 1 and Unstable if $|a| \ge 1$ $= 2^n u(n-2);$ We We have h(n)

6.17

6.18

6.19

Here |a| = 2 therefore h(n) is unstable and since h(n) = 0 for n < 0Therefore h(n) will be causal. So h(n) is causal and not stable.

Impulse response
$$= \frac{d}{dt}$$
 (step response)
 $= \frac{d}{dt}(1 - e^{-\alpha t})$
 $= 0 + \alpha e^{-\alpha t} = \alpha e^{-\alpha t}$

Option (D) is correct. 6.21

We have
$$x(t) = \exp(-2t)\mu(t) + s(t-6)$$
 and $h(t) = u(t)$
Taking Laplace Transform we get

 $X(s) = \left(\frac{1}{s+2} + e^{-6s}\right)$ and $H(s) = \frac{1}{s}$

 $=\frac{1}{s}\left[\frac{1}{s+2}+e^{-6s}\right]=\frac{1}{s(s+2)}+\frac{e^{-6s}}{s}$

Now

or

$$Y(s) = \frac{1}{2s} - \frac{1}{2(s+2)} + \frac{e^{-6s}}{s}$$

Y(s) = H(s)X(s)

Thus

$y(t) = 0.5 [1 - \exp(-2t)] u(t) + u(t - 6)$ **GATE Electronics & Communication** by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

y(n) = x(n-1)

Option (B) is correct. 6.22

or

$$Y(z) = z^{-1}X(z)$$
$$\frac{Y(z)}{X(z)} = H(z) = z^{-1}$$
$$H_{r}(z) H_{r}(z) = z^{-1}$$

or

$$egin{aligned} &H_1(z)\,H_2(z)=z^{-1}\ &\left(rac{1-0.4z^{-1}}{1-0.6z^{-1}}
ight)\!H_2(z)=z^{-1}\ &H_2(z)=rac{z^{-1}(1-0.6z^{-1})}{(1-0.4z^{-1})} \end{aligned}$$

Option (B) is correct. 6.23 For 8 point DFT, $x^*[1] = x[7]; x^*[2] = x[6]; x^*[3] = x[5]$ and it is conjugate symmetric about x[4], x[6] = 0; x[7] = 1 + j3

Option (C) is correct. 6.24

For a function x(t) trigonometric fourier series is

$$x(t) = A_o + \sum_{n=1}^{\infty} [A_n \cos n\omega t + B_n \sin n\omega t]$$
$$A_o \frac{1}{T_0} \int x(t) dt \qquad T_0 \rightarrow \text{fundamental period}$$

Where,

and

$$A_n = \frac{2}{T_0} \int_{T_0} x(t) \cos n\omega t \, dt$$
$$B_n = \frac{2}{T_0} \int_{T_0} x(t) \sin n\omega t \, dt$$

For an even function $x(t), B_n = 0$

Since given function is even function so coefficient $B_n = 0$, only cosine and constant terms are present in its fourier series representation

Constant term

$$A_{0} = \frac{1}{T} \int_{-T/4}^{3T/4} x(t) dt$$

= $\frac{1}{T} \Big[\int_{-T/4}^{T/4} A dt + \int_{T/4}^{3T/4} - 2A dt \Big]$
= $\frac{1}{T} \Big[\frac{TA}{2} - 2A \frac{T}{2} \Big] = -\frac{A}{2}$

Constant term is negative.

Option (A) is correct. $\alpha Z^{\pm a} \xleftarrow{\text{Inverse Z-transform}} \alpha \delta[n \pm a]$ We know that $X(z) = 5z^2 + 4z^{-1} + 3$ Given that $x[n] = 5\delta[n+2] + 4\delta[n-1] + 3\delta[n]$ Inverse z-transform Option (C) is correct. $h_1[n] = \delta[n-1] \text{ or } H_1[Z] = Z^{-1}$ We have $h_2[n] = \delta[n-2] \text{ or } H_2(Z) = Z^{-2}$ and Response of cascaded system $H(z) = H_1(z) \cdot H_2(z)$

$$= z^{-1} \cdot z^{-2} = z^{-3}$$

or,

6.25

6.26

6.28

Option (D) is correct. 6.27

> For an N-point FET algorithm butterfly operates on one pair of samples and involves two complex addition and one complex multiplication.

 $h[n] = \delta[n-3]$

Option (D) is correct.

We have

and

$$f(t) = \mathcal{L}^{-1} \left[\frac{3s+1}{s^3 + 4s^2 + (k-3)s} \right]$$
$$\lim_{t \to \infty} f(t) = 1$$

By final value theorem

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) = 1$$

or
$$\lim_{s \to 0} \frac{s \cdot (3s+1)}{s^3 + 4s^2 + (k-3)s} = 1$$

or
$$\lim_{s \to 0} \frac{s(3s+1)}{s[s^2 + 4s + (k-3)]} = 1$$
$$\frac{1}{k-3} = 1$$

or

6.29

Option (B) is correct. System is described as

$$\frac{d^2y(t)}{dt^2} + 4\frac{dt(t)}{dt} + 3y(t) = 2\frac{dx(t)}{dt} + 4x(t)$$

k = 4

Taking Laplace transform on both side of given equation

$${}^{2}Y(s) + 4sY(s) + 3Y(s) = 2sX(s) + 4X(s)$$

 $(s^{2}+4s+3) Y(s) = 2(s+2) X(s) s$

Transfer function of the system

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

	$H(s) = \frac{Y(s)}{X(s)} = \frac{2(s+2)}{s^2 + 4s + 3} = \frac{2(s+2)}{(s+3)(s+1)}$
Input	$x(t) = e^{-2t} u(t)$
or,	$X(s) = \frac{1}{(s+2)}$
Output	$Y(s) = H(s) \cdot X(s)$
	$Y(s) = \frac{2(s+2)}{(s+3)(s+1)} \cdot \frac{1}{(s+2)}$

By Partial fraction

$$Y(s) = \frac{1}{s+1} - \frac{1}{s+3}$$

Taking inverse Laplace transform

Page 147

$$y(t) = (e^{-t} - e^{-3t})u(t)$$

Option (C) is correct. 6.30 We have

$$H(z) = \frac{2 - \frac{3}{4}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{2}z^{-2}}$$

By partial fraction H(z) can be written as

$$H(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)} + \frac{1}{\left(1 - \frac{1}{4}z^{-1}\right)}$$

For ROC : |z| > 1/2

$$h[n] = \left(\frac{1}{2}\right)^{n} u[n] + \left(\frac{1}{4}\right)^{n} u[n], \ n > 0 \qquad \qquad \frac{1}{1 - z^{-1}} = a^{n} u[n], \ |z| > a^{n} u[n], \ |z| = u^{n} u[n], \ |z| = u$$

Thus system is causal. Since ROC of H(z) includes unit circle, so it is stable also. Hence S_1 is True

For ROC : $|z| < \frac{1}{4}$

$$h[n] = -\left(\frac{1}{2}\right)^{n} u[-n-1] + \left(\frac{1}{4}\right)^{n} u(n), \left| z \right| > \frac{1}{4}, \left| z \right| < \frac{1}{2}$$

System is not causal. ROC of H(z) does not include unity circle, so it is not stable and S_3 is True

Option (A) is correct. 6.31

> The Fourier series of a real periodic function has only cosine terms if it is even and sine terms if it is odd.

Option (B) is correct. 6.32

Given function is

$$f(t) = \sin^2 t + \cos 2t = \frac{1 - \cos 2t}{2} + \cos 2t = \frac{1}{2} + \frac{1}{2}\cos 2t$$

The function has a DC term and a cosine function. The frequency of cosine terms is

$$\omega = 2 = 2\pi f \rightarrow f = \frac{1}{\pi} \text{ Hz}$$

The given function has frequency component at 0 and $\frac{1}{\pi}$ Hz.

Option (A) is correct. 6.33

$$x[n] = \left(\frac{1}{3}\right)^n u(n) - \left(\frac{1}{2}\right)^n u(-n-1)$$

Taking z transform we have

 $X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n z^{-n} - \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n z^{-n}$ $=\sum_{n=0}^{n=\infty} \left(\frac{1}{3}z^{-1}\right)^n - \sum_{n=-\infty}^{n=-1} \left(\frac{1}{2}z^{-1}\right)^n$ $\frac{1}{3}z^{-1} < 1 \rightarrow \frac{1}{3} < |z|$

First term gives

Second term gives

 $\frac{1}{2}z^{-1} > 1 \to \frac{1}{2} > |z|$

Thus its ROC is the common ROC of both terms. that is

$$\frac{1}{3} < \left| z \right| < \frac{1}{2}$$

Option (B) is correct. 6.34

By property of unilateral Laplace transform

$$\int_{-\infty}^{t} f(\tau) \, d\tau \quad \xleftarrow{L} \quad \frac{F(s)}{s} + \frac{1}{s} \int_{-\infty}^{0^{-}} f(\tau) \, d\tau$$

Here function is defined for $0 < \tau < t$, Thus

$$\int_0^t f(\tau) \quad \xleftarrow{L} \quad \frac{F(s)}{s}$$

Option (A) is correct. 6.35

> We have h(2) = 1, h(3) = -1 otherwise h(k) = 0. The diagram of response is as follows :

It has the finite magnitude values. So it is a finite impulse response filter. Thus S_2 is true but it is not a low pass filter. So S_1 is false.

Option (B) is correct.

Here $h(t) \neq 0$ for t < 0. Thus system is non causal. Again any bounded input x(t) gives bounded output y(t). Thus it is BIBO stable.

Here we can conclude that option (B) is correct.

Option (D) is correct. 6.37

We have

6.36

 $x[n] = \{1, 0, 2, 3\}$ and N = 4 $X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/N} \quad k = 0, 1...N - 1$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

X

For N = 4,

Now

$$X[k] = \sum_{n=0}^{3} x[n] e^{-j2\pi nk/4} \quad k = 0, 1, \dots 3$$
$$X[0] = \sum_{n=0}^{3} x[n]$$
$$= x[0] + x[1] + x[2] + x[3]$$

= 1 + 0 + 2 + 3 = 6

$$\begin{aligned} x[1] &= \sum_{n=0}^{3} x[n] e^{-j\pi n/2} \\ &= x[0] + x[1] e^{-j\pi/2} + x[2] e^{-j\pi} + x[3] e^{-j\pi 3/2} \\ &= 1 + 0 - 2 + j3 = -1 + j3 \\ X[2] &= \sum_{n=0}^{3} x[n] e^{-j\pi n} \\ &= x[0] + x[1] e^{-j\pi} + x[2] e^{-j2\pi} + x[3] e^{-j\pi 3} \\ &= 1 + 0 + 2 - 3 = 0 \\ X[3] &= \sum_{n=0}^{3} x[n] e^{-j3\pi n/2} \end{aligned}$$

$$= x[0] + x[1] e^{-j3\pi/2} + x[2] e^{-j3\pi} + x[3] e^{-j9\pi/2}$$
$$= 1 + 0 - 2 - j3 = -1 - j3$$
Thur, [6, 1, 1, 2]

Thus |6, -1 + j3, 0, -1 - j3|

Option (A) is correct. 6.38

6.39

Option (C) is correct.

The output of causal system depends only on present and past states only.

- In option (A) y(0) depends on x(-2) and x(4).
- In option (B) y(0) depends on x(1).
- In option (C) y(0) depends on x(-1).
- In option (D) y(0) depends on x(5).

Thus only in option (C) the value of y(t) at t = 0 depends on x(-1)past value. In all other option present value depends on future value.

Option (D) is correct. 6.40

We have

$$h(t) = e^{\alpha t} u(t) + e^{\beta t} u(-t)$$

This system is stable only when bounded input has bounded output For stability $\alpha t < 0$ for t > 0 that implies $\alpha < 0$ and $\beta t > 0$ for t > 0 that implies $\beta > 0$. Thus, α is negative and β is positive.

Option (C) is correct. 6.41

$$G(s) = \frac{K(s+1)}{(s+2)(s+4)}, \text{ and } R(s) = \frac{1}{s}$$

$$C(s) = G(s)R(s) = \frac{K(s+1)}{s(s+2)(s+4)}$$

$$= \frac{K}{8s} + \frac{K}{4(s+2)} - \frac{3K}{8(s+4)}$$

$$c(t) = K \left[\frac{1}{8} + \frac{1}{4}e^{-2t} - \frac{3}{8}e^{-4t}\right] u(t)$$

Thus

At steady-state, $c(\infty) = 1$

Thus

 $\frac{K}{8} = 1$ or K = 8

Then,

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$h(t) = L^{-1}G(s) = (-4e^{-2t} + 12e^{-4t})u(t)$$

 $G(s) = \frac{8(s+1)}{(s+2)(s+4)} = \frac{12}{(s+4)} - \frac{4}{(s+2)}$

Option (A) is correct. 6.42

We have

 $x(t) = \begin{cases} 1 & \text{for} - 1 \le t \le +1 \\ 0 & \text{otherwise} \end{cases}$

Fourier transform is

 $\int_{-\infty}^{\infty} e^{-j\omega t} x(t) dt = \int_{-1}^{1} e^{-j\omega t} 1 dt$

$$= \frac{1}{-j\omega} [e^{-j\omega t}]_{-1}^{1}$$
$$= \frac{1}{-j\omega} (e^{-j\omega} - e^{j\omega}) = \frac{1}{-j\omega} (-2j\sin\omega)$$
$$= \frac{2\sin\omega}{\omega}$$

This is zero at $\omega = \pi$ and $\omega = 2\pi$

Option (D) is correct. 6.43

Given

h(n) = [1, -1, 2]x(n) = [1,0,1] $y(n) = x(n)^* h(n)$

The length of y[n] is $= L_1 + L_2 - 1 = 3 + 3 - 1 = 5$

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

$$y(2) = \sum_{k=-\infty}^{\infty} x(k) h(2-k)$$

$$= x(0) h(2-0) + x(1) h(2-1) + x(2) h(2-2)$$

$$= h(2) + 0 + h(0) = 1 + 2 = 3$$

There are 5 non zero sample in output sequence and the value of y[2] is 3.

Option (B) is correct. 6.44

> Mode function are not linear. Thus y(t) = |x(t)| is not linear but this functions is time invariant. Option (A) and (B) may be correct.

The y(t) = t|x(t)| is not linear, thus option (B) is wrong and (a) is correct. We can see that

 R_1 : $y(t) = t^2 x(t)$ Linear and time variant.

 R_2 : y(t) = t |x(t)| Non linear and time variant.

 R_3 : y(t) = x|(t)| Non linear and time invariant R_4 : y(t) = x(t-5) Linear and time invariant

Option (A) is correct.

Given :
$$y(n) = \frac{1}{N} \sum_{r=0}^{N-1} x(r) x(n+r)$$

It is Auto correlation.

Hence
$$y(n) = r_{xx}(n) \xrightarrow{DFT} |X(k)|^2$$

Option (B) is correct. Current through resistor (i.e. capacitor) is

Here,

6.45

6.46

$$RC = 200k \times 10\mu = 2 \text{ se}$$
$$I = 25e^{-\frac{t}{2}}\mu\text{A}$$
$$= V_R \times R = 5e^{-\frac{t}{2}}\text{ V}$$

 $I(0^+) = \frac{V}{R} = \frac{5}{200k} = 25\mu A$

 $I = I(0^+) e^{-t/RC}$

Here the voltages across the resistor is input to sampler at frequency of 10 Hz. Thus

$$x(n) = 5e^{\frac{-n}{2 \times 10}} = 5e^{-0.05n}$$
 For $t > 0$

Option (C) is correct. 6.47

> $x(n) = 5e^{-0.05n}u(n)$ is a causal signal Since Its z transform is

$$X(z) = 5 \left[\frac{1}{1 - e^{-0.05} z^{-1}} \right] = \frac{5z}{z - e^{-0.05}}$$
$$e^{-0.05} z^{-1} \ge 1 \Rightarrow |z| \ge e^{-0.05}$$

Its ROC is $|e^{-0.05}z^{-1}| > 1 \rightarrow |z| > e^{-1}$

Option (C) is correct. 6.48

$$h(t) = e^{-2t} u(t)$$

$$H(j\omega) = \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} e^{-2t} e^{-j\omega t} dt = \int_{0}^{\infty} e^{-(2+j\omega)t} dt = \frac{1}{(2+j\omega)}$$

Option (D) is correct. 6.49

$$H(j\omega) = \frac{1}{(2+j\omega)}$$

The phase response at $\omega = 2$ rad/sec is

$$\angle H(j\omega) = -\tan^{-1}\frac{\omega}{2} = -\tan^{-1}\frac{2}{2} = -\frac{\pi}{4} = -0.25\pi$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Magnitude response at
$$\omega = 2$$
 rad/sec is
 $|H(j\omega)| = \sqrt{\frac{1}{2^2 + w^2}} = \frac{1}{2\sqrt{2}}$
Input is $x(t) = 2\cos(2t)$
Output is $= \frac{1}{\sqrt{2}} \times 2\cos(2t - t)$

Out

6.50

$$= \frac{1}{2\sqrt{2}} \times 2\cos(2t - 0.25\pi)$$
$$= \frac{1}{\sqrt{2}}\cos[2t - 0.25\pi]$$

Option (D) is correct. $Y(s) = \frac{1}{s(s-1)}$

Final value theorem is applicable only when all poles of system lies in left half of S-plane. Here s = 1 is right s-plane pole. Thus it is

unbounded.

Option (A) is correct. 6.51

 $x(t) = e^{-t}u(t)$

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{1+\omega^2}}$

Taking Fourier transform

$$X(j\omega) = \frac{1}{1+j\omega}$$
$$|X(j\omega)| = \frac{1}{1+j\omega}$$

$$|A(j\omega)| = 1 + \omega^2$$

Magnitude at 3dB frequency is $\frac{1}{\sqrt{2}}$

Thus

or
$$\omega = 1 \text{ rad}$$

or $f = \frac{1}{2\pi} \text{ Hz}$

Option (B) is correct. 6.52

> For discrete time Fourier transform (DTFT) when $N \rightarrow \infty$ $1 \int_{-\pi}^{\pi}$

$$x[n] = \frac{1}{2\pi} \int_{-\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Putting n = 0 we get

$$x[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega 0} d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$$
or
$$\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega = 2\pi x[0] = 2\pi \times 5 = 10\pi$$

Option (B) is correct. 6.53

 $X(z) = \frac{0.5}{1 - 2z^{-1}}$

Since ROC includes unit circle, it is left handed system

$$x(n) = -(0.5)(2)^{-n}u(-n-1)$$

x(0) = 0

If we apply initial value theorem

$$x(0) = \lim_{z \to \infty} X(z) = \lim_{z \to \infty} \frac{0.5}{1 - 2z^{-1}} = 0.5$$

That is wrong because here initial value theorem is not applicable because signal x(n) is defined for n < 0.

Option (A) is correct. 6.54

A Hilbert transformer is a non-linear system.

Option (B) is correct. 6.55

Step response

$$H(f) = \frac{5}{1+j10\pi f}$$

$$H(s) = \frac{5}{1+5s} = \frac{5}{5(s+\frac{1}{5})} = \frac{1}{s+\frac{1}{5}}$$

$$Y(s) = \frac{1}{s} \frac{a}{(s+\frac{1}{5})}$$

$$Y(s) = \frac{1}{s} \frac{1}{(s+\frac{1}{5})} = \frac{5}{s} - \frac{5}{s+\frac{1}{5}}$$

$$y(t) = 5(1-e^{-t/5})u(t)$$

or

6.56

or

Option (A) is correct.
$$x(t) \xleftarrow{F} X(j\omega)$$

 $x(5t) \xleftarrow{F} \frac{1}{5} X\left(\frac{j\omega}{5}\right)$ Using shifting property we get

 $x\left[5\left(t-\frac{3}{5}\right)\right] \stackrel{F}{\longleftrightarrow} \frac{1}{5} X\left(\frac{j\omega}{5}\right) e^{-\frac{j3\omega}{5}}$

Option (D) is correct. 6.57

Dirac delta function $\delta(t)$ is defined at t = 0 and it has infinite value 6.65

a t = 0. The area of dirac delta function is unity.

Option (D) is correct. 6.58

> The ROC of addition or subtraction of two functions $x_1(n)$ and $x_2(n)$ is $R_1 \cap R_2$. We have been given ROC of addition of two function and has been asked ROC of subtraction of two function. It will be same.

> > $H(j\omega) = \frac{1}{j\omega+1} = \frac{1}{j+1}$

 $H(j\omega) = \frac{1}{\sqrt{2}} \angle -45^{\circ}$

 $x(t) = \sin t,$

 $H(s) = \frac{1}{s+1}$

Option (A) is correct. 6.59

> As we have Now or or

6.60

T

Option (C) is correct.
$$\sqrt{}$$

$$F(s) = \frac{\omega_0}{s^2 + \omega^2}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

$$L^{-1}F(s) = \sin \omega_o t$$
$$f(t) = \sin \omega_o t$$
Thus the final value is $-1 \le f(\infty) \le 1$

Option (C) is correct. 6.61

$$y(n) = \left(\sin\frac{5}{6}\pi n\right)x(n)$$

Let

6.62

6.64

Now $y(n) = \sin 0 = 0$ (bounded)

Option (B) is correct.

$$c(t) = 1 - e^{-2t}$$

 $x(n) = \delta(n)$

Taking Laplace transform

$$C(s) = \frac{C(s)}{U(s)} = \frac{2}{s(s+2)} \times s = \frac{2}{s+2}$$

6.63 Option (C) is correct.

$$h(t) = e^{-t} \xrightarrow{L} H(s) = \frac{1}{s+1}$$

$$x(t) = u(t) \xrightarrow{L} X(s) = \frac{1}{s}$$

$$Y(s) = H(s)X(s) = \frac{1}{s+1} \times \frac{1}{s} = \frac{1}{s} - \frac{1}{s+1}$$

$$y(t) = u(t) - e^{-t}$$

In steady state i.e. $t \to \infty$, $y(\infty) = 1$

Option (C) is correct.

Fourier series is defined for periodic function and constant. $3\sin(25t)$ is a periodic function.

 $4\cos(20t+3) + 2\sin(710t)$ is sum of two periodic function and also a periodic function.

 $e^{-|t|}\sin(25t)$ is not a periodic function, so FS can't be defined for it. 1 is constant

Option (A) is correct.

thus $\omega = 1$

BIBO stable

$$y(t) = \frac{1}{\sqrt{2}}\sin\left(t - \frac{\pi}{4}\right)$$

$$F(s) = \frac{\omega_0}{c^2 + c^2}$$

$$\operatorname{Ev}\{g(t)\} = \frac{g(t) + g(-t)}{2}$$

odd $\{g(t)\} = \frac{g(t) - g(-t)}{2}$

Here Thus

Here

$$g(t) = u(t)$$
$$u_e(t) = \frac{u(t) + u(t)}{u_e(t)}$$

 $u_e(t) = \frac{u(t) + u(-t)}{2} = \frac{1}{2}$ $u_o(t) = \frac{u(t) - u(-t)}{2} = \frac{x(t)}{2}$

6.66 Option (C) is correct.

$$x_{1}(n) = \left(\frac{5}{6}\right)^{n} u(n)$$

$$X_{1}(z) = \frac{1}{1 - \left(\frac{5}{6}z^{-1}\right)}$$

$$ROC : R_{1} \rightarrow |z| > \frac{5}{6}$$

$$x_{2}(n) = -\left(\frac{6}{5}\right)^{n} u(-n-1)$$

$$X_{1}(z) = 1 - \frac{1}{1 - \left(\frac{6}{5}z^{-1}\right)}$$

$$ROC : R_{2} \rightarrow |z| < \frac{6}{5}$$

Thus ROC of $x_1(n) + x_2(n)$ is $R_1 \cap R_2$ which is $\frac{5}{6} < |z| < \frac{5}{5}$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

6.67 Option (D) is correct.

For causal system h(t) = 0 for $t \le 0$. Only (D) satisfy this condition. Option (D) is correct.

or

6.68

$$y(n) = x^{2}(n) = \left(\frac{1}{2}\right)^{2n} u^{2}(n)$$
$$y(n) = \left[\left(\frac{1}{2}\right)^{2}\right]^{n} u(n) = \left(\frac{1}{4}\right)^{n} u(n)$$
$$Y(e^{j\omega}) = \sum_{n=-\infty}^{n=\infty} y(n) e^{-j\omega n} = \sum_{n=0}^{n=\infty} \left(\frac{1}{4}\right)^{n} e^{-j\omega n}$$

 $x(n) = \left(\frac{1}{2}\right)^n u(n)$

or

$$\begin{split} Y(e^{j0}) &= \sum_{n=0}^{n=\infty} \left(\frac{1}{4}\right)^n = 1 + \left(\frac{1}{4}\right)^1 + \left(\frac{1}{4}\right) + \left(\frac{1}{4}\right)^3 + \left(\frac{1}{4}\right)^4 \\ Y(e^{j0}) &= \frac{1}{1 - \frac{1}{4}} = \frac{4}{3} \end{split}$$

Alternative :

Taking z transform of (1) we get

$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-1}}$$

Substituting $z = e^{j\omega}$ we have

$$Y(e^{j\omega}) = \frac{1}{1 - \frac{1}{4}e^{-j\omega}}$$
$$Y(e^{j0}) = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$$

69 Option (A) is correct.

$$s(t) = 8\cos(\frac{\pi}{2} - 20\pi t) + 4\sin 15\pi t$$

$$= 8\sin 20\pi t + 4\sin 15\pi t$$

Here $A_1 = 8$ and $A_2 = 4$. Thus power is

$$P = \frac{A_1^2}{2} + \frac{A_2^2}{2} = \frac{8^2}{2} + \frac{4^2}{2} = 40$$

6.70 Option (A) is correct.

$$y(t)$$

$$= 0.5x(t - t_d + T) + x(t - t_d) + 0.5x(t - t_d - T)$$
Taking Fourier transform we have
$$Y(\omega)$$

$$= 0.5e^{-j\omega(-t_d + T)}X(\omega) + e^{-j\omega t_d}X(\omega) + 0.5e^{-j\omega(-t_d - T)}X(\omega)$$
or
$$\frac{Y(\omega)}{X(\omega)} = e^{-j\omega t_d}[0.5e^{j\omega T} + 1 + 0.5e^{-j\omega T}]$$

$$= e^{-j\omega t_d}[0.5(e^{j\omega T} + e^{-j\omega T}) + 1]$$

 $= e^{-j\omega t_d} [\cos \omega T + 1]$

$$H(\omega) = rac{Y(\omega)}{X(\omega)} = e^{-j\omega t_d} (\cos \omega T + 1)$$

6.71 Option (C) is correct.

or

or

6.73

6.74

...(1)

For continuous and aperiodic signal Fourier representation is continuous and aperiodic.

For continuous and periodic signal Fourier representation is discrete and aperiodic.

For discrete and aperiodic signal Fourier representation is continuous and periodic.

For discrete and periodic signal Fourier representation is discrete and periodic.

6.72 Option (B) is correct.

$$y(n) = Ax(n - n_o)$$

Taking Fourier transform $V(i\omega) = A^{-i\omega n_{\mu}} V(i\omega)$

$$egin{aligned} Y(e^{j\omega}) &= Ae^{-j\omega_o n_o}X(e^{j\omega}) \ H(e^{j\omega}) &= rac{Y(e^{j\omega})}{X(e^{j\omega})} = Ae^{-j\omega_o n_o} \end{aligned}$$

Thus $\angle H(e^{j\omega}) = -\omega_o n_o$

For LTI discrete time system phase and frequency of $H(e^{j\omega})$ are periodic with period 2π . So in general form

$$\theta(\omega) = -n_o\omega_o + 2\pi k$$

From $\begin{aligned} x(n) &= \left[\frac{1}{2}, 1, 2, 1, 1, \frac{1}{2}\right] \\ y(n) &= x\left(\frac{n}{2} - 1\right), n \text{ even} \\ &= 0, \text{ for } n \text{ odd} \\ n &= -2, \qquad y(-2) &= x\left(\frac{-2}{2} - 1\right) = x(-2) = \frac{1}{2} \\ n &= -1, \qquad y(-1) &= 0 \\ n &= 0, \qquad y(0) &= x\left(\frac{0}{2} - 1\right) = x(-1) = 1 \\ n &= 1, \qquad y(1) &= 0 \end{aligned}$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

n = 2	$y(2) = x(\frac{2}{2} - 1) = x(0) = 2$
n=3,	y(3) = 0
n = 4	$y(4) = x(\frac{4}{2} - 1) = x(1) = 1$
n = 5,	y(5) = 0
n = 6	$y(6) = x(\frac{6}{2} - 1) = x(2) = \frac{1}{2}$
Hence	y(n)
$=\frac{1}{2}\delta(n+2) + \delta(n) +$	$2\delta(n-2) + \delta(n-4) + \frac{1}{2}\delta(n-6)$

Option (C) is correct.

Here y(n) is scaled and shifted version of x(n) and again y(2n) is scaled version of y(n) giving

$$z(n) = y(2n) = x(n-1)$$

= $\frac{1}{2}\delta(n+1) + \delta(n) + 2\delta(n-1) + \delta(n-2) + \frac{1}{2}\delta(n-3)$

Taking Fourier transform.

$$Z(e^{j\omega}) = \frac{1}{2}e^{j\omega} + 1 + 2e^{-j\omega} + e^{-2j\omega} + \frac{1}{2}e^{-3j\omega}$$
$$= e^{-j\omega} \left(\frac{1}{2}e^{2j\omega} + e^{j\omega} + 2 + e^{-j\omega} + \frac{1}{2}e^{-2j\omega}\right)$$
$$= e^{-j\omega} \left(\frac{e^{2j\omega} + e^{-2j\omega}}{2} + e^{j\omega} + 2 + e^{-j\omega}\right)$$
$$Z(e^{j\omega}) = e^{-j\omega} [\cos 2\omega + 2\cos \omega + 2]$$

6.75

or Opt

$$x(t) \longleftrightarrow X(f)$$

 $x(at) \xleftarrow{F} \frac{1}{|a|} X\left(\frac{f}{a}\right)$

 $x\left(\frac{1}{3}f\right) \xleftarrow{F} 3X(3f)$

Using scaling we have

Thus

Using shifting property we get

Thus

$$\frac{1}{3} e^{-j\frac{4}{3}\pi t} x\left(\frac{1}{3}t\right) \stackrel{F}{\longleftrightarrow} X(3f+2)$$
$$e^{-j2\pi\frac{2}{3}t} x\left(\frac{1}{3}t\right) \stackrel{F}{\longleftrightarrow} 3X(3(f+\frac{2}{3}))$$
$$\frac{1}{3} e^{-j\pi\frac{4}{3}t} x\left(\frac{1}{3}t\right) \stackrel{F}{\longleftrightarrow} X[3(f+\frac{2}{3})]$$

 $e^{-j2\pi f_0 t}x(t) = X(f+f_0)$

Option (A) is correct. 6.76

A system is stable if $\sum_{n=-\infty}^{\infty} |h(n)| < \infty$. The plot of given h(n) is y[n]

 $\sum_{n=-\infty}^{\infty}$

Thus

$$|h(n)| = \sum_{n=-3}^{6} |h(n)|$$

= 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2
= 15 < \infty

Hence system is stable but $h(n) \neq 0$ for n < 0. Thus it is not causal.

Option (D) is correct. 6.77

$$H(z) = \frac{z}{z - 0.2} \qquad |z| < 0.2$$

We know that

Thus

 $-a^{n}u[-n-1]\longleftrightarrow \frac{1}{1-az^{-1}}$ $h[n] = -(0.2)^n u[-n-1]$

Option (C) is correct. 6.78

The Fourier transform of a conjugate symmetrical function is always real.

Option (A) is correct. 6.79

We have

$$x(n) = \begin{bmatrix} -4 - j5, & 1 + 2j, & 4 \end{bmatrix}$$
$$x^{*}(n) = \begin{bmatrix} -4 + j5, & 1 - 2j, & 4 \end{bmatrix}$$
$$x^{*}(-n) = \begin{bmatrix} 4, & 1 - 2j, & -4 + j5 \end{bmatrix}$$

$$x_{cas}(n) = \frac{x(n) - x^{*}(-n)}{2}$$
$$= \left[-4 - j\frac{5}{2}, \quad 2j \quad 4 - j\frac{5}{2}\right]$$

Option (C) is correct. 6.80

We have
$$2y(n) = \alpha y(n-2) - 2x(n) + \beta x(n-1)$$

Taking z transform we get
$$2Y(z) = \alpha Y(z) z^{-2} - 2X(z) + \beta X(z) z^{-1}$$

or
$$\frac{Y(z)}{X(z)} = \left(\frac{\beta z^{-1} - 2}{2 - \alpha z^{-2}}\right) \qquad \dots(i)$$

or
$$H(z) = \frac{z(\frac{\beta}{2} - z)}{(z^2 - \frac{\alpha}{2})}$$

or

It has poles at $\pm \sqrt{\alpha/2}$ and zero at 0 and $\beta/2$. For a stable system poles must lie inside the unit circle of z plane. Thus

$$\left|\sqrt{\frac{\alpha}{2}}\right| < 1$$
$$\left|\alpha\right| < 2$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

www.nodia.co.in

But zero can lie anywhere in plane. Thus, β can be of any value. Option (D) is correct.

 $y(n) = x(n)^* h(n)$

We have
$$\begin{aligned} x(n) &= e^{j\pi n/4} \\ \text{and} & h(n) \\ &= 4\sqrt{2}\,\delta(n+2) - 2\sqrt{2}\,\delta(n+1) - 2\sqrt{2}\,\delta(n-1) \\ &\quad + 4\sqrt{2}\,\delta(n-2) \end{aligned}$$

Now

or

6.81

$$=\sum_{k=-\infty}^{\infty}x$$

$$y(n-k)h(k) = \sum_{k=-2}^{2} x(n-k)h(k)$$

$$y(n) = x(n+2)h(-2) + x(n+1)h(-1)$$

$$+ x(n-1)h(1) + x(n-2)h(2)$$

$$= 4\sqrt{2} e^{j_4^{\pi}(n+2)} - 2\sqrt{2} e^{j_4^{\pi}(n+1)} - 2\sqrt{2} e^{j_4^{\pi}(n-1)} + 4\sqrt{2} e^{j_4^{\pi}(n-2)}$$

$$= 4\sqrt{2} \left[e^{j_{4}^{\pi}(n+2)} + e^{j_{4}^{\pi}(n-2)} \right] - 2\sqrt{2} \left[e^{j_{4}^{\pi}(n+1)} + e^{j_{4}^{\pi}(n-1)} \right]$$

$$= 4\sqrt{2} e^{j\frac{\pi}{4}n} \left[e^{j\frac{\pi}{2}} + e^{-j\frac{\pi}{2}} \right] - 2\sqrt{2} e^{j\frac{\pi}{2}n} \left[e^{j\frac{\pi}{4}} + e^{-j\frac{\pi}{4}} \right]$$
$$= 4\sqrt{2} e^{j\frac{\pi}{4}n} [0] - 2\sqrt{2} e^{j\frac{\pi}{4}n} [2\cos\frac{\pi}{4}]$$
or
$$y(n) = -4 e^{j\frac{\pi}{4}n}$$

or Option (B) is correct.

Thus

|z| < a

6.82

From given graph the relation in
$$x(t)$$
 and $y(t)$ is

$$y(t) = -x[2(t+1)]$$

$$x(t) \xleftarrow{F} X(f)$$

Using scaling we have

$$\begin{aligned} x(at) &\longleftarrow \frac{F}{\mid a \mid} X\left(\frac{f}{a}\right) \\ x(2t) &\longleftarrow \frac{F}{2} X\left(\frac{f}{2}\right) \end{aligned}$$

Using shifting property we get

 $x(t-t_0) = e^{-j2\pi f t_0} X(f)$

Thus

$$\begin{aligned} x[2(t+1)] &\stackrel{F}{\longleftrightarrow} e^{-j2\pi f(-1)} \frac{1}{2} X\left(\frac{f}{2}\right) = \frac{e^{j2\pi f}}{2} X\left(\frac{f}{2}\right) \\ -x[2(t+1)] &\stackrel{F}{\longleftrightarrow} - \frac{e^{j2\pi f}}{2} X\left(\frac{f}{2}\right) \end{aligned}$$

Option (C) is correct. 6.83 From the Final value theorem we have

 $C_{-3} = C_k = 3 - j5$

 $\lim_{t \to \infty} i(t) = \lim_{s \to 0} sI(s) = \lim_{s \to 0} s \frac{2}{s(1+s)} = \lim_{s \to 0} \frac{2}{(1+s)} = 2$

Option (D) is correct. 6.84 $C_3 = 3 + j5$ Here

For real periodic signal

$$C_{-k} = C_k^*$$

Thus

Option (C) is correct. 6.85

y(t) = 4x(t-2)

Taking Fourier transform we get

 $Y(e^{j2\pi f}) = 4e^{-j2\pi f^2}X(e^{j2\pi f})$ Time Shifting property

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

or

6.87

6.88

i.e.

 $\frac{Y(e^{j2\pi f})}{X(e^{j2\pi f})} = 4e^{-4j\pi f}$ $H(e^{j2\pi f}) = 4e^{-4j\pi f}$ Thus

Option (B) is correct. 6.86

> We have $h(n) = 3\delta(n-3)$ $H(z) = 2z^{-3}$ Taking z transform or $X(z) = z^4 + z^2 - 2z + 2 - 3z^{-4}$ Y(z) = H(z)X(z)Now $=2z^{-3}(z^4+z^2-2z+2-3z^{-4})$ $= 2(z + z^{-1} - 2z^{-2} + 2z^{-3} - 3z^{-7})$ Taking inverse z transform we have $y(n) = 2[\delta(n+1) + \delta(n-1) - 2\delta(n-2)]$ $+2\delta(n-3) - 3\delta(n-7)$]

At n = 4. y(4) = 0

Option (A) is correct.

System is non causal because output depends on future value (1) - (1 + 1)

For
$$n \le 1$$
 $y(-1) = x(-1+1) = x(0)$

 $y(n - n_0) = x(n - n_0 + 1)$ Time varying y(n) = x(n+1)Depends on Future None causal y(1) = x(2)

For bounded input, system has bounded output. So it is stable.

$$y(n) = x(n) \text{ for } n \ge 1$$
$$= 0 \text{ for } n = 0$$
$$= x(x+1) \text{ for } n \le -1$$

So system is linear.

Option (C) is correct. The frequency response of RC-LPF is

$$H(f) = \frac{1}{1 + j2\pi fRC}$$

Now
$$H(0) = 1$$

 $\frac{|H(f_l)|}{|H(0)|} = \frac{1}{\sqrt{1 + 4\pi^2 f_1^2 R^2 C^2}} \ge 0.95$
or $1 + 4\pi^2 f_1^2 R^2 C^2 \le 1.108$
or $4\pi^2 f_1^2 R^2 C^2 \le 0.108$
or $2\pi f_l RC \le 0.329$
or $f_l \le \frac{0.329}{2\pi RC}$
or $f_l \le \frac{0.329}{2\pi RC}$
or $f_l \le \frac{0.329}{2\pi RC}$
or $f_l \le \frac{0.329}{2\pi 1k \times 1\mu}$
or $f_l \le 52.2 \text{ Hz}$
Thus $f_{lmax} = 52.2 \text{ Hz}$

Option (A) is correct.

6.89

$$H(\omega) = \frac{1}{1 + j\omega RC}$$

$$\theta(\omega) = -\tan^{-1}\omega RC$$

$$t_g = -\frac{d\theta(\omega)}{d\omega} = \frac{RC}{1 + \omega^2 R^2 C^2}$$

$$= \frac{10^{-3}}{1 + 4\pi^2 \times 10^4 \times 10^{-6}} = 0.717 \text{ ms}$$

Option (C) is correct. 6.90

If	$x(t)^* h(t) = g(t)$
Then	$x(t-\tau_1)^* h(t-\tau_2) = y(t-\tau_1-\tau_2)$
Thus	$x(t+5)^* \ \delta(t-7) = x(t+5-7) = x(t-2)$

6.91 Option (B) is correct.

> In option (B) the given function is not periodic and does not satisfy Dirichlet condition. So it cant be expansion in Fourier series.

$$x(t) = 2\cos \pi t + 7\cos \pi$$
$$T_1 = \frac{2\pi}{\omega} = 2$$
$$T_2 = \frac{2\pi}{1} = 2\pi$$
$$\frac{T_1}{T_2} = \frac{1}{\pi} = \text{irrational}$$

Option (C) is correct. 6.92

From the duality property of fourier transform we have

If
$$x(t) \xleftarrow{FT} X(f)$$

Then $X(t) \xleftarrow{FT} x(-f)$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Therefore if

$$e^{-t}u(t) \xleftarrow{FT} \frac{1}{1+j2\pi f}$$
$$\frac{1}{1+j2\pi t} \xleftarrow{FT} e^{f}u(-f)$$

Then

and

Option (A) is correct.

$$\theta(\omega) = -\omega t_0$$
$$t_p = \frac{-\theta(\omega)}{\omega} = t_0$$
$$t_g = -\frac{d\theta(\omega)}{d\omega} = t_0$$

 $t_p = t_q = t_0 = \text{constant}$ Thus

Option (*) is correct. 6.94

$$X(s) = \frac{5-s}{s^2-s-2} = \frac{5-s}{(s+1)(s-2)} = \frac{-2}{s+1} + \frac{1}{s-2}$$

Here three ROC may be possible.

Re
$$(s) < -$$

$$\operatorname{Re}(s) > 2$$

$$1 < \operatorname{Re}(s) < 2$$

Since its Fourier transform exits, only -1 < Re(s) < 2 include imaginary axis. so this ROC is possible. For this ROC the inverse Laplace transform is

$$x(t) = [-2e^{-t}u(t) - 2e^{2t}u(-t)]$$

Option (B) is correct. 6.95

For left sided sequence we have

 -5^{n}

$$-a^n u(-n-1) \xleftarrow{z} \frac{1}{1-az^{-1}}$$
 where $|z| < a$

Thus

$$-5^{n}u(-n-1) \xleftarrow{z} \frac{1}{1-5z^{-1}} \qquad \text{where } |z| < 5$$
$$-5^{n}u(-n-1) \xleftarrow{z} \frac{z}{z-5} \qquad \text{where } |z| < 5$$

or

Since ROC is |z| < 5 and it include unit circle, system is stable. Alternative :

$$h(n) = -5^{n} u(-n-1)$$

$$H(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n} = \sum_{n=-\infty}^{-1} -5^{n} z^{-n} = -\sum_{n=-\infty}^{-1} (5z^{-1})^{n}$$

Let n = -m, then

$$H(z) = -\sum_{n=-1}^{\infty} (5z^{-1})^{-m} = 1 - \sum_{m=0}^{\infty} (5^{-1}z)^{-m}$$

= $1 - \frac{1}{1 - 5^{-1}z},$ $|5^{-1}z| < 1 \text{ or } |z| < 5$
= $1 - \frac{5}{5 - z} = \frac{z}{z - 5}$

6.96

Option (B) is correct.

$$\frac{1}{s^2(s-2)} = \frac{1}{s^2} \times \frac{1}{s-2}$$

$$\frac{1}{s^2} \times \frac{1}{s-2} \xleftarrow{} (t^* e^{2t}) u(t)$$

Here we have used property that convolution in time domain is multiplication in s – domain

$$X_1(s) X_2(s) \xleftarrow{LT} x_1(t)^* x_2(t)$$

6.97 Option (A) is correct.

> h(n) = u(n)We have

$$H(z) = \sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n} = \sum_{n=0}^{\infty} 1 \cdot z^{-n} = \sum_{n=0}^{\infty} (z^{-1})^n$$

H(z) is convergent if

$$\sum_{n=0}^{\infty} (z^{-1})^n < \infty$$

and this is possible when $|z^{-1}| < 1$. Thus ROC is $|z^{-1}| < 1$ or |z| > 1

Option (A) is correct.

We know that
$$\delta(t) x(t) = x(0) \delta(t)$$
 and $\int_{-\infty}^{\infty} \delta(t) = 1$

Let $x(t) = \cos(\frac{3}{2}t)$, then x(0) = 1

6.98

6.99

Let E be the energy of f(t) and E_1 be the energy of f(2t), then

 $\int_{-\infty}^{\infty} \delta(t) x(t) = \int_{-\infty}^{\infty} x(0) \,\delta(t) \,dt = \int_{-\infty}^{\infty} \delta(t) \,dt = 1$

$$E = \int_{-\infty}^{\infty} [f(t)]^2 dt$$

 $E_1 = \int_{-\infty}^{\infty} [f(2t)]^2 dt$

and

Substituting 2t = p we get

$$E_1 = \int_{-\infty}^{\infty} [f(p)]^2 \frac{dp}{2} = \frac{1}{2} \int_{-\infty}^{\infty} [f(p)]^2 dp = \frac{E}{2}$$

Option (B) is correct. 6.100

> Since $h_1(t) \neq 0$ for t < 0, thus $h_1(t)$ is not causal $h_2(t) = u(t)$ which is always time invariant, causal and stable. $h_3(t) = \frac{u(t)}{1+t}$ is time variant. $h_4(t) = e^{-3t}u(t)$ is time variant.

Option (B) is correct.

6.101

$$h(t) = f(t)^* g(t)$$

We know that convolution in time domain is multiplication in sdomain.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy www.nodia.co.in

$$f(t)^*$$
 . Thus H

$$f(t)^* \ g(t) = h(t) \xleftarrow{L} H(s) = F(s) \times G(s)$$
$$H(s) = \frac{s+2}{s^2+1} \times \frac{s^2+1}{(s+2)(s+3)} = \frac{1}{s+3}$$

Option (B) is correct. 6.102 Since normalized Gaussion function have Gaussion FT $e^{-at^2} \stackrel{FT}{\longleftrightarrow} \sqrt{\frac{\pi}{a}} e^{-\frac{\pi^2 f^2}{a}}$ Thus

(1)

6.

Let

$$x(t) = ax_1(t) + bx_2(t)$$

$$ay_1(t) = atx_1(t)$$

$$by_2(t) = btx_2(t)$$
Adding above both equation we have

$$ay_1(t) + by_2(t) = atx_1(t) + btx_2(t)$$

$$ay_{1}(t) + by_{2}(t) = atx_{1}(t) + btx_{2}(t)$$
$$= t[ax_{1}(t) + bx_{2}(t)$$

= tx(t) $ay_1(t) + by_2(t) = y(t)$ or

 $y_d(d) = tx(t - t_0)$ If output is delayed then we have

$$y(t - t_0) = (t - t_0) x(t - t_0)$$

which is not equal. Thus system is time varying.

6.104 Option (A) is correct.

We have
$$h(t) = e^{2t} \xrightarrow{LS} H(s) = \frac{1}{s-2}$$

and $x(t) = e^{3t} \xrightarrow{LS} X(s) = \frac{1}{s-3}$
Now output is $Y(s) = H(s)X(s)$
 $= \frac{1}{s-2} \times \frac{1}{s-3} = \frac{1}{s-3} - \frac{1}{s-2}$
Thus $y(t) = e^{3t} - e^{2t}$

Page 153

Thus system is linear

6.105 Option (C) is correct.

We know that for a square wave the Fourier series coefficient

$$C_{nsq} = \frac{A\tau}{T} \frac{\sin \frac{m\omega_0 \tau}{2}}{\frac{n\omega_0 \tau}{2}} \qquad \dots(i)$$
$$C_{nsq} \propto \frac{1}{n}$$

Thus

If we integrate square wave, triangular wave will be obtained,

Hence
$$C_{ntri} \propto \frac{1}{n^2}$$

6.106 Option (B) is correct.

$$\begin{split} u(t) - u(t-1) &= f(t) \xleftarrow{L} F(s) = \frac{1}{s} [1 - e^{-s}] \\ u(t) - u(t-2) &= g(t) \xleftarrow{L} G(s) = \frac{1}{s} [1 - e^{-2s}] \\ f(t)^* g(t) \xleftarrow{L} F(s) G(s) \\ &= \frac{1}{s^2} [1 - e^{-s}] [1 - e^{-2s}] \\ &= \frac{1}{s^2} [1 - e^{-2s} - e^{-s} + e^{-3s}] \end{split}$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

or
$$f(t)^* g(t) \xleftarrow{L}{=} \frac{1}{s^2} - \frac{e^{-2s}}{s^2} - \frac{e^{-s}}{s^2} + \frac{e^{-3s}}{s^2}$$

Taking inverse Laplace transform we have

 $f(t)^* g(t)$

$$= t - (t-2) u(t-2) - (t-1) u(t-1) + (t-3) u(t-3)$$

The graph of option (B) satisfy this equation.

6.107 Option (A) is correct.

 $=\frac{z}{z-a^{T}}$

6.108

Option (A) is correct. We have $f(nT) = a^{nT}$ Taking z transform we get

Taking z-transform we get

$$F(z) = \sum_{n = -\infty}^{\infty} a^{nT} z^{-n} = \sum_{n = -\infty}^{\infty} (a^{T})^{n} z^{-n} = \sum_{n = 0}^{\infty} \left(\frac{a^{T}}{z}\right)^{n}$$

6.109 Option (B) is correct. If $\mathcal{L}[f(t)] = F(s)$ Applying time shifting property we can write $\mathcal{L}[f(t-T)] = e^{-sT}F(s)$

- 6.110 Option (A) is correct.
- 6.111 Option (A) is correct.
- 6.112 Option (C) is correct.

Given z transform

$$C(z) = \frac{z^{-1}(1-z^{-4})}{4(1-z^{-1})^2}$$

Applying final value theorem

$$\lim_{n \to \infty} f(n) = \lim_{z \to 1} (z-1)f(z)$$

$$\lim_{z \to 1} (z-1) F(z) = \lim_{z \to 1} (z-1) \frac{z^{-1}(1-z^{-4})}{4(1-z^{-1})^{\frac{1}{2}}}$$

$$= \lim_{z \to 1} \frac{z^{-1}(1 - z^{-4})(z - 1)}{4(1 - z^{-1})^2}$$

=
$$\lim_{z \to 1} \frac{z^{-1}z^{-4}(z^4 - 1)(z - 1)}{4z^{-2}(z - 1)^2}$$

=
$$\lim_{z \to 1} \frac{z^{-3}(z - 1)(z + 1)(z^2 + 1)(z - 1)}{(z - 1)^2}$$

=
$$\lim_{z \to 1} \frac{z^{-3}}{4}(z + 1)(z^2 + 1) = 1$$

6.113 Option (A) is correct.

We have
$$F(s) = \frac{\omega}{s^2 + \omega^2}$$

 $\lim_{t \to \infty} f(t)$ final value theorem states that:

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

It must be noted that final value theorem can be applied only if poles lies in -ve half of *s*-plane.

Here poles are on imaginary axis $(s_1, s_2 = \pm j\omega)$ so can not apply final value theorem. so $\lim_{t \to \infty} f(t)$ cannot be determined.

6.114 Option (D) is correct.

Trigonometric Fourier series of a function x(t) is expressed as :

$$x(t) = A_0 + \sum_{n=1}^{\infty} [A_n \cos n\omega t + B_n \sin n\omega t]$$

For even function x(t), $B_n = 0$

So
$$x(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos n\omega t$$

Series will contain only DC & cosine terms.

Option (C) is correct.

Given periodic signal

6.115

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < \frac{T_0}{2} \end{cases}$$

The figure is as shown below.

For x(t) fourier series expression can be written as

$$(t) = A_0 + \sum_{n=1}^{\infty} [A_n \cos n\omega t + B_n \sin n\omega t]$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

where dc term

x

$$\begin{aligned} A_0 &= \frac{1}{T_0} \int_{T_0} x(t) \, dt \, = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \, dt \\ &= \frac{1}{T_0} \Big[\int_{-T_0/2}^{-T_1} x(t) \, dt + \int_{-T_1}^{T_1} x(t) \, dt + \int_{-T_1}^{T_0/2} x(t) \, dt \Big] \\ &= \frac{1}{T_0} \Big[0 + 2 T_1 + 0 \Big] \\ A_0 &= \frac{2 T_1}{T_0} \end{aligned}$$

6.116 Option (B) is correct.

The unit impulse response of a LTI system is u(t)Let h(t) = u(t)

 $H(s) = \frac{1}{s}$ Taking LT we have

If the system excited with an input $x(t) = e^{-at}u(t)$, a > 0, the response

$$Y(s) = X(s) H(s)$$
$$X(s) = \mathcal{L}[x(t)] = \frac{1}{(s+a)}$$
$$Y(s) = \frac{1}{(s+a)} \frac{1}{s} = \frac{1}{a} \left[\frac{1}{s} - \frac{1}{s+a} \right]$$

 \mathbf{SO}

Taking inverse Laplace, the response will be

 $y(t) = \frac{1}{a} [1 - e^{-at}]$

Option (B) is correct. 6.117

> $x[n] = \sum_{k=0}^{\infty} \delta(n-k)$ We have $X(z) = \sum_{k=0}^{\infty} x[n] z^{-n} = \sum_{n=-\infty}^{\infty} \left[\sum_{k=0}^{\infty} \delta(n-k) z^{-n} \right]$ Since $\delta(n-k)$ defined only for n = k so

$$X(z) = \sum_{k=0}^{\infty} z^{-k} = \frac{1}{(1-1/z)} = \frac{z}{(z-1)}$$

Option (B) is correct. 6.118

Option (B) is correct. 6.119

 $x(t) \xleftarrow{\mathcal{F}} X(f)$ by differentiation property:

differentiation property;

$$\mathcal{F}\left[\frac{dx(t)}{dt}\right] = j\omega X(\omega)$$

$$\mathcal{F}\left[\frac{dx(t)}{dt}\right] = j2\pi f X(f)$$

Option (C) is correct. 6.120

> $f(t) \stackrel{\mathcal{F}}{\longleftrightarrow} q(\omega)$ We have by duality property of fourier transform we can write $a(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi f(-x)$

$$\mathcal{F}[g(t)] = \int_{-\infty}^{\infty} g(t) e^{-j\omega t} dt = 2\pi f(-\omega)$$

Option (B) is correct. 6.121 Given function

 $x(t) = e^{\alpha t} \cos\left(\alpha t\right)$

 $\cos(\alpha t) \xleftarrow{\mathcal{L}} \frac{s}{s^2 + \alpha^2}$

Now

If

 \mathbf{SO}

or

 $x(t) \xleftarrow{\mathcal{L}} X(s)$

then

shifting in s-domain

 $e^{\alpha t}\cos\left(\alpha t\right) \xleftarrow{\mathcal{L}} \frac{(s-\alpha)}{(s-\alpha)^2+\alpha^2}$ so

where

Option (C) is correct. 6.122

For a function x(t), trigonometric fourier series is :

 $e^{s_0t}x(t) \xleftarrow{\mathcal{L}} X(s-s_0)$

$$\begin{aligned} x(t) &= A_0 + \sum_{n=1}^{\infty} [An \cos n\omega t + Bn \sin n\omega t] \\ A_0 &= \frac{1}{T_0} \int_{T_0} x(t) \, dt \qquad \qquad T_0 = \text{Fundamental period} \end{aligned}$$

$$A_n = \frac{2}{T_0} \int_{T_0} x(t) \cos n\omega t dt$$
$$B_n = \frac{2}{T_0} \int_{T_0} x(t) \sin n\omega t dt$$

For an even function x(t), coefficient $B_n = 0$ for an odd function x(t), $A_0 = 0$ $A_n = 0$

so if x(t) is even function its fourier series will not contain sine terms.

6.123 Option (C) is correct.

> The conjugation property allows us to show if x(t) is real, then $X(i\omega)$ has conjugate symmetry, that is

$$X(-j\omega) = X^*(j\omega) \qquad [x(t) \text{ real}]$$

Proof :

if

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
replace ω by $-\omega$ then

$$X(-j\omega) = \int_{-\infty}^{\infty} x(t) e^{j\omega t} dt$$
$$X^*(j\omega) = \left[\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt\right]^* = \int_{-\infty}^{\infty} x^*(t) e^{j\omega t} dt$$
if $x(t)$ real $x^*(t) = x(t)$
then $X^*(j\omega) = \int_{-\infty}^{\infty} x(t) e^{j\omega t} dt = X(-j\omega)$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

CONTROL SYSTEMS

2013

ONE MARK

7.3

7.4

The Bode plot of a transfer function G(s) is shown in the figure 7.1 below.

and get POSTAL and Online Test Series Free visit www.nodia.co.in

approximate value of K_a that will reduce the time constant of the closed loop system by one hundred times as compared to that of the open-loop system is

The signal flow graph for a system is given below. The transfer function $\frac{Y(s)}{U(s)}$ for this system is

Statement for Linked Answer Questions 4 and 5:

The state diagram of a system is shown below. A system is described by the state-variable equations $\mathbf{X} = \mathbf{A}\mathbf{X} + \mathbf{B}u$; y = CX + Du

The gain $(20 \log |G(s)|)$ is 32 dB and -8 dB at 1 rad/s and 10 rad/s respectively. The phase is negative for all ω . Then G(s) is (A) $\frac{39.8}{1000}$ (B) $\frac{39.8}{s^2}$ s(C) $\frac{32}{32}$ (D) $\frac{32}{s^2}$

2013

7.2

TWO MARKS

The open-loop transfer function of a dc motor is given as $\frac{\omega(s)}{V_a(s)} = \frac{10}{1+10s}$. When connected in feedback as shown below, the The state-variable equations of the system shown in the figure above are

(A)
$$\dot{\mathbf{X}} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \mathbf{X} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$$
 (B) $\dot{\mathbf{X}} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \mathbf{X} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$
 $y = \begin{bmatrix} 1 & -1 \end{bmatrix} \mathbf{X} + u$ (B) $\dot{\mathbf{X}} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \mathbf{X} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$
(C) $\dot{\mathbf{X}} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \mathbf{X} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$ (D) $\dot{\mathbf{X}} = \begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix} \mathbf{X} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$
 $y = \begin{bmatrix} -1 & -1 \end{bmatrix} \mathbf{X} - u$ $y = \begin{bmatrix} 1 & -1 \end{bmatrix} \mathbf{X} - u$

The state transition matrix e^{At} of the system shown in the figure For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

above is
(A)
$$\begin{bmatrix} e^{-t} & 0\\ te^{-t} & e^{-t} \end{bmatrix}$$
(B) $\begin{bmatrix} e^{-t} & 0\\ -te^{-t} & e^{-t} \end{bmatrix}$
(C) $\begin{bmatrix} e^{-t} & 0\\ e^{-t} & e^{-t} \end{bmatrix}$
(D) $\begin{bmatrix} e^{-t} & -te\\ 0 & e^{-t} \end{bmatrix}$

2012

7.6

A system with transfer function $G(s) = \frac{(s^2+9)(s+2)}{(s+1)(s+3)(s+4)}$ is excited by $\sin(\omega t)$. The steady-state output of the system is zero at

ONE MARK

(A)
$$\omega = 1 \text{ rad/s}$$

(C) $\omega = 3 \text{ rad/s}$

(B)
$$\omega = 2 \text{ rad/s}$$

(D) $\omega = 4 \text{ rad/s}$

(D)
$$\omega = 4 \text{ rad/s}$$

TWO MARKS

R(s)Y(s)K(s+1) $s^3 + as^2 + 2s + 1$

(B) K = 3 and a = 0.75(A) K = 2 and a = 0.75(C) K = 4 and a = 0.5(D) K = 2 and a = 0.5

The state variable description of an LTI system is given by 7.8

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} 0 & a_1 & 0 \\ 0 & 0 & a_2 \\ a_3 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

where y is the output and u is the input. The system is controllable for

(A) $a_1 \neq 0, a_2 = 0, a_3 \neq 0$	(B) $a_1 = 0, a_2 \neq 0, a_3 \neq 0$
(C) $a_1 = 0, a_3 \neq 0, a_3 = 0$	(D) $a_1 \neq 0, a_2 \neq 0, a_3 = 0$

C)
$$a_1 = 0, a_3 \neq 0, a_3 = 0$$
 (D) $a_1 \neq 0, a_2 \neq 0, a_3 = 0$

2011

7.9

ONE MARK

The root locus plot for a system is given below. The open loop transfer function corresponding to this plot is given by

(A)
$$G(s)H(s) = k \frac{s(s+1)}{(s+2)(s+3)}$$

(B) $G(s)H(s) = k \frac{(s+1)}{s(s+2)(s+3)^2}$
(C) $G(s)H(s) = k \frac{1}{s(s-1)(s+2)(s+3)}$
(D) $G(s)H(s) = k \frac{(s+1)}{s(s+2)(s+3)}$

For the transfer function $G(j\omega) = 5 + j\omega$, the corresponding Nyquist 7.10 plot for positive frequency has the form

2011

TWO MARKS

The block diagram of a system with one input u and two outputs y_1 7.11 and y_2 is given below.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

A state space model of the above system in terms of the state vector \underline{x} and the output vector $\underline{y} = \begin{bmatrix} y_1 & y_2 \end{bmatrix}^T$ is $(\Lambda)^{-1}$ [0] [1]

(A)
$$\underline{x} = [2] \underline{x} + [1] u; \quad \underline{y} = [1 \ 2] \underline{x}$$

(B) $\underline{\dot{x}} = [-2] \underline{x} + [1] u; \quad \underline{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \underline{x}$
(C) $\underline{\dot{x}} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \underline{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u; \quad \underline{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{x}$
(D) $\underline{\dot{x}} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \underline{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u; \quad \underline{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{x}$

Common Data For Q. 7.4 & 7.5

The input-output transfer function of a plant $H(s) = \frac{100}{s(s+10)^2}$. The plant is placed in a unity negative feedback configuration as shown in the figure below.

Page 157

- 7.12 The gain margin of the system under closed loop unity negative feedback is
 - (A) $0 \, dB$ (B) 20 dB
 - (C) 26 dB (D) 46 dB
- 7.13 The signal flow graph that DOES NOT model the plant transfer function H(s) is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

2010

The transfer function Y(s)/R(s) of the system shown is

(A) 0
(B)
$$\frac{1}{s+1}$$

(C) $\frac{2}{s+1}$
(D) $\frac{2}{s+3}$

7.15 A system with transfer function $\frac{Y(s)}{X(s)} = \frac{s}{s+p}$ has an output $y(t) = \cos\left(2t - \frac{\pi}{3}\right)$

for the input signal $x(t) = p \cos\left(2t - \frac{\pi}{2}\right)$. Then, the system parameter p is (A) $\sqrt{3}$ (B) $2/\sqrt{3}$

(C) 1 (D)
$$\sqrt{3}/2$$

7.16 For the asymptotic Bode magnitude plot shown below, the system transfer function can be

TWO MARKS

ONE MARK

A unity negative feedback closed loop system has a plant with the transfer function $G(s) = \frac{1}{s^2 + 2s + 2}$ and a controller $G_c(s)$ in the feed forward path. For a unit set input, the transfer function of the controller that gives minimum steady state error is (A) $G_c(s) = \frac{s+1}{s+2}$ (B) $G_c(s) = \frac{s+2}{s+1}$ (C) $G_c(s) = \frac{(s+1)(s+4)}{(s+2)(s+3)}$ (D) $G_c(s) = 1 + \frac{2}{s} + 3s$

Common Data For Q. 7.10 & 7.11 :

2010

The signal flow graph of a system is shown below:

The state variable representation of the system can be (A) $\dot{x} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$ (B) $\dot{x} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$ $\dot{y} = \begin{bmatrix} 0 & 0.5 \end{bmatrix} x$ $\dot{y} = \begin{bmatrix} 0 & 0.5 \end{bmatrix} x$

(C)
$$\dot{x} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$
 (D) $\dot{x} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$
 $\dot{y} = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} x$ $\dot{y} = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} x$
The transfer function of the system is
(A) $\frac{s+1}{s^2+1}$ (B) $\frac{s-1}{s^2+1}$
(C) $\frac{s+1}{s^2+s+1}$ (D) $\frac{s-1}{s^2+s+1}$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

2009

7.20

7.19

ONE MARK

The magnitude plot of a rational transfer function G(s) with real coefficients is shown below. Which of the following compensators has such a magnitude plot ?

(A) Lead compensator

(B) Lag compensator

- (C) PID compensator
- (D) Lead-lag compensator

7.21 Consider the system

$$\frac{dx}{dt} = Ax + Bu \text{ with } A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} p \\ q \end{bmatrix}$$

where p and q are arbitrary real numbers. Which of the following statements about the controllability of the system is true ?

- (A) The system is completely state controllable for any nonzero values of p and q
- (B) Only p = 0 and q = 0 result in controllability
- (C) The system is uncontrollable for all values of p and q
- (D) We cannot conclude about controllability from the given data

2009

7.23

TWO MARKS

7.22 The feedback configuration and the pole-zero locations of

$$G(s) = \frac{s^2 - 2s + 2}{s^2 + 2s + 2}$$

are shown below. The root locus for negative values of k, i.e. for $-\infty < k < 0$, has breakaway/break-in points and angle of departure at pole P (with respect to the positive real axis) equal to

(C)
$$\pm\sqrt{3}$$
 and 0° (D) $\pm\sqrt{3}$ and 45°

The unit step response of an under-damped second order system has steady state value of -2. Which one of the following transfer functions has theses properties ?

(A)
$$\frac{-2.24}{s^2 + 2.59s + 1.12}$$
 (B) $\frac{-3.82}{s^2 + 1.91s + 1.91}$
(C) $\frac{-2.24}{s^2 - 2.59s + 1.12}$ (D) $\frac{-382}{s^2 - 1.91s + 1.91}$

Common Data For Q. 7.16 and 7.17 :

The Nyquist plot of a stable transfer function G(s) is shown in the figure are interested in the stability of the closed loop system in the feedback configuration shown.

- 7.24 Which of the following statements is true ?
 - (A) G(s) is an all-pass filter
 - (B) G(s) has a zero in the right-half plane
 - (C) G(s) is the impedance of a passive network
 - (D) G(s) is marginally stable
- 7.25 The gain and phase margins of G(s) for closed loop stability are (A) 6 dB and 180°
 - (B) 3 dB and 180°

(C) 6 dB and 90°(D) 3 dB and 90°

2008

7.26

ONE MARKS

Step responses of a set of three second-order underdamped systems all have the same percentage overshoot. Which of the following diagrams represents the poles of the three systems ?

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

7.27 The pole-zero given below correspond to a

(A) Law pass filter

- (C) Band filter
- (B) High pass filter
- (D) Notch filter

2008

TWO MARKS

7.28 Group I lists a set of four transfer functions. Group II gives a list of possible step response y(t). Match the step responses with the corresponding transfer functions.

(A)
$$P-3, Q-1, R-4, S-2$$
 (B) $P-3, Q-2, R-4, S-1$
(C) $P-2, Q-1, R-4, S-2$ (D) $P-3, Q-4, R-1, S-2$

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in** A signal flow graph of a system is given below

7.29

The set of equalities that corresponds to this signal flow graph is $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} \beta \\ -\gamma \\ 0 \end{bmatrix} \begin{pmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$(A) \ \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \rho & -\gamma & 0 \\ \gamma & \alpha & 0 \\ -\alpha & \beta & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$(B) \ \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & \alpha & \gamma \\ 0 & -\alpha & -\gamma \\ 0 & \beta & -\beta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$(C) \ \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\alpha & \beta & 0 \\ -\beta & -\gamma & 0 \\ \alpha & \gamma & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$(D) \ \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\alpha & 0 & \beta \\ \gamma & 0 & \alpha \\ -\beta & 0 & -\alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

7.30 A certain system has transfer function

$$G(s) = \frac{s+8}{s^2 + \alpha s - 4}$$

where α is a parameter. Consider the standard negative unity feedback configuration as shown below

Which of the following statements is true?

- (A) The closed loop systems is never stable for any value of α
- (B) For some positive value of α , the closed loop system is stable,

but not for all positive values.

- (C) For all positive values of α , the closed loop system is stable.
- (D) The closed loop system stable for all values of α , both positive and negative.

7.31 The number of open right half plane of

(A) 0

(C) 2

$$G(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$
 is
(B) 1
(D) 3

The magnitude of frequency responses of an underdamped second order system is 5 at 0 rad/sec and peaks to $\frac{10}{\sqrt{3}}$ at $5\sqrt{2}$ rad/sec. The transfer function of the system is

(A)
$$\frac{500}{s^2 + 10s + 100}$$
 (B) $\frac{375}{s^2 + 5s + 75}$
(C) $\frac{720}{s^2 + 12s + 144}$ (D) $\frac{1125}{s^2 + 25s + 225}$

^{7.33} Group I gives two possible choices for the impedance Z in the diagram. The circuit elements in Z satisfy the conditions $R_2 C_2 > R_1 C_1$. The transfer functions $\frac{V_0}{V_i}$ represents a kind of controller.

Match the impedances in Group I with the type of controllers in Group II Group I Group I

$$\begin{array}{c} C_2 \\ Q & v_1 \bullet & \\ R & v_1 \bullet & \\ R & v_2 \bullet & \\ R & Q & Q & \\ R & Q & \\ R & Q & \\ R & Q & Q & \\ R & & \\ R & Q & \\ R & Q & \\ R & & \\ R &$$

7.34

2007

If the closed-loop transfer function of a control system is given as $T(s)\frac{s-5}{(s+2)(s+3)}$, then It is

- (A) an unstable system (B) an uncontrollable system
- (C) a minimum phase system (D) a non-minimum phase system

2007

TWO MARKS

ONE MARK

^{7.35} A control system with PD controller is shown in the figure. If the velocity error constant $K_V = 1000$ and the damping ratio $\zeta = 0.5$, then the value of K_P and K_D are

7.36 The transfer function of a plant is

$$T(s) = \frac{5}{(s+5)(s^2+s+1)}$$

The second-order approximation of T(s) using dominant pole concept is

(A)
$$\frac{1}{(s+5)(s+1)}$$
 (B) $\frac{5}{(s+5)(s+1)}$
(C) $\frac{5}{s^2+s+1}$ (D) $\frac{1}{s^2+s+1}$

The open-loop transfer function of a plant is given as $G(s) = \frac{1}{s^2-1}$. If the plant is operated in a unity feedback configuration, then the lead compensator that an stabilize this control system is

(A)
$$\frac{10(s-1)}{s+2}$$
 (B) $\frac{10(s+4)}{s+2}$
(C) $\frac{10(s+2)}{s+10}$ (D) $\frac{2(s+2)}{s+10}$

7.38 A unity feedback control system has an open-loop transfer function C(x) = K

$$G(s) = \frac{\kappa}{s(s^2 + 7s + 12)}$$

The gain K for which s = 1 + j1 will lie on the root locus of this SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

system is	
(A) 4	(B) 5.5
(C) 6.5	(D) 10

The asymptotic Bode plot of a transfer function is as shown in the figure. The transfer function G(s) corresponding to this Bode plot is

7.39

7.40

7.37

(A)
$$\frac{1}{(s+1)(s+20)}$$

(B) $\frac{1}{s(s+1)(s+20)}$
(C) $\frac{100}{s(s+1)(s+20)}$
(D) $\frac{100}{s(s+1)(1+0.05s)}$

The state space representation of a separately excited DC servo motor dynamics is given as

$$\begin{bmatrix} \frac{d\omega}{dt} \\ \frac{di_o}{dt} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & -10 \end{bmatrix} \begin{bmatrix} \omega \\ i_a \end{bmatrix} + \begin{bmatrix} 0 \\ 10 \end{bmatrix} u$$

where ω is the speed of the motor, i_a is the armature current and u is the armature voltage. The transfer function $\frac{\omega(s)}{U(s)}$ of the motor is

(A)
$$\frac{10}{s^2 + 11s + 11}$$
 (B) $\frac{1}{s^2 + 11s + 11}$
(C) $\frac{10s + 10}{s^2 + 11s + 11}$ (D) $\frac{1}{s^2 + s + 11}$

Statement for linked Answer Question 8.33 & 8.34 :

Consider a linear system whose state space representation is 7.47 x(t) = Ax(t). If the initial state vector of the system is $x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, then the system response is $x(t) = \begin{bmatrix} e^{-2x} \\ -12 e^{-2t} \end{bmatrix}$. If the itial state vector of the system changes to $x(0) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$, then the system response becomes $x(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$

The eigenvalue and eigenvector pairs $(\lambda_i v_i)$ for the system are 7.41 (A) $\left(-1\begin{bmatrix}1\\-1\end{bmatrix}\right)$ and $\left(-2\begin{bmatrix}1\\-2\end{bmatrix}\right)$ (B) $\left(-1, \begin{bmatrix} 1\\-1 \end{bmatrix}\right)$ and $\left(2, \begin{bmatrix} 1\\-2 \end{bmatrix}\right)$ (C) $\left(-1, \begin{bmatrix}1\\-1\end{bmatrix}\right)$ and $\left(-2, \begin{bmatrix}1\\-2\end{bmatrix}\right)$ (D) $\left(-2\begin{bmatrix}1\\-1\end{bmatrix}\right)$ and $\left(1, \begin{bmatrix}1\\-2\end{bmatrix}\right)$ The system matrix A is 7.42 $0 \ 1$ $\begin{array}{c} \text{(B)} \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \\ \text{(D)} \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ (\mathbf{A}) -11

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

2006

ONE MARK

7.43 The open-loop function of a unity-gain feedback control system is given by

$$G(s) = \frac{K}{(s+1)(s+2)}$$

The gain margin of the system in dB is given by (A) 0(B) 1

(C) 20 (D) ∞

2006

TWO MARKS

Consider two transfer functions $G_1(s) = \frac{1}{s^2 + as + b}$ and 7.44 $G_2(s) = \frac{s}{s^2 + as + b}$

The 3-dB bandwidths of their frequency responses are, respectively 7.52 (A) $\sqrt{a^2 - 4b}, \sqrt{a^2 + 4b}$ (B) $\sqrt{a^2 + 4b}, \sqrt{a^2 - 4b}$

(C)
$$\sqrt{a^2 - 4b}, \sqrt{a^2 - 4b}$$
 (D) $\sqrt{a^2 + 4b}, \sqrt{a^2 + 4b}$

The Nyquist plot of $G(j\omega) H(j\omega)$ for a closed loop control system, 7.45 passes through (-1, j0) point in the *GH* plane. The gain margin of the system in dB is equal to

- (A) infinite (B) greater than zero
- (C) less than zero (D) zero
- The positive values of K and a so that the system shown in the 7.46 figures below oscillates at a frequency of 2 rad/sec respectively are

The transfer function of a phase lead compensator is given by $G_c(s) = \frac{1+3Ts}{1+Ts}$ where T > 0 The maximum phase shift provide by such a compensator is

A)
$$\frac{\pi}{2}$$
 (B) $\frac{\pi}{3}$

C)
$$\frac{\pi}{4}$$
 (D) $\frac{\pi}{6}$

A linear system is described by the following state equation 7.48

$$\dot{X}(t) = AX(t) + BU(t), A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

state transition matrix of the system is
$$\begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \qquad (B) \begin{bmatrix} -\cos t & \sin t \\ -\sin t & -\cos t \end{bmatrix}$$

(C)
$$\begin{bmatrix} -\cos t & -\sin t \\ -\sin t & \cos t \end{bmatrix}$$
 (D) $\begin{bmatrix} \cos t & -\sin t \\ \cos t & \sin t \end{bmatrix}$

Statement for Linked Answer Questions 7.41 & 7.42 :

Consider a unity - gain feedback control system whose open - loop transfer function is : $G(s) = \frac{as+1}{s^2}$

The value of a so that the system has a phase - margin equal to $\frac{\pi}{4}$ 7.49 is approximately equal to (B) 1.40 (A) 2.40

(C) 0.84	(D) 0.74

With the value of a set for a phase - margin of $\frac{\pi}{4}$, the value of unit - impulse response of the open - loop system at t = 1 second is equal 7.50 to

(A) 3.40	(B) 2.40
(C) 1.84	(D) 1.74

2005

7.51

The state

(A)

ONE MARK

A linear system is equivalently represented by two sets of state equations :

$$X = AX + BU$$
 and $W = CW + DU$

The eigenvalues of the representations are also computed as $[\lambda]$

and $[\mu]$. Which one of the followi	ng statements is true ?
(A) $[\lambda] = [\mu]$ and $X = W$	(B) $[\lambda] = [\mu]$ and $X \neq W$
(C) $[\lambda] \neq [\mu]$ and $X = W$	(D) $[\lambda] = [\mu]$ and $X \neq W$

Which one of the following polar diagrams corresponds to a lag

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

network?

- Despite the presence of negative feedback, control systems still have problems of instability because the
 - (A) Components used have non-linearities
 - (B) Dynamic equations of the subsystem are not known exactly.
 - (C) Mathematical analysis involves approximations.
 - (D) System has large negative phase angle at high frequencies.

2005

TWO MARKS

The polar diagram of a conditionally stable system for open loop gain K = 1 is shown in the figure. The open loop transfer function of the system is known to be stable. The closed loop system is stable for

(A)
$$K < 5$$
 and $\frac{1}{2} < K < \frac{1}{8}$ (B) $K < \frac{1}{8}$ and $\frac{1}{2} < K < 5$
(C) $K < \frac{1}{8}$ and $5 < K$ (D) $K > \frac{1}{8}$ and $5 > K$

7.55 In the derivation of expression for peak percent overshoot

$$M_p = \exp\left(rac{-\pi\xi}{\sqrt{1-\xi^2}}
ight) imes 100\%$$

Which one of the following conditions is NOT required ?

- (A) System is linear and time invariant
- (B) The system transfer function has a pair of complex conjugate poles and no zeroes.
- (C) There is no transportation delay in the system.
- (D) The system has zero initial conditions.
- 7.56 A ramp input applied to an unity feedback system results in 5% steady state error. The type number and zero frequency gain of the system are respectively
 - (A) 1 and 20 (B) 0 and 20 (C) 0 and $\frac{1}{20}$ (D) 1 and $\frac{1}{20}$
- 7.57 A double integrator plant $G(s) = K/s^2$, H(s) = 1 is to be compensated to achieve the damping ratio $\zeta = 0.5$ and an undamped natural frequency, $\omega_n = 5$ rad/sec which one of the following compensator $G_e(s)$ will be suitable ? (A) $\frac{s+3}{2}$ (B) $\frac{s+99}{2}$

(A)
$$\frac{1}{s+99}$$
 (B) $\frac{1}{s+3}$
(C) $\frac{s-6}{s+8.33}$ (D) $\frac{s-6}{s}$

An unity feedback system is given as $G(s) = \frac{K(1-s)}{s(s+3)}$. Indicate the correct root locus diagram.

Statement for Linked Answer Question 40 and 41 :

The open loop transfer function of a unity feedback system is given by

$$G(s) = \frac{3e^{-2s}}{s(s+2)}$$

The gain and phase crossover frequencies in rad/sec are, respectively

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(A) 0.632 and 1.26
(B) 0.632 and 0.485
(C) 0.485 and 0.632
(D) 1.26 and 0.632

7.60 Based on the above results, the gain and phase margins of the system will be
(A) -7.09 dB and 87.5°
(B) 7.09 dB and 87.5°

(C) 7.09 dB and -87.5° (D) -7.09 and -87.5°

2004

7.61

7.62

7.63

ONE MARK

The gain margin for the system with open-loop transfer function

(A)
$$\infty$$

(C) 1
(B) $G(s) H(s) = \frac{2(1+s)}{s^2}$, is
(B) 0
(D) $-\infty$

Given $G(s)H(s) = \frac{K}{s(s+1)(s+3)}$. The point of intersection of the asymptotes of the root loci with the real axis is (A) -4
(B) 1.33
(C) -1.33
(D) 4

2004

TWO MARKS

Consider the Bode magnitude plot shown in the fig. The transfer function H(s) is

(C) $\frac{10^2(s+1)}{(s+10)(s+100)}$	(D) $\frac{10^3(s+100)}{(s+1)(s+10)}$
(C) $\frac{1}{(s+10)(s+100)}$	(D) $\frac{(s+1)(s+10)}{(s+10)}$

7.64 A causal system having the transfer function H(s) = 1/(s+2) is excited with 10u(t). The time at which the output reaches 99% of its steady state value is (A) 2.7 sec (B) 2.5 sec

		` '	
(C)) 2.3 sec ((D)	2.1 sec

- 7.65 A system has poles at 0.1 Hz, 1 Hz and 80 Hz; zeros at 5 Hz, 100 Hz and 200 Hz. The approximate phase of the system response at 20 Hz is (A) -90° (B) 0°
 - (D) -180°
- Consider the signal flow graph shown in Fig. The gain $\frac{x_5}{x_1}$ is

$$x_1 a x_2 b x_3 c x_4 d x_5 1$$

7.67

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

(A)
$$\frac{1 - (be + cf + dg)}{abcd}$$
(B)
$$\frac{bedg}{1 - (be + cf + dg)}$$
(C)
$$\frac{abcd}{1 - (be + cf + dg) + bedg}$$
(D)
$$\frac{1 - (be + cf + dg) + bedg}{abcd}$$
If $A = \begin{bmatrix} -2 & 2\\ 1 & -3 \end{bmatrix}$, then $\sin At$ is
(A)
$$\frac{1}{3} \begin{bmatrix} \sin(-4t) + 2\sin(-t) & -2\sin(-4t) + 2\sin(-t)\\ -\sin(-4t) + \sin(-t) & 2\sin(-4t) + \sin(-t) \end{bmatrix}$$
(B)
$$\begin{bmatrix} \sin(-2t) & \sin(2t)\\ \sin(t) & \sin(-3t) \end{bmatrix}$$
(C)
$$\frac{1}{3} \begin{bmatrix} \sin(4t) + 2\sin(t) & 2\sin(-4t) - 2\sin(-t)\\ -\sin(-4t) + \sin(t) & 2\sin(4t) + \sin(t) \end{bmatrix}$$
(D)
$$\frac{1}{3} \begin{bmatrix} \cos(-t) + 2\cos(t) & 2\cos(-4t) + 2\cos(-t)\\ -\cos(-4t) + \cos(-t) & -2\cos(-4t) + \cos(t) \end{bmatrix}$$

The open-loop transfer function of a unity feedback system is

$$G(s) = \frac{K}{s(s^2 + s + 2)(s + 3)}$$

The range of K for which the system is stable is
(A) $\frac{21}{4} > K > 0$ (B) $13 > K > 0$
(C) $\frac{21}{4} < K < \infty$ (D) $-6 < K < \infty$

For the polynomial $P(s) = s^2 + s^4 + 2s^3 + 2s^2 + 3s + 15$ the number of roots which lie in the right half of the *s*-plane is (A) 4

7.70 The state variable equations of a system are: $\dot{x}_1 = -3x_1 - x_2 = u, \dot{x}_2 = 2x_1$ and $y = x_1 + u$. The system is

- (A) controllable but not observable
- (B) observable but not controllable
- (C) neither controllable nor observable

(D) controllable and observable

Given
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, the state transition matrix e^{At} is given by
(A) $\begin{bmatrix} 0 & e^{-t} \\ e^{-t} & 0 \\ 0 & e^{-t} \end{bmatrix}$
(B) $\begin{bmatrix} e^t & 0 \\ 0 & e^t \end{bmatrix}$
(C) $\begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-t} \end{bmatrix}$
(D) $\begin{bmatrix} 0 & e^t \\ e^t & 0 \end{bmatrix}$

2003

7.71

7.72

Fig. shows the Nyquist plot of the open-loop transfer function G(s) H(s) of a system. If G(s) H(s) has one right-hand pole, the closed-loop system is

(A) always stable

- (B) unstable with one closed-loop right hand pole
- (C) unstable with two closed-loop right hand poles
- (D) unstable with three closed-loop right hand poles

ONE MARK

TWO MARKS

7.73 A PD controller is used to compensate a system. Compared to the uncompensated system, the compensated system has

(A) a higher type number (B) reduced damping

(C) higher noise amplification (D) larger transient overshoot

2003

The signal flow graph of a system is shown in Fig. below. The transfer function C(s)/R(s) of the system is

$$\begin{array}{c} R(s)_{1} & \frac{1}{s} & 6 & \frac{1}{s} \\ \hline & & & \\ 1 & & & \\ C(s) & & \\ \end{array}$$
(A) $\frac{6}{s^{2} + 29s + 6}$
(B) $\frac{6s}{s^{2} + 29s + 6}$
(C) $\frac{s(s+2)}{s^{2} + 29s + 6}$
(D) $\frac{s(s+27)}{s^{2} + 29s + 6}$
The part lower of system $C(s) H(s) = -\frac{K}{s}$ has the break

The root locus of system $G(s)H(s) = \frac{K}{s(s+2)(s+3)}$ has the break-

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

away point located at	
(A) $(-0.5,0)$	(B) $(-2.548,0)$
(C) $(-4,0)$	(D) $(-0.784,0)$

^{7.76} The approximate Bode magnitude plot of a minimum phase system is shown in Fig. below. The transfer function of the system is

7.74

7.75

7.77

$$\frac{C(s)}{R(s)} = \frac{4}{s^2 + 4s + 4}$$

With r(t) as the unit-step function, the response c(t) of the system is represented by

7.78 The gain margin and the phase margin of feedback system with

$$G(s) H(s) = \frac{8}{(s+100)^3} \text{ are}$$
(A) dB,0°
(B) ∞, ∞
(C) $\infty, 0^\circ$
(D) 88.5 dB, ∞

The zero-input response of a system given by the state-space equation $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ and } \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ is}$ (A) $\begin{bmatrix} te^t \\ t \end{bmatrix}$ (B) $\begin{bmatrix} e^t \\ t \end{bmatrix}$

$$(\mathbf{C})\begin{bmatrix} e^t\\ te^t \end{bmatrix} \qquad \qquad (\mathbf{D})\begin{bmatrix} t\\ te^t \end{bmatrix}$$

ONE MARK

Consider a s	ystem with transfer function $G(s) = \frac{s+6}{ks^2+s+6}$. Its	7.88
damping ratio	by will be 0.5 when the value of k is $ks^2 + s + 6$	
(A) $\frac{2}{6}$	(B) 3	

(C)
$$\frac{1}{6}$$
 (D) 6

2002

7.80

7.81 Which of the following points is NOT on the root locus of a system with the open-loop transfer function $G(s)H(s) = \frac{k}{s(s+1)(s+3)}$ (A) $s = -j\sqrt{3}$ (B) s = -1.5

(A)
$$s = -3$$
 (D) $s = -\infty$

The phase margin of a system with the open - loop transfer function $\begin{pmatrix} 1 & -2 \end{pmatrix}$

$$G(s) H(s) = \frac{(1-s)}{(1+s)(2+s)}$$
(A) 0° (B) 63.4°
(C) 90° (D) ∞

The transfer function Y(s)/U(s) of system described by the state equation $\dot{x}(t) = -2x(t) + 2u(t)$ and y(t) = 0.5x(t) is

A)
$$\frac{0.5}{(s-2)}$$
 (B) $\frac{1}{(s-2)}$
C) $\frac{0.5}{(s+2)}$ (D) $\frac{1}{(s+2)}$

TWO MARKS

ONE MARK

7.84	The system shown in the figure i	remains stable when
	(A) $k < -1$	(B) $-1 < k < 3$
	(C) $1 < k < 3$	(D) $k > 3$

The transfer function of a system is
$$G(s) = \frac{100}{(s+1)(s+100)}$$
. For a SPECIAL EDITION (STUDY MATERIAL FORM).

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

unit - step input to the system the approximate settling time for 2% criterion is

(A)100 sec (C) 1 sec (D) 0.01 sec

7.86 The characteristic polynomial of a system is $q(s) = 2s^5 + s^4 + 4s^3 + 2s^2 + 2s + 1$

The system is	
(A) stable	(B) marginally stable
(C) unstable	(D) oscillatory

The	system	with	the	open	loop	transfer	function
G(s)I	$H(s) = \frac{1}{s(s)}$	$\frac{1}{2 \perp e \perp 1}$	has a	a gain m	argin of		
		$\pm 2 \pm 1$)				
(C) 35	db c			(\mathbf{D})	6 db		

2001

7.87

7.89

The Nyquist plot for the open-loop transfer function G(s) of a unity negative feedback system is shown in the figure, if G(s) has no pole in the right-half of s-plane, the number of roots of the system

characteristic equation in the right-half of
$$s$$
 -plane is(A) 0(B) 1(C) 2(D) 3

The equivalent of the block diagram in the figure is given is

$$E \longrightarrow G_1 \longrightarrow G_2 \longrightarrow C$$

$$F \longleftarrow H \longleftarrow$$

- 7.90 If the characteristic equation of a closed loop system is $s^2 + 2s + 2 = 0$, then the system is
 - (A) overdamped (B) critically damped
 - (C) underdamped (D) undamped
- 7.91 The root-locus diagram for a closed-loop feedback system is shown in the figure. The system is overdamped.

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$\begin{array}{c} V_{i}(s) \bullet & \begin{array}{c} G_{1} & I_{1}(s) & G_{2} & I_{2}(s) & G_{3} \\ \hline & & & \\ \end{array} \\ (A) & \begin{array}{c} Z_{3}(s) \\ \overline{Z_{1}(s) + Z_{3}(s) + Z_{4}(s)}, \\ \overline{Z_{1}(s) + Z_{3}(s)} \\ \end{array} \\ (B) & \begin{array}{c} -Z_{3}(s) \\ \overline{Z_{2}(s) - Z_{3}(s) + Z_{4}(s)}, \\ \overline{Z_{1}(s) + Z_{3}(s)} \\ \end{array} \\ \end{array} \\ \begin{array}{c} -Z_{3}(s) \\ \overline{Z_{1}(s) + Z_{3}(s)} \\ \end{array} \end{array}$$

(C)
$$\frac{Z_3(s)}{Z_2(s) + Z_3(s) + Z_4(s)}, \frac{Z_3(s)}{Z_1(s) + Z_3(s)}$$

(D)
$$\frac{-Z_3(s)}{Z_2(s) - Z_3(s) + Z_4(s)}, \frac{Z_3(s)}{Z_1(s) + Z_3(s)}$$

The open-loop DC gain of a unity negative feedback system with closed-loop transfer function $\frac{s+4}{s^2+7s+13}$ is

(A)
$$\frac{4}{13}$$
 (B) $\frac{4}{9}$

(C) 4 (D) 13

The feedback control system in the figure is stable

$$R(s) \xrightarrow{K \ge 0} \overbrace{(s+2)^2}^{s-2} \xrightarrow{C(s)} C(s)$$
(A) for all $K \ge 0$
(B) only if $K \ge 0$
(C) only if $0 \le K < 1$
(D) only if $0 \le K \le 1$

ONE MARK

(A) only if $0 \le k \le 1$ (B) only if 1

(B) only if 1 < k < 5(D) if $0 \le k < 1$ or k > 5

iw

2001

(C) only if k > 5

TWO MARK

7.92 An electrical system and its signal-flow graph representations are shown the figure (A) and (B) respectively. The values of G_2 and H, respectively are

- An amplifier with resistive negative feedback has tow left half plane
- poles in its open-loop transfer function. The amplifier (A) will always be unstable at high frequency
- (B) will be stable for all frequency
- (C) may be unstable, depending on the feedback factor
- (D) will oscillate at low frequency.

2000

2000

7.93

7.94

7.95

TWO MARKS

ONE MARK

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

A system described by the transfer function $H(s) = \frac{1}{s^3 + \alpha s^2 + ks + 3}$ is stable. The constraints on α and k are. (A) $\alpha > 0, \alpha k < 3$ (B) $\alpha > 0, \alpha k > 3$ (C) $\alpha < 0, \alpha k > 3$ (D) $\alpha > 0, \alpha k < 3$

1999

7.97 For a second order system with the closed-loop transfer function

$$T(s) = \frac{9}{s^2 + 4s + 9}$$

(C) 3.0

- (D) 4.0
- 7.98 The gain margin (in dB) of a system a having the loop transfer function

(A) 0
(C) 6

$$G(s) H(s) = \frac{\sqrt{2}}{s(s+1)}$$
 is
(B) 3
(D) ∞

The system modeled described by the state equations is 7.99

$$X = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$Y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$

(A) controllable and observable

- (B) controllable, but not observable
- (C) observable, but not controllable

(D) neither controllable nor observable

The phase margin (in degrees) of a system having the loop transfer 7.100 function $G(s)H(s) = \frac{2\sqrt{3}}{s(s+1)}$ is

- (A) 45°
- (B) -30°
- (C) 60°
- (D) 30°
- 1999
- An amplifier is assumed to have a single-pole high-frequency transfer 7.101 function. The rise time of its output response to a step function input is 35 n sec. The upper 3 dB frequency (in MHz) for the amplifier to as sinusoidal input is approximately at
 - (A) 4.55
 - (B) 10
 - (C) 20
 - (D) 28.6
- If the closed loop transfer function T(s) of a unity negative feedback 7.102 system is given by

$$T(s) = \frac{a_{n-1}s + a_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1}s + a_n}$$

then the steady state error for a unit ramp input is

(A)
$$\frac{a_n}{a_{n-1}}$$
 (B) $\frac{a_n}{a_{n-2}}$
(C) $\frac{a_{n-2}}{a_{n-2}}$ (D) zero

Consider the points $s_1 = -3 + j4$ and $s_2 = -3 - j2$ in the s-plane. 7.103 Then, for a system with the open-loop transfer function

$$G(s) H(s) = \frac{K}{(s+1)^4}$$

- (A) s_1 is on the root locus, but not s_2
- (B) s_2 is on the root locus, but not s_1
- (C) both s_1 and s_2 are on the root locus
- (D) neither s_1 nor s_2 is on the root locus

For the system described by the state equation 7.104

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & 1 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

If the control signal u is given by u = [-0.5 - 3 - 5]x + v, then

Page 167

ONE MARK

the eigen values of the closed-loop system will be (A) 0, -1, -2(B) 0, -1, -3(C) -1, -1, -2

(D) 0, -1, -1

1998

7.105	The number of roots of $s^3 + 5s^2$	+7s+3=0 in the left half of the s
	-plane is	
	(A) zero	(B) one
	(C) two	(D) three
7.106	The transfer function of a tach	ometer is of the form
	(Λ) U	(\mathbf{D}) K

(B) $\frac{\pi}{s}$ (A) Ks

(C)
$$\frac{K}{(s+1)}$$
 (D) $\frac{K}{s(s+1)}$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Consider a unity feedback control system with open-loop transfer 7.107 function $G(s) = \frac{K}{s(s+1)}$.

The steady state error of the system due to unit step input is (A) zero

(B) K

TWO MARKS

- (C) 1/K
- (D) infinite

The transfer function of a zero-order-hold system is 7.108

- (A) $(1/s)(1+e^{-sT})$ (B) $(1/s)(1-e^{-sT})$ (C) $1 - (1/s) e^{-sT}$ (D) $1 + (1/s) e^{-sT}$
- In the Bode-plot of a unity feedback control system, the value of 7.109 phase of $G(j\omega)$ at the gain cross over frequency is -125° . The phase margin of the system is
 - (A) -125°
 - (B) -55°
 - (C) 55°
 - (D) 125°

Consider a feedback control system with loop transfer function 7.110

TZ (1

$$G(s) H(s) = \frac{K(1+0.5s)}{s(1+s)(1+2s)}$$

The type of the closed loop system is

- (A) zero
- (B) one
- (C) two
- (D) three

The transfer function of a phase lead controller is $\frac{1+3Ts}{1+Ts}$. The 7.111

maximum value of phase provided by this controller is (C) 0(A) 90° (D) None of the above (B) 60° (C) 45° (D) 30° The Nyquist plot of a phase transfer function $g(j\omega) H(j\omega)$ of a system 7.112 encloses the (-1, 0) point. The gain margin of the system is (A) less than zero (B) zero (C) greater than zero (D) infinity The transfer function of a system is $\frac{2s^2+6s+5}{(s+1)^2(s+2)}$ 7.113 The characteristic equation of the system is (A) $2s^2 + 6s + 5 = 0$ (B) $(s+1)^2(s+2) = 0$ (C) $2s^2 + 6s + 5 + (s+1)^2(s+2) = 0$ **GATE Electronics & Communication** by RK Kanodia Now in 3 Volume Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in (D) $2s^2 + 6s + 5 - (s+1)^2(s+2) = 0$ In a synchro error detector, the output voltage is proportional to 7.114 $[\omega(t)]^n$, where $\omega(t)$ is the rotor velocity and n equals (A) - 2(B) - 1(C) 1 (D) 2 1997 **ONE MARK** In the signal flow graph of the figure is y/x equals 7.115 (A) 3 (B) $\frac{5}{2}$ (C) 2 (D) None of the above A certain linear time invariant system has the state and the output 7.116 equations given below $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{X_1}{X_2} \end{bmatrix}$$

If $X_1(0) = 1, X_2(0) = -1, u(0) = 0, \text{then } \frac{dy}{dt} \Big|_{t=0}$ is
(A) 1
(B) -1

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

SOLUTIONS

$$P_{k2} = (1)(s^{-1})(1)(1) = s^{-1}$$

since, all the loops are touching to the paths P_{k1} and P_{k2} so,

$$\Delta k_1 = \Delta k_2 = 1$$

Now, we have

$$\Delta = 1 - (\text{sum of individual loops})$$

+ (sum of product of nontouching

loops)

Here, the loops are

$$L_{1} = (-4)(1) = -4$$

$$L_{2} = (-4)(s^{-1}) = 4s^{-1}$$

$$L_{3} = (-2)(s^{-1})(s^{-1}) = -2s^{-2}$$

$$L_{4} = (-2)(s^{-1})(1) = -2s^{-1}$$
As all the loop L_{1}, L_{2}, L_{3} and L_{4} are touching to each other so,

$$\Delta = 1 - (L_{1} + L_{2} + L_{3} + L_{4})$$

$$= 1 - (-4 - 4s^{-1} - 2s^{-2} - 2s^{-1})$$

$$= 5 + 6s^{1} + 2s^{2}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

From Mason's gain formulae

$$\frac{Y(s)}{U(s)} = \frac{\sum P_k \Delta_k}{\Delta} \\ = \frac{s^{-2} + s^{-1}}{5 + 6s^{-1} + 2s^{-2}} \\ = \frac{s+1}{5s^2 + 6s + 2}$$

Option (A) is correct.

7.4

For the shown state diagram we can denote the states x_1 , x_2 as below

So, from the state diagram, we obtain

$$\dot{x}_1 = -x_1 - u$$

$$\dot{x}_2 = -x_2 + (1)(-1)(1)(-1)u + (-1)(1)(-1)x_1$$

$$\dot{x}_2 = -x_2 + x_1 + u$$

and
$$y$$

= $(-1)(1)x_2 + (-1)(1)(-1)x_1 + (1)(-1)(1)(-1)(1)u$
= $x_1 - x_2 + u$

Hence, in matrix form we can write the state variable equations

$$\dot{\dot{t}}_1 \\ \dot{\dot{t}}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u$$

and

which can be written in more general form as

$$\dot{X} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} X + \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} X + u$$

Slope =
$$\frac{20 \log G_2 - 20 \log G_1}{\log w_2 - \log w_1}$$

From the figure

 $20 \log G_2 = -8 \text{ dB}$ $20 \log G_1 = 32 \text{ dB}$ $\omega_1 = 1 \text{ rad/s}$ $\omega_2 = 10 \text{ rad/s}$

So, the slope is

and

Slope
$$= \frac{-8 - 32}{\log_{10} - \log_1}$$
$$= -40 \text{ dB/decade}$$

Therefore, the transfer function can be given as

at $\omega = 1$

$$\left| G(j\omega) \right| = \frac{k}{\left| w \right|^2} = k$$

 $G(s) = \frac{k}{\varsigma^2}$

In decibel,

 $20\log|G(j\omega)| = 20\log k = 32$

or,

Hence, the Transfer function is
$$G(s) = \frac{k}{s^2} = \frac{39.8}{s^2}$$

 $k = 10^{\frac{32}{20}} = 39.8$

7.2 Option (C) is correct.

Given, open loop transfer function

$$G(s) = \frac{10K_a}{1+10s} = \frac{K_a}{s+\frac{1}{10}}$$

By taking inverse Laplace transform, we have

$$(t) = e^{-\frac{1}{10}t}$$

Comparing with standard form of transfer function,
$$Ae^{-t/\tau}$$
, we get the open loop time constant,

$$\tau_{ol} = 10$$

Now, we obtain the closed loop transfer function for the given system as

$$H(s) = \frac{G(s)}{1 + G(s)} = \frac{10K_a}{1 + 10s + 10K_a}$$
$$= \frac{K_a}{s + (K_a + \frac{1}{10})}$$

By taking inverse Laplace transform, we get $h(t) = k_a \cdot e^{-(k_a + \frac{1}{10})t}$

So, the time constant of closed loop system is obtained as

 $egin{aligned} & au_{cl}=rac{1}{k_a+rac{1}{10}}\ & au_{cl}=rac{1}{k_a} \end{aligned}$

(approximately)

or,

7.3

Now, given that k_a reduces open loop time constant by a factor of 100. i.e.,

or, $\begin{aligned} \tau_{cl} &= \frac{\tau_{ol}}{100} \\ \frac{1}{h} &= \frac{10}{100} \end{aligned}$

or,
$$\frac{1}{k_a} = \frac{10}{100}$$

Hence,
$$k_a = 10$$

Option (A) is correct.

For the given SFG, we have two forward paths $P_{k1} = (1)(s^{-1})(s^{-1})(1) = s^{-2}$

 $A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}$

Option (A) is correct. 7.5 From the obtained state-variable equations We have

So,

and

 $SI - A = \begin{bmatrix} S+1 & 0\\ -1 & S+1 \end{bmatrix}$ $(SI - A)^{-1} = \frac{1}{(S+1)^2} \begin{bmatrix} S+1 & 0\\ 1 & S+1 \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{S+1} & 0\\ \frac{1}{(S+1)^2} & \frac{1}{S+1} \end{bmatrix}$ Hence, the state transition matrix is obtained as $e^{At} = L^{-1}(SI - A)^{-1}$ $= L^{-1} \left\{ \begin{bmatrix} \frac{1}{S+1} & 0\\ \frac{1}{(S+1)^2} & \frac{1}{S+1} \end{bmatrix} \right\}$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (C) is correct. 7.6

$$G(s) = \frac{(s^2 + 9)(s + 2)}{(s + 1)(s + 3)(s + 4)}$$
$$= \frac{(-\omega^2 + 9)(j\omega + 2)}{(j\omega + 1)(j\omega + 3)(j\omega + 4)}$$

 $= \begin{vmatrix} e^{-1} & 0\\ te^{-t} & e^{-t} \end{vmatrix}$

The steady state output will be zero if

$$|G(j\omega)| = 0$$

 $-\omega^2 + 9 = 0 \Rightarrow \omega = 3 \text{ rad/s}$

Option (A) is correct. 7.7

$$\begin{split} Y(s) &= \frac{K(s+1)}{s^3 + as^2 + 2s + 1} [R(s) - Y(s)] \\ Y(s) \Big[1 + \frac{K(s+1)}{s^3 + as^2 + 2s + 1} \Big] = \frac{K(s+1)}{s^3 + as^2 + 2s + 1} R(s) \\ Y(s) [s^3 + as^2 + s(2+k) + (1+k)] &= K(s+1) R(s) \\ \text{Transfer Function,} \qquad H(s) &= \frac{Y(s)}{R(s)} \\ &= \frac{K(s+1)}{s^3 + as^2 + s(2+k) + (1+k)} \\ \text{Routh Table :} \end{split}$$

- - /

$$s^3$$
 1
 $2+K$
 s^2
 a
 $1+K$
 s^1
 $\frac{a(2+K)-(1+K)}{a}$
 0

For oscillation,

1

$$\frac{a(2+K) - (1+K)}{a} = 0$$
$$a = \frac{K+1}{K+2}$$

 $A(s) = as^{2} + (k+1) = 0$ Auxiliary equation $s^{2} = -\frac{k+1}{a} = \frac{-k+1}{(k+1)}(k+2) = -(k+2)$ $s = j\sqrt{k+2}$ $j\omega = j\sqrt{k+2}$ $\omega = \sqrt{k+2} = 2$ (Oscillation frequency) k = 2

and

Option (D) is correct. 7.8

General form of state equations are given as

$$\dot{x} = Ax + Bu$$

 $\dot{y} = Cx + Du$

For the given problem

$$\boldsymbol{A} = \begin{bmatrix} 0 & a_1 & 0 \\ 0 & 0 & a_2 \\ a_3 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\boldsymbol{AB} = \begin{bmatrix} 0 & a_1 & 0 \\ 0 & 0 & a_2 \\ a_3 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ a_2 \\ 0 \\ 0 \end{bmatrix}$$
$$\boldsymbol{A^2B} = \begin{bmatrix} a_2 a_3 & 0 & 0 \\ 0 & a_3 a_1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 a_2 \\ 0 \\ 0 \end{bmatrix}$$

 $a = \frac{2+1}{2+2} = \frac{3}{4} = 0.75$

For controllability it is necessary that following matrix has a tank of n = 3.

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{B} : \boldsymbol{A}\boldsymbol{B} : \boldsymbol{A}^{2}\boldsymbol{B} \end{bmatrix} = \begin{bmatrix} 0 & 0 & a_{1}a_{2} \\ 0 & a_{2} & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$a_{2} \neq 0$$

So,

Now

7.10

 $a_1 a_2 \neq 0 \Rightarrow a_1 \neq 0$ a_3 may be zero or not.

Option (B) is correct. 7.9

> For given plot root locus exists from -3 to ∞ , So there must be odd number of poles and zeros. There is a double pole at s = -3

poles
$$= 0, -2, -3, -3$$

zeros = -1 $G(s) H(s) = \frac{k(s+1)}{s(s+2)(s+3)^2}$

Thus transfer function

Option (A) is correct.

We have $G(j\omega) = 5 + j\omega$

Here
$$\sigma = 5$$
. Thus $G(j\omega)$ is a straight line parallel to $j\omega$ axis.

Option (B) is correct. 7.11

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

 $x = y_1$ and $\dot{x} = \frac{dy_1}{dx}$

Here

$$\underline{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x \\ 2x \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \underline{x}$$
$$y_1 = \frac{1}{s+2}u$$

Now

$$y_{1} = \frac{1}{s+2}u$$

$$y_{1}(s+2) = u$$

$$\dot{y}_{1}+2y_{1} = u$$

$$\dot{x}+2x = u$$

$$\dot{x} = -2x+u$$

$$\dot{x} = [-2]\underline{x}+[1]u$$

Drawing SFG as shown below

 $\dot{x}_1 = [-2] x_1 + [1] u$

 $y_1 = x_1; y_2 = 2x_1$

 $\underline{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \underline{x_1}$

$$u \bullet \underbrace{\underline{x} = \underline{x_1}}_{-2} \bullet \underbrace{1/s}_{-2} \bullet \underbrace{x_1}_{-2} \bullet y_1$$

Thus

Here

7.12

Option (C) is correct.

 $G(s)H(s) = -\frac{100}{100}$ We have Now

$$S(s)H(b) = \frac{s(s+10)^2}{g(j\omega)H(j\omega)} = \frac{100}{j\omega(j\omega+10)^2}$$
have cross over frequency $\angle G(j\omega)H(j\omega) = 1$

 180° If ω_p is phase cross over frequency $\angle G(j\omega) H(j\omega) =$

 $x_1 = x$

Thus
$$-180^{\circ} = 100 \tan^{-1}0 - \tan^{-1}\infty - 2 \tan^{-1}\left(\frac{\omega_p}{10}\right)$$

or $-180^{\circ} = -90 - 2 \tan^{-1}(0.1\omega_p)$
or $45^{\circ} = \tan^{-1}(0.1\omega_p)$
or $\tan 45^{\circ} \ 0.1\omega_p = 1$

 $\omega_p = 10 \text{ rad/se}$

 $\left| G(j\omega) H(j\omega) \right| = \frac{100}{\omega \left(\omega^2 + 100\right)}$

Now

At $\omega = \omega_p$

or

$$|G(j\omega) H(j\omega)| = \frac{100}{10(100+100)} = \frac{1}{20}$$

Gain Margin = $-20 \log_{10} |G(j\omega) H(j\omega)|$
= $-20 \log_{10} (\frac{1}{20})$
= 26 dB

Option (D) is correct. 7.13

TF = H(s)From option (D)

$$=\frac{100}{s(s^2+100)}\neq\frac{100}{s(s+10)^2}$$

Option (B) is correct. 7.14 From the given block diagram

$$R(s) \xrightarrow{+ \sum} E(s) \xrightarrow{1} x+1 \xrightarrow{+ 1} Y(s)$$

$$H(s) = Y(s) - E(s) \cdot \frac{1}{s+1}$$

$$E(s) = R(s) - H(s)$$

$$= R(s) - Y(s) + \frac{E(s)}{(s+1)}$$

$$E(s) \left[1 - \frac{1}{s+1}\right] = R(s) - Y(s)$$

$$\frac{sE(s)}{(s+1)} = R(s) - Y(s)$$

$$F(s)$$

$$Y(s) = \frac{E(s)}{s+1}$$
 ...(2)

From (1) and (2)

(2)
$$sY(s) = R(s) - Y(s)$$

 $(s+1) Y(s) = R(s)$

Transfer function

Transfer function is given as

$$H(s) = \frac{Y(s)}{X(s)} = \frac{s}{s+p}$$
$$H(j\omega) = \frac{j\omega}{j\omega+p}$$

 $\frac{Y(s)}{R(s)} = \frac{1}{s+1}$

Amplitude Response

$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + p^2}}$$

Phase Response $\theta_h(\omega) = 90^\circ - \tan^{-1}\left(\frac{\omega}{p}\right)$
Input $x(t) = p\cos\left(2t - \frac{\pi}{2}\right)$

$$x(t) = p \cos\left(2t - \frac{\pi}{2}\right)$$
$$y(t) = \left| H(j\omega) \right| x(t - \theta_h) = \cos\left(2t - \frac{\pi}{3}\right)$$

Output

Input

$$H(j\omega) = p = \frac{\omega}{\sqrt{\omega^2 + m^2}}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

 $\frac{1}{p} = \frac{2}{\sqrt{4+p^2}}, \quad (\omega = 2 \operatorname{rad}/\operatorname{sec})$

 $4p^2 = 4 + p^2 \Rightarrow 3p^2 = 4$

 $\theta_h = \left[-\frac{\pi}{3} - \left(-\frac{\pi}{2}\right)\right] = \frac{\pi}{6}$

 $\frac{\pi}{6} = \frac{\pi}{2} - \tan^{-1}\left(\frac{\omega}{n}\right)$

www.nodia.co.in

 $p = 2/\sqrt{3}$

or or Alternative :

$$\tan^{-1}\left(\frac{\omega}{p}\right) = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$$
$$\frac{\omega}{p} = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}$$
$$\frac{2}{p} = \sqrt{3}, \quad (\omega = 2 \text{ rad/sec})$$
$$p = 2/\sqrt{3}$$

or 7.16

...(1)

Option (A) is correct. Initial slope is zero, so K = 1

At corner frequency $\omega_1 = 0.5 \text{ rad/sec}$, slope increases by +20 dB/decade, so there is a zero in the transfer function at ω_1

At corner frequency $\omega_2 = 10 \text{ rad/sec}$, slope decreases by -20 dB/decade and becomes zero, so there is a pole in transfer function at ω_2

 $H(s) = \frac{K\left(1 + \frac{s}{\omega_1}\right)}{\left(1 + \frac{s}{\omega_1}\right)}$

Transfer function

$$\begin{pmatrix} 1 + \frac{s}{\omega_2} \\ \\ = \frac{1\left(1 + \frac{s}{0.1}\right)}{\left(1 + \frac{s}{0.1}\right)} = \frac{(1+10s)}{(1+0.1s)}$$

Option (D) is correct. 7.17

Steady state error is given as

$$e_{SS} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s) G_C(s)}$$

$$R(s) = \frac{1}{s}$$

$$e_{SS} = \lim_{s \to 0} \frac{1}{1 + G(s) G_C(s)}$$

$$= \lim_{s \to 0} \frac{1}{1 + \frac{G_C(s)}{s^2 + 2s + 2}}$$

 e_{SS} will be minimum if $\lim_{s \to 0} G_C(s)$ is maximum In option (D)

 $\lim_{s \to 0} G_C(s) = \lim_{s \to 0} 1 + \frac{2}{s} + 3s = \infty$ $e_{SS} = \lim_{s \to 0} \frac{1}{\infty} = 0 \text{ (minimum)}$

So,

7.18 Option (D) is correct. Assign output of each integrator by a state variable

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$U(s)$$
 • 2 \dot{x}_2 1/s x_2 1/s x_1 0.5 • $Y(s)$

$$x_{1} = -x_{1} + x_{2}$$

$$\dot{x}_{2} = -x_{1} + 2u$$

$$y = 0.5x_{1} + 0.5x_{2}$$
State variable representation
$$\dot{x} = \begin{bmatrix} -1 & 1\\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 2 \end{bmatrix} u$$

$$\begin{aligned} x &= \begin{bmatrix} -1 & 0 \end{bmatrix}^{x} + \begin{bmatrix} 2 \end{bmatrix} \\ \dot{y} &= \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} x \end{aligned}$$

Option (C) is correct. By masson's gain formula

7.19

$$U(s) \overset{a}{\bullet} \overset{2}{\bullet} \overset{b}{\bullet} \overset{1/s}{\circ} \overset{c}{\bullet} \overset{1/s}{\bullet} \overset{d}{\bullet} \overset{0.5}{\bullet} \overset{o}{f} Y(s)$$

Transfer function

$$H(s) = \frac{Y(s)}{U(s)} = \frac{\sum P_K \Delta_K}{\Delta}$$

Forward path given

$$P_1(abcdef) = 2 \times \frac{1}{s} \times \frac{1}{s} \times 0.5 = \frac{1}{s^2}$$
$$P_2(abcdef) = 2 \times \frac{1}{3} \times 1 \times 0.5$$

Loop gain

$$L_2(bcdb) = \frac{1}{s} \times \frac{1}{s} \times -1 = \frac{-1}{s^2}$$

 $L_1(cdc) = -\frac{1}{s}$

$$\begin{split} \Delta &= 1 - [L_1 + L_2] = 1 - \left[-\frac{1}{s} - \frac{1}{s^2} \right] = 1 + \frac{1}{s} + \frac{1}{s^2} \\ \Delta_1 &= 1, \ \Delta_2 = 2 \\ H(s) &= \frac{Y(s)}{U(s)} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta} \\ &= \frac{\frac{1}{s^2} \cdot 1 + \frac{1}{s} \cdot 1}{1 + \frac{1}{s} + \frac{1}{s^2}} = \frac{(1+s)}{(s^2 + s + 1)} \end{split}$$

7.20 Option (C) is correct.

So,

This compensator is roughly equivalent to combining lead and lad compensators in the same design and it is referred also as PID compensator.

7.21 Option (C) is correct.

$$AB = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}$$
$$S = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} p & q \\ q & p \end{bmatrix}$$
$$S = pq - pq = 0$$

1 + G(s)H(s) = 0

 $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} p \\ q \end{bmatrix}$

Since S is singular, system is completely uncontrollable for all values of p and q.

7.22 Option (B) is correct.

The characteristic equation is

or

or

Thus

or

 $1 + \frac{K(s^2 - 2s + 2)}{s^2 + 2s + 2} = 0$ $s^2 + 2s + 2 + K(s^2 - 2s + 2) = 0$

For break away & break in point differentiating above w.r.t. s we have

$$\frac{dK}{ds} = -\frac{(s^2 - 2s + 2)(2s + 2) - (s^2 + 2s + 2)(2s - 2)}{(s^2 - 2s + 2)^2} = 0$$
$$(s^2 - 2s + 2)(2s + 2) - (s^2 + 2s + 2)(2s - 2) = 0$$
$$s = \pm\sqrt{2}$$

 $K = -\frac{s^2 + 2s + 2}{s^2 - 2s + 2}$

Let θ_d be the angle of departure at pole P, then

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$-\theta_d - \theta_{p1} + \theta_{z1} + \theta_{z2} = 180^\circ$$
$$-\theta_d = 180^\circ - (-\theta_{p1} + \theta_{z1} + \theta_2)$$

$$= 180^{\circ} - (90^{\circ} + 180 - 45^{\circ}) = -45^{\circ}$$

²³ Option (B) is correct.
For under-damped second order response

$$T(s) = \frac{k\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} \qquad \text{where } \xi < 1$$
Thus (A) or (B) may be correct
For option (A) $\omega_n = 1.12 \text{ and } 2\xi\omega_n = 2.59 \rightarrow \xi = 1.12$
For option (B) $\omega_n = 1.91 \text{ and } 2\xi\omega_n = 1.51 \rightarrow \xi = 0.69$
²⁴ Option (B) is correct.
The plot has one encirclement of origin in clockwise direction. Thus
 $G(s)$ has a zero is in RHP.
²⁵ Option (C) is correct.
The Nyzuist plot intersect the real axis ate - 0.5. Thus
 $G. M. = -20 \log x = -20 \log 0.5 = 6.020 \text{ dB}$
And its phase margin is 90°.
²⁶ Option (C) is correct.

Transfer function for the given pole zero plot is: $\frac{(s+Z_1)(s+Z_2)}{(s+P_1)(s+P_2)}$ From the plot Re $(P_1 \text{ and } P_2) > (Z_1 \text{ and } Z_2)$

So, these are two lead compensator.

Hence both high pass filters and the system is high pass filter.

7.27 Option (C) is correct.

7

Percent overshoot depends only on damping ratio, ξ .

 $M_p = e^{-\xi\pi\sqrt{1-\xi^2}}$

If M_p is same then ξ is also same and we get

$$\xi = \cos \theta$$

Thus $\theta = \text{constant}$

The option (C) only have same angle.

7.28 Option (D) is correct.

$$P = \frac{25}{s^2 + 25} \qquad 2\xi\omega_n = 0, \xi = 0 \rightarrow \text{Undamped} \qquad \text{Graph 3}$$

$$Q = \frac{6^{-1}}{s^2 + 20s + 6^2} \qquad 2\xi\omega_n = 20, \xi > 1 \to \text{Overdamped} \quad \text{Graph 4}$$

$$R = \frac{6^2}{s^2 + 12s + 6^2} \qquad 2\xi\omega_n = 12, \xi = 1 \rightarrow \text{Critically} \qquad \text{Graph 1}$$

$$S = \frac{7^2}{s^2 + 7s + 7^2} \qquad 2\xi\omega_n = 7, \xi < 1 \rightarrow \text{underdamped} \quad \text{Graph } 2$$

Option (C) is correct.

We labeled the given SFG as below :

From this SFG we have

$$\dot{x}_{1} = -\gamma x_{1} + \beta x_{3} + \mu_{1}$$
$$\dot{x}_{2} = \gamma x_{1} + \alpha x_{3}$$
$$\dot{x}_{3} = -\beta x_{1} - \alpha x_{3} + u_{2}$$
$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -\gamma & 0 & \beta \\ \gamma & 0 & \alpha \\ -\beta & 0 - \alpha \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$

7.30

Thus

7.29

Option (C) is correct.

The characteristic equation of closed lop transfer function is

$$1 + G(s)H(s) = 0$$

1 + $\frac{s+8}{s^2 + \alpha s - 4} = 0$

 $s^2 + \alpha s - 4 + s + 8 = 0$

 $s^{2} + (\alpha + 1)s + 4 = 0$

or

or

7.31

This will be stable if $(\alpha + 1) > 0 \rightarrow \alpha > -1$. Thus system is stable for all positive value of α .

Option (C) is correct.

The characteristic equation is

$$1 + G(s) = 0$$

or
$$s^{5} + 2s^{4} + 3s^{3} + 6s^{2} + 5s + 3 = 0$$

Substituting $s = \frac{1}{z}$ we have

 $3z^5 + 5z^4 + 6z^3 + 3z^2 + 2z + 1 = 0$

The routh table is shown below. As there are tow sign change in first column, there are two RHS poles.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

z^5	3	6	2
z^4	5	3	1
z^3	$\frac{21}{5}$	$\frac{7}{5}$	
z^2	$\frac{4}{3}$	3	
z^1	$-\frac{7}{4}$		
z^0	1		

7.32 Option (C) is correct.

For underdamped second order system the transfer function is

$$T(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

 $\omega_r = \omega_n \sqrt{1 - 2\xi^2}$

It peaks at resonant frequency. Therefore

Resonant frequency

and peak at this frequency

$$\mu_r = \frac{5}{2\xi\sqrt{1-\xi^2}}$$

We have $\omega_r = 5\sqrt{2}$, and $\mu_r = \frac{10}{\sqrt{3}}$. Only options (A) satisfy these values.

$$\omega_n = 10, \ \xi = \frac{1}{2}$$

where

wite

and

 $\omega_r = 10\sqrt{1 - 2\left(\frac{1}{4}\right)} = 5\sqrt{2}$ $\mu_r = \frac{5}{2\frac{1}{2}\sqrt{1 - \frac{1}{4}}} = \frac{10}{\sqrt{3}}$

Hence satisfied

Option (B) is correct.

The given circuit is a inverting amplifier and transfer function is

$$\frac{V_o}{V_i} = \frac{-Z}{\frac{R_i}{sC_iR_i + 1}} = \frac{-Z(sC_1R_1 + 1)}{R_1}$$

 (sC_2R_2+1)

For
$$Q$$
,

$$Z = \frac{1}{sC_2}$$

$$\frac{V_o}{V_i} = -\frac{(sC_2R_2 + 1)}{sC_2} \times \frac{(sC_1R_1 + 1)}{R_1}$$
 PID Controller
$$Z = \frac{R_2}{sC_2}$$

For R,

$$\frac{V_o}{V_i} = -\frac{R_2}{(sC_2R_2+1)} \times \frac{(sC_1R_1+1)}{R_1}$$

Since $R_2 C_2 > R_1 C_1$, it is lag compensator.

7.34 Option (D) is correct.

In a minimum phase system, all the poles as well as zeros are on the left half of the s-plane. In given system as there is right half zero ^{7.39} (s = 5), the system is a non-minimum phase system.

7.35 Option (B) is correct.

We have

 $K_v = \lim_{s \to 0} sG(s) H(s)$

or

$$1000 = \lim_{s \to 0} s \frac{(K_p + K_D s) 100}{s(s+100)} = K_p$$

Now characteristics equations is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

$$1 + G(s) H(s) = 0$$

1000 = $\lim_{s \to 0} s \frac{(K_p + K_D s) 100}{s(s+100)} = K_p$

Now characteristics equation is

or
$$1 + G(s) H(s) = 0$$
$$1 + \frac{(100 + K_D s) 100}{s(s+10)} = 0$$
$$K_p = 100$$
or
$$s^2 + (10 + 100K_D) s + 10^4 = 0$$

Comparing with $s^2 + 2\xi\omega_n + \omega_n^2 = 0$ we get $2\xi\omega_n = 10 + 100K_D$

$$Z_{\zeta}\omega_n = 10 + 100K$$
$$K_D = 0.9$$

7.36

Option (D) is correct.

We have

or

$$T(s) = \frac{5}{(s+5)(s^2+s+1)} = \frac{5}{5(1+\frac{s}{5})(s^2+s+1)} = \frac{1}{s^2+s+1}$$

In given transfer function denominator is $(s+5)[(s+0.5)^2 + \frac{3}{4}]$. We can see easily that pole at $s = -0.5 \pm j\frac{\sqrt{3}}{2}$ is dominant then pole at s = -5. Thus we have approximated it.

7.37 Option (A) is correct.

$$G(s) = \frac{1}{s^2 - 1} = \frac{1}{(s+1)(s-1)}$$

The lead compensator C(s) should first stabilize the plant i.e. remove $\frac{1}{(s-1)}$ term. From only options (A), C(s) can remove this term

Thus

$$G(s) C(s) = \frac{1}{(s+1)(s-1)} \times \frac{10(s-1)}{(s+2)}$$

= $\frac{10}{(s+1)(s+2)}$ Only option (A)

satisfies.

7.38

or

or

or

For ufb system the characteristics equation is

$$1 + G(s) = 0$$

$$1 + \frac{K}{s(s^2 + 7s + 12)} = 0$$

$$s(s^2 + 7s + 12) + K = 0$$

 $s(s^{2} + 7s + 12) + K = 0$ ---1 + *i* lie on root locus if it satisfy above equation i.e

$$-1 + j[(-1 + j)^2 + 7(-1 + j) + 12) + K] = 0$$

$$K = +10$$

Option (D) is correct.

At every corner frequency there is change of -20 db/decade in slope which indicate pole at every corner frequency. Thus

$$G(s) = \frac{K}{s(1+s)(1+\frac{s}{20})}$$

 $G(s) = \frac{100}{s(s+1)(1+.05s)}$

Bode plot is in (1 + sT) form

$$20\log\frac{K}{\omega}\Big|_{\omega=0.1} = 60 \text{ dB} = 1000$$

K = 5

Hence

and

7.40

We have
$$\begin{bmatrix} \frac{d\omega}{dt} \\ \frac{di_u}{dt} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & -10 \end{bmatrix} \begin{bmatrix} \omega \\ i_n \end{bmatrix} + \begin{bmatrix} 0 \\ 10 \end{bmatrix} u$$

or
$$\frac{d\omega}{dt} = -\omega + i_n \qquad \dots(1)$$

$$\frac{di_a}{dt} = -\omega - 10i_a + 10u \qquad \dots (2)$$

Taking Laplace transform (i) we get $e_{i}(s) = -e_{i}(s) = L(s)$

or
$$(s+1)\omega(s) = I_a(s)$$
 ...(3)

Taking Laplace transform (ii) we get

or

$$sI_{a}(s) = -\omega(s) - 10I_{a}(s) + 10U(s)$$

$$\omega(s) = (-10 - s)I_{a}(s) + 10U(s)$$

$$= (-10 - s)(s + 1)\omega(s) + 10U(s)$$
From (3)
or

$$\omega(s) = -[s^{2} + 11s + 10]\omega(s) + 10U(s)$$
or

$$(s^{2} + 11s + 11)\omega(s) = 10U(s)$$
or

$$\frac{\omega(s)}{U(s)} = \frac{10}{(s^{2} + 11s + 11)}$$

7.41 Option (A) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

We have $\dot{x}(t) = Ax(t)$ Let $A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ For initial state vector $x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ the system response is $x(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix}$ Thus $\begin{bmatrix} \frac{d}{dt}e^{-2t} \\ \frac{d}{dt}(-2e^{-2t}) \end{bmatrix}_{t=0} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ or $\begin{bmatrix} -2e^{-2(0)} \\ 4e^{-2(0)} \end{bmatrix} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

$$\begin{bmatrix} -2\\ 4 \end{bmatrix} = \begin{bmatrix} p-2q\\ r-2s \end{bmatrix}$$

$$p-2q = -2 \text{ and } r-2s = 4 \qquad \dots(i)$$

For initial state vector $x(0) = \begin{vmatrix} 1 \\ -1 \end{vmatrix}$ the system response is $x(t) = \begin{vmatrix} e^{-t} \\ -e^{-t} \end{vmatrix}$

Thus

We get

$$\begin{bmatrix} \frac{d}{dt}e^{-t} \\ \frac{d}{dt}(-e^{-t}) \end{bmatrix}_{t=0} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$\begin{bmatrix} -e^{-(0)} \\ e^{-(0)} \\ e^{-(0)} \end{bmatrix} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} p - q \\ r - s \end{bmatrix}$$

We get p-q = -1 and r-s = 1Solving (1) and (2) set of equations we get

$$\begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

The characteristic equation

$$\begin{vmatrix} \lambda I - A \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda & -1 \\ 2 & \lambda + 3 \end{vmatrix} = 0$$
or
$$\lambda(\lambda + 3) + 2 = 0$$
or
$$\lambda = -1, -2$$

Thus Eigen values are -1 and -2Eigen vectors for $\lambda_1 = -1$

$$\left(\lambda_1 I - A\right) X_1 = 0$$

or

or

$$\begin{bmatrix}
\lambda_{1} & -1 \\
2 & \lambda_{1} + 3
\end{bmatrix}
\begin{bmatrix}
x_{11} \\
x_{21}
\end{bmatrix} = 0$$

$$\begin{bmatrix}
-1 & -1 \\
2 & 2
\end{bmatrix}
\begin{bmatrix}
x_{11} \\
x_{21}
\end{bmatrix} = 0$$
or

$$-x_{11} - x_{21} = 0$$
or

$$x_{11} + x_{21} = 0$$

$$x_{11} + x_{21} =$$

We have only one independent equation $x_{11} = -x_{21}$.

Let
$$x_{11} = K$$
, then $x_{21} = -K$, the Eigen vector will be
$$\begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} = \begin{bmatrix} K \\ -K \end{bmatrix} = K \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Now Eigen vector for $\lambda_2 = -2$

	$\left(\lambda_2 I - A\right) X_2 = 0$
or	$\begin{bmatrix} \lambda_2 & -1 \\ 2 & \lambda_2 + 3 \end{bmatrix} \begin{bmatrix} x_{12} \\ x_{22} \end{bmatrix} = 0$
or	$\begin{bmatrix} -2 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{11} \end{bmatrix} = 0$

or
$$\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} = 0$$

or
$$-x_{11} - x_{21} = 0$$

 $x_{11} + x_{21} = 0$ or

We have only one independent equation $x_{11} = -x_{21}$.

Let
$$x_{11} = K$$
, then $x_{21} = -K$, the Eigen vector will be

$$\begin{bmatrix} x_{12} \\ x_{22} \end{bmatrix} = \begin{bmatrix} K \\ -2K \end{bmatrix} = K \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Option (D) is correct. As shown in previous solution the system matrix is

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Option (D) is correct. 7.43

7.42

Given system is 2nd order and for 2nd order system G.M. is infinite. $O_{n+ion}(D)$

Option
$$(D)$$
 is correct

7.44

7.45

7.46

...(2)

Option
$$(D)$$
 is correct.

If the Nyquist polt of $G(j\omega) H(j\omega)$ for a closed loop system pass through (-1, j0) point, the gain margin is 1 and in dB

$$GM = -20\log 1$$
$$= 0 \text{ dB}$$

Option (B) is correct.

The characteristics equation is

$$1 + G(s)H(s) = 0$$

$$1 + \frac{K(s+1)}{s^3 + as^2 + 2s + 1} = 0$$

$$s^{3} + as^{2} + (2 + K)s + K + 1 = 0$$

The Routh Table is shown below. For system to be oscillatory stable

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

$$\frac{a(2+K) - (K+1)}{a} = 0$$
$$a = \frac{K+1}{K+2}$$

Then we have

or

$$as^2 + K + 1 = 0$$

At 2 rad/sec we have

$$s = j\omega \to s^2 = -\omega^2 = -4,$$

-4a + K + 1 = 0Thus Solving (i) and (ii) we get K = 2 and a = 0.75.

s^3	1	2+K
s^2	a	1+K
s^1	$\frac{(1+K)a - (1+K)}{a}$	
s^0	1+K	

Option (D) is correct. 7.47

The transfer function of given compensator is

$$G_c(s) = \frac{1+3Ts}{1+Ts} \qquad T > 0$$

Comparing with

$$G_c(s) = \frac{1 + aTs}{1 + Ts}$$
 we get $a = 3$

The maximum phase sift is

$$\phi_{\max} = \tan^{-1} \frac{a-1}{2\sqrt{a}} = \tan^{-1} \frac{3-1}{2\sqrt{3}} = \tan^{-1} \frac{1}{\sqrt{3}}$$
$$\phi_{\max} = \frac{\pi}{6}$$

or

Option (A) is correct. 7.48

...(1)

...(2)

$$(sI - A) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} s & -1 \\ 1 & s \end{bmatrix}$$
$$(sI - A)^{-1} = \frac{1}{s^2 + 1} \begin{bmatrix} s & -1 \\ 1 & s \end{bmatrix} = \begin{bmatrix} \frac{s}{s^2 + 1} & \frac{1}{s^2 + 1} \\ \frac{-1}{s^2 + 1} & \frac{s}{s^2 + 1} \end{bmatrix}$$
$$\phi(t) = e^{At} = L^{-1}[(sI - A)]^{-1} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$
Option (C) is correct.
We have
$$G(s) = \frac{as + 1}{s^2}$$
$$\angle G(j\omega) = \tan^{-1}(\omega a) - \pi$$
Since PM is $\frac{\pi}{4}$ i.e. 45°, thus
$$\frac{\pi}{4} = \pi + \angle G(j\omega_g)\omega_g \rightarrow \text{Gain cross over Frequen-}$$

cy

7.49

or or

 $\frac{\pi}{4} = \tan^{-1}(\omega_g a)$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

 $\frac{\pi}{4} = \pi + \tan^{-1}(\omega_g a) - \pi$

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

or
$$a\omega_g = 1$$

At gain crossover frequency $|G(j\omega_g)| = 1$
Thus $\frac{\sqrt{1+a^2\omega_g^2}}{\omega_g^2} = 1$
or $\sqrt{1+1} = \omega_g^2$ (as $a\omega_g = 1$)
or $\omega_g = (2)^{\frac{1}{4}}$

7.50 Option (C) is correct.

For
$$a = 0.84$$
 we have

$$G(s) = \frac{0.84s + 1}{2}$$

Due to ufb system H(s) = 1 and due to unit impulse response R(s) = 1, thus

$$C(s) = G(s)R(s) = G(s)$$

= $\frac{0.84s + 1}{s^2} = \frac{1}{s^2} + \frac{0.84}{s}$

Taking inverse Laplace transform

$$c(t) = (t + 0.84) u(t)$$

 $c(1 \sec) = 1 + 0.84 = 1.84$

Option (C) is correct. 7.51

At t = 1,

We have $\dot{X} = AX + BU$ where λ is set of Eigen values $\dot{W} = CW + DU$ where μ is set of Eigen values and If a liner system is equivalently represented by two sets of state

equations, then for both sets, states will be same but their sets of Eigne values will not be same i.e.

$$X = W$$
 but $\lambda \neq \mu$

Option (D) is correct. 7.52 The transfer function of a lag network is

Finite

$$T(s) = \frac{1+sT}{1+s\beta T} \qquad \beta > 1; T > 0$$
$$|T(j\omega)| = \frac{\sqrt{1+\omega^2 T^2}}{\sqrt{1+\omega^2 \beta^2 T^2}}$$
and
$$\angle T(j\omega) = \tan^{-1}(\omega T) - \tan^{-1}(\omega \beta T)$$
At $\omega = 0, \qquad |T(j\omega)| = 1$ At $\omega = 0, \qquad \angle T(j\omega) = -\tan^{-1}0 = 0$ At $\omega = \infty, \qquad |T(j\omega)| = \frac{1}{\beta}$ At $\omega = \infty, \qquad \angle T(j\omega) = 0$

Option (A) is correct. 7.53

At At

At

At

Despite the presence of negative feedback, control systems still have problems of instability because components used have nonlinearity. There are always some variation as compared to ideal characteristics.

Option (C) is correct. 7.55

> The peak percent overshoot is determined for LTI second order closed loop system with zero initial condition. It's transfer function is

$$T(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Transfer function has a pair of complex conjugate poles and zeroes. Option (A) is correct.

For ramp input we have $R(s) = \frac{1}{c^2}$

T(-)

Now

$$= \lim_{s \to 0} s \frac{R(s)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)}$$
$$e_{ss} = \lim_{s \to 0} \frac{1}{sG(s)} = 5\% = \frac{1}{20}$$

or

or

 But

 k_v is finite for type 1 system having ramp input.

 $k_v = \frac{1}{e_{ss}} = \lim_{s \to 0} sG(s) = 20$

 $e_{ss} = \lim_{s \to 0} sE(s)$

Option (A) is correct.

Option (C) is correct.

Any point on real axis of s – is part of root locus if number of OL poles and zeros to right of that point is even. Thus (B) and (C) are possible option.

The characteristics equation is

1 + G(s)H(s) = 0

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

or
$$1 + \frac{K(1-s)}{s(s+3)} = 0$$

or
$$K = \frac{s^2 + 3s}{1-s}$$

For break away & break in point

$$\frac{dK}{ds} = (1-s)(2s+3) + s^2 + 3s = 0$$

 $-s^2 + 2s + 3 = 0$ which gives s = 3, -1

Here -1 must be the break away point and 3 must be the break in point.

7.58

7.57

7.56

Option (D) is correct. 7.59

or

$$G(s) = \frac{3e^{-2s}}{s(s+2)}$$
$$G(j\omega) = \frac{3e^{-2j}}{s(s+2)}$$

 $(j\omega) = \overline{j\omega(j\omega+2)}$ $|G(j\omega)| = \frac{3}{\omega\sqrt{\omega^2 + 4}}$

Let at frequency ω_q the gain is 1. Thus

$$\frac{3}{\omega_g \sqrt{(\omega_g^2 + 4)}} = 1$$

 $\omega_a^4 + 4\omega_a^2 - 9 = 0$ or

 $\omega_a^2 = 1.606$ or

 $\omega_a = 1.26 \text{ rad/sec}$ or

 $\angle G(j\omega) = -2\omega - \frac{\pi}{2} - \tan^{-1}\frac{\omega}{2}$ Now

Let at frequency ω_{ϕ} we have $\angle GH = -180^{\circ}$

 $-\pi = -2\omega_{\phi} - \frac{\pi}{2} - \tan^{-1}\frac{\omega_{\phi}}{2}$

 $=\frac{\pi}{2}$

or
$$2\omega_{\phi} + \tan^{-1}\frac{\omega_{\phi}}{2} = \frac{\pi}{2}$$

or
$$2\omega_{\phi} + \left(\frac{\omega_{\phi}}{2} - \frac{1}{3}\left(\frac{\omega_{\phi}}{2}\right)^3\right)$$

or

or

$$\frac{5\omega_{\phi}}{2} - \frac{\omega_{\phi}^3}{24} = \frac{\pi}{2}$$
$$\frac{5\omega_{\phi}}{2} \approx \frac{\pi}{2}$$

 $\omega_{\phi} = 0.63 \text{ rad}$

7.60

Option (D) is correct. The gain at phase crossover frequency ω_{*} is

or

$$|G(j\omega_g)| = \frac{3}{\omega_\phi \sqrt{(\omega_\phi^2 + 4)}} = \frac{3}{0.63(0.63^2 + 4)^{\frac{1}{2}}}$$

$$|G(j\omega_g)| = 2.27$$

$$G.M. = -20 \log|G(j\omega_g)|$$

 $-20\log 2.26 = -7.08 \text{ dB}$ Since G.M. is negative system is unstable.

The phase at gain cross over frequency is

$$\angle G(j\omega_g) = -2\omega_g - \frac{\pi}{2} - \tan^{-1}\frac{\omega_g}{2}$$
$$= -2 \times 1.26 - \frac{\pi}{2} - \tan^{-1}\frac{1.26}{2}$$
$$= -4.65 \text{ rad or } -266.5^\circ$$

or

$$PM = 180^{\circ} + \angle G(j\omega_g) = 180^{\circ} - 266.5^{\circ} = -86.5^{\circ}$$

Option (D) is correct. 7.61

The open loop transfer function is

$$G(s)H(s) = \frac{2(1+s)}{s^2}$$

Substituting $s = j\omega$ we have

$$G(j\omega) H(j\omega) = \frac{2(1+j\omega)}{-\omega^2} \qquad \dots (1)$$

$$\angle G(j\omega) H(j\omega) = -180^\circ + \tan^{-1}\omega$$

The frequency at which phase becomes -180° , is called phase crossover frequency. Thus $-180 = -180^{\circ} + \tan^{-1}\omega_{\phi}$

or
$$\tan^{-1}\omega_{\phi} = 0$$

or $\omega_{\phi} = 0$
The gain at $\omega_{\phi} = 0$ is

$$G(j\omega) H(j\omega)| = \frac{2\sqrt{1+\omega^2}}{\omega^2} = \infty$$

Thus gain margin is $=\frac{1}{\infty}=0$ and in dB this is $-\infty$.

7.62 Option (C) is correct. Centroid is the point where all asymptotes intersects. $\sigma = \frac{\Sigma \text{Real of Open Loop Pole} - \Sigma \text{Real Part of Open Loop Pole}}{\Sigma \text{No.of Open Loop Pole} - \Sigma \text{No.of Open Loop zero}}$

$$=\frac{-1-3}{3}=-1.33$$

Option (C) is correct. 7.63

The given bode plot is shown below

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

At $\omega = 1$ change in slope is $+20 \text{ dB} \rightarrow 1$ zero at $\omega = 1$ At $\omega = 10$ change in slope is $-20 \text{ dB} \rightarrow 1$ poles at $\omega = 10$ At $\omega = 100$ change in slope is $-20 \text{ dB} \rightarrow 1$ poles at $\omega = 100$ $T(s) = \frac{K(s+1)}{\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)}$ Thus $20\log_{10} K = -20 \to K = 0.1$ Now $T(s) = \frac{0.1(s+1)}{\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)} = \frac{100(s+1)}{(s+10)(s+100)}$ Thus Option (C) is correct. We have r(t) = 10u(t) $R(s) = \frac{10}{s}$ or $H(s) = \frac{1}{s+2}$ Now $C(s) = H(s) \cdot R(s) = \frac{1}{s+2} \cdot \frac{10}{s} \frac{10}{s(s+2)}$ $C(s) = \frac{5}{s} - \frac{5}{s+2}$ or $c(t) = 5[1 - e^{-2t}]$

The steady state value of c(t) is 5. It will reach 99% of steady state value reaches at t, where

 $5[1 - e^{-2t}] = 0.99 \times 5$ $1 - e^{-2t} = 0.99$ or $e^{-2t} = 0.1$ $-2t = \ln 0.1$ or $t = 2.3 \sec$ or

Option (A) is correct.

Approximate (comparable to 90°) phase shift are

Due to pole at 0.01 Hz $\rightarrow -90^{\circ}$

Due to pole at 80 Hz $\rightarrow -90^{\circ}$

Due to pole at 80 Hz $\rightarrow 0$

Due to zero at 5 Hz \rightarrow 90°

7.64

Due to zero at 100 Hz $\rightarrow 0$ Due to zero at 200 Hz $\rightarrow 0$

Thus approximate total -90° phase shift is provided.

Option (C) is correct. 7.66 Mason Gain Formula

$$T(s) = \frac{\sum p_k \Delta_k}{\bigwedge}$$

In given SFG there is only one forward path and 3 possible loop.

$$p_1 = abcd$$

 $\Delta_1 = 1$

 $\Delta = 1 - (\text{sum of indivudual loops}) - (\text{Sum of two non touching})$ loops)

$$= 1 - (L_1 + L_2 + L_3) + (L_1 L_3)$$

Non touching loop are L_1 and L_3 where

$$L_1L_2 = bedq$$

Thus

7.67

We

or

or

or

or

or or We Let

or

 $\frac{C(s)}{R(s)} = \frac{p_1 \Delta_1}{1 - (be + cf + dg) + bedg}$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$= \frac{abcd}{1 - (be + cf + dg) + bedg}$$
Option (A) is correct.
We have
$$A = \begin{bmatrix} -2 & 2\\ 1 & -3 \end{bmatrix}$$
Characteristic equation is
$$\begin{bmatrix} \lambda I - A \end{bmatrix} = 0$$
or
$$\begin{bmatrix} \lambda + 2 & -2\\ -1 & \lambda + 3 \end{bmatrix} = 0$$
or
$$(\lambda + 2)(\lambda + 3) - 2 = 0$$
or
$$\lambda^2 + 5\lambda + 4 = 0$$
Thus
$$\lambda_1 = -4 \text{ and } \lambda_2 = -1$$
Eigen values are -4 and -1 .
Eigen values are -4 and -1 .
Eigen vectors for $\lambda_1 = -4$

$$\begin{pmatrix} \lambda_1 I - A \end{pmatrix} X_1 = 0$$
or
$$\begin{bmatrix} \lambda_1 + 2 & -2\\ 1 & \lambda_1 + 3 \end{bmatrix} \begin{bmatrix} x_{11}\\ x_{21}\\ x_{21} \end{bmatrix} = 0$$
or
$$-2x_{11} - 2x_{21} = 0$$
or
$$x_{11} + x_{21} = 0$$
We have only one independent equation $x_{11} = -x_{21}$.
Let $x_{21} = K$, then $x_{11} = -K$, the Eigen vector will be

$$\begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} = \begin{bmatrix} -K \\ K \end{bmatrix} = K \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Now Eigen vector for $\lambda_2 = -1$

$$(\lambda_2 I - A) X_2 = 0$$
$$\begin{bmatrix} \lambda_2 + 2 & -2 \\ -1 & \lambda_2 + 3 \end{bmatrix} \begin{bmatrix} x_{12} \\ x_{22} \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_{12} \\ x_{22} \end{bmatrix} = 0$$

We have only one independent equation $x_{12} = 2x_{22}$ Let $x_{22} = K$, then $x_{12} = 2K$. Thus Eigen vector will be $\begin{bmatrix} x_{12} \\ x_{22} \end{bmatrix} = \begin{bmatrix} 2K \\ K \end{bmatrix} = K \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Digonalizing matrix

or

Now

$$M = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$$
$$M^{-1} = \left(\frac{-1}{3}\right) \begin{bmatrix} 1 & -2 \\ -1 & -1 \end{bmatrix}$$

Now Diagonal matrix of $\sin At$ is D where

$$D = \begin{bmatrix} \sin(\lambda_1 t) & 0\\ 0 & \sin(\lambda_2 t) \end{bmatrix} = \begin{bmatrix} \sin(-4t) & 0\\ 0 & \sin(\lambda_2 t) \end{bmatrix}$$

Now matrix

$$B = \sin At = MDM^{-1}$$
$$= -\left(\frac{1}{3}\right) \begin{bmatrix} -1 & 2\\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sin(-4t) & 0\\ 0 & \sin(-t) \end{bmatrix} \begin{bmatrix} 1 & -2\\ -1 & -1 \end{bmatrix}$$

$$= -\left(\frac{1}{3}\right) \begin{bmatrix} -\sin\left(-4t\right) - 2\sin\left(-t\right) & 2\sin\left(-4t\right) - 2\sin\left(-t\right) \\ \sin\left(-4t\right) + 2\sin\left(t\right) & -2\sin\left(-4t\right) - \sin\left(-t\right) \end{bmatrix}$$

$$= -\left(\frac{1}{3}\right) \begin{bmatrix} -\sin\left(-4t\right) - 2\sin\left(-t\right) & 2\sin\left(-4t\right) - 2\sin\left(-t\right) \\ \sin\left(-4t\right) - \sin\left(-t\right) & -2\sin\left(-4t\right) + 2\sin\left(-t\right) \end{bmatrix}$$

$$= \left(\frac{1}{3}\right) \begin{bmatrix} \sin(-4t) + 2\sin(-t) & -2\sin(-4t) + 2\sin(-t) \\ -\sin(-4t) + \sin(-t) & 2\sin(-4t) + \sin(-t) \end{bmatrix} s$$

Option (A) is correct. 7.68

For ufb system the characteristic equation is

$$1 + G(s) = 0$$

$$1 + \frac{K^{1+G(s)}}{s(s^2 + 2s + 2)(s + 3)} = 0$$

$$s^4 + 4s^3 + 5s^2 + 6s + K = 0$$

The routh table is shown below. For system to be stable,

$$0 < K$$
 and $0 < \frac{(21 - 4K)}{2/7}$

 $0 < K < \frac{21}{4}$ This gives

> s^4 1 5K

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

s^3	4	6	0
s^2	$\frac{7}{2}$	K	
s^1	$\frac{21-4K}{7/2}$	0	
s^0	K		

Option (B) is correct. 7.69

We have
$$P(s) = s^5 + s^4 + 2s^3 + 3s + 15$$

The routh table is shown below.

If $\varepsilon \to 0^+$ then $\frac{2\varepsilon+12}{\varepsilon}$ is positive and $\frac{-15\varepsilon^2-24\varepsilon-144}{2\varepsilon+12}$ is negative. Thus there are two sign change in first column. Hence system has 2 root on RHS of plane.

s^5	1	2	3
s^4	1	2	15
s^3	ε	-12	0
s^2	$\frac{2\varepsilon + 12}{\varepsilon}$	15	0
s^1	$\frac{-15\varepsilon^2 - 24\varepsilon - 144}{2\varepsilon + 12}$		
s^0	0		

Option (D) is correct. 7.70

and

We have

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$
$$A = \begin{bmatrix} -3 & -1 \\ 2 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Here

The controllability matrix is

det $Q_C \neq 0$

$$Q_C = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 2 \end{bmatrix}$$

A = |

Thus controllable

Thus observable

The observability matrix is

$$Q_0 = \begin{bmatrix} C^T & A^T & C^T \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -3 \\ 0 & -1 \end{bmatrix} \neq 0$$
$$\det Q_0 \neq 0$$

Option (B) is correct. 7.71

$$(sI - A) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} s - 1 & 0 \\ 0 & s - 1 \end{bmatrix}$$
$$(sI - A)^{-1} = \frac{1}{(s - 1)^2} \begin{bmatrix} (s - 1) & 0 \\ 0 & (s - 1) \end{bmatrix} = \begin{bmatrix} \frac{1}{s - 1} & 0 \\ 0 & \frac{1}{s - 1} \end{bmatrix}$$
$$e^{At} = L^{-1} [(sI - A)]^{-1} = \begin{bmatrix} e^t & 0 \\ 0 & e^t \end{bmatrix}$$

Option (A) is correct. 7.72

Z = P - N

 $N \rightarrow$ Net encirclement of (-1 + j0) by Nyquist plot,

 $P \rightarrow$ Number of open loop poles in right hand side of s - plane $Z \rightarrow$ Number of closed loop poles in right hand side of s - plane Here N = 1 and P = 1

Thus Z = 0

Hence there are no roots on RH of s-plane and system is always stable.

Option (C) is correct. 7.73

> PD Controller may accentuate noise at higher frequency. It does not effect the type of system and it increases the damping. It also reduce the maximum overshoot.

Option (D) is correct. 7.74

$$T(s) = \frac{\sum p_k \Delta_k}{\Delta}$$

In given SFG there is only forward path and 3 possible loop.

$$p_{1} = 1$$

$$\Delta_{1} = 1 + \frac{3}{s} + \frac{24}{s} = \frac{s + 27}{s}$$

$$L_{1} = \frac{-2}{s}, L_{2} = \frac{-24}{s} \text{ and } L_{3} = \frac{-3}{s}$$

where L_1 and L_3 are non-touching

This
$$\frac{C(s)}{R(s)}$$

$$= \frac{p_1 \Delta_1}{1 - (\text{loop gain}) + \text{pair of non - touching loops}}$$

$$= \frac{\left(\frac{s+27}{s}\right)}{1 - \left(\frac{-3}{s} - \frac{24}{s} - \frac{2}{s}\right) + \frac{-2}{s} \cdot \frac{-3}{s}} = \frac{\left(\frac{s+27}{s}\right)}{1 + \frac{29}{s} + \frac{6}{s^2}}$$

$$= \frac{s(s+27)}{s^2 + 29s + 6}$$
Option (D) is correct.
We have
$$1 + G(s) H(s) = 0$$
or
$$1 + \frac{K}{s(s+2)(s+3)} = 0$$

$$\begin{array}{r} s(s+2)(s+3) = 0 \\ K = -s(s^2+5s^2+6s) \\ \frac{dK}{dt} = -(3s^2+10s+6) = 0 \end{array}$$

or

$$ds$$
 $10 \pm \sqrt{1}$

 $s = \frac{-10 \pm \sqrt{100 - 72}}{6} = -0.784, \ -2.548$ which gives

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

The location of poles on s – plane is

$$\begin{array}{c|c} & j\omega \\ \hline & & & \\ \hline & -3 -2 & 0 \end{array} \sigma$$

Since breakpoint must lie on root locus so s = -0.748 is possible.

Option (A) is correct.

7.76

The given bode plot is shown below

At $\omega = 0.1$ change in slope is +60 dB \rightarrow 3 zeroes at $\omega = 0.1$ At $\omega = 10$ change in slope is $-40 \text{ dB} \rightarrow 2$ poles at $\omega = 10$ At $\omega = 100$ change in slope is $-20 \text{ dB} \rightarrow 1$ poles at $\omega = 100$

Thus
$$T(s) = \frac{K(\frac{s}{0.1}+1)^3}{(\frac{s}{0.1}+1)^2(\frac{s}{0.1}+1)}$$

$$\frac{(\frac{s}{10}+1)^2(\frac{s}{100}+1)}{(\frac{s}{100}+1)}$$

w $20\log_{10}K = 20$

K = 10or

> $T(s) = \frac{10\left(\frac{s}{0.1} + 1\right)^3}{\left(\frac{s}{0.1} + 1\right)^2 \left(\frac{s}{0.1} + 1\right)^2} = 10^8(s+0.1)^3$ $\left(\frac{s}{10}+1\right)^{2}\left(\frac{s}{100}+1\right)$ $(s+10)^2(s+100)$

Option (B) is correct. 7.77

No

Thus

The characteristics equation is

$$s^2 + 4s + 4 = 0$$

$$s^2 + 2\xi\omega_n + \omega_n^2 = 0$$

we get Thus $t_s = \frac{4}{\xi\omega_n} = \frac{4}{1\times 2} = 2$

$$2\xi\omega_n = 4$$
 and $\omega_n^2 = 4$
 $\xi = 1$

[1 0][]

Critically damped

F 1 1

 Γ (0)]

Option (B) is correct. 7.78

Option (C) is correct. 7.79 We have

$$\begin{bmatrix} x_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} \text{ and } \begin{bmatrix} x_1(0)\\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix}$$
$$(sI - A) = \begin{bmatrix} s & 0\\ 0 & s \end{bmatrix} - \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} s - 1 & 0\\ -1 & s - 1 \end{bmatrix}$$
$$(sI - A)^{-1} = \frac{1}{(s - 1)^2} \begin{bmatrix} (s - 1) & 0\\ +1 & (s - 1) \end{bmatrix} = \begin{bmatrix} \frac{1}{s - 1} & 0\\ \frac{+1}{(s - 1)^2} & \frac{1}{s - 1} \end{bmatrix}$$
$$L^{-1}[(sI - A)^{-1}] = e^{At} = \begin{bmatrix} e^t & 0\\ te^t & e^t \end{bmatrix}$$
$$x(t) = e^{At} \times [x(t_0)] = \begin{bmatrix} e^t & 0\\ te^t & e^t \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} e^t\\ te^t \end{bmatrix}$$
TE Electronics & Communication

by RK Kanodia

Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Option (C) is correct. 7.80

> The characteristics equation is $ks^2 + s + 6 = 0$

or

GA

Comparing with $s^2 + 2\xi\omega_n s + \omega_n^2 = 0$ we have

 $2\xi\omega_n = \frac{1}{K}$ and $\omega_n^2 = \frac{6}{K}$

 $s^2 + \frac{1}{K}s + \frac{6}{K} = 0$

we get

or

or

7.81

 $2 \times 0.5 \times \sqrt{6} K\omega = \frac{1}{K}$ $\frac{6}{K} = \frac{1}{K^2} \implies K = \frac{1}{6}$

Option (B) is correct.

Any point on real axis lies on the root locus if total number of poles and zeros to the right of that point is odd. Here s = -1.5 does not lie on real axis because there are total two poles and zeros (0 and -1) to the right of s = -1.5.

Option (D) is correct. 7.82

> From the expression of OLTF it may be easily see that the maximum magnitude is 0.5 and does not become 1 at any frequency. Thus gain cross over frequency does not exist. When gain cross over frequency does not exist, the phase margin is infinite.

7.83 Option
$$(D)$$
 is correct.

or

 $\dot{x}(t) = -2x(t) + 2u(t)$ We have ...(i) Taking Laplace transform we get

$$sX(s) = -2X(s) + 2U(s)$$
$$(s+2)X(s) = 2U(s)$$

or
$$X(s) = \frac{2U(s)}{(s+2)}$$

Now
$$y(t) = 0.5x(t)$$

$$Y(s) = 0.5X(s)$$
$$Y(s) = \frac{0.5 \times 2U(s)}{s+2}$$
$$\frac{Y(s)}{U(s)} = \frac{1}{(s+2)}$$

Option (D) is correct. 7.84

or

or

From Mason gain formula we can write transfer function as $\mathbf{V}(\mathbf{A})$

$$\frac{Y(s)}{R(s)} = \frac{\frac{K}{s}}{1 - (\frac{3}{s} + \frac{-K}{s})} = \frac{K}{s - 3(3 - K)}$$

For system to be stable (3 - K) < 0 i.e. K > 3

Option (B) is correct. 7.85

The characteristics equation is

$$(s+1)(s+100) = 0$$

 $\xi = \frac{101}{20}$

$$s^2 + 101s + 100 = 0$$

 $2\xi\omega_n = 101 \text{ and } \omega_n^2 = 100$

Comparing with $s^2 + 2\xi\omega_n + \omega_n^2 = 0$ we get

Thus

Overdamped

For overdamped system settling time can be determined by the dominant pole of the closed loop system. In given system dominant pole consideration is at s = -1. Thus

$$\frac{1}{T} = 1$$
 and $T_s = \frac{4}{T} = 4 \sec \theta$

Option (B) is correct. 7.86

> Routh table is shown below. Here all element in 3rd row are zero, so system is marginal stable.

s^5	2	4	2
s^4	1	2	1
s^3	0	0	0
s^2			
s^1			
s^0			

Option (B) is correct.

Given $\xi = 0.5$ 7.87

The open loop transfer function is

$$G(s)H(s) = \frac{1}{s(s^2 + s + 1)}$$

Substituting $s = j\omega$ we have

$$G(j\omega) H(j\omega) = \frac{1}{j\omega(-\omega^2 + j\omega + 1)}$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$\angle G(j\omega) H(j\omega) = -\frac{\pi}{2} - \tan^{-1} \frac{\omega}{(1-\omega^2)}$$

The frequency at which phase becomes -180° , is called phase crossover frequency.

Thus
$$-180 = -90 - \tan^{-1} \frac{\omega_{\phi}}{1 - \omega_{\phi}^{2}}$$

or
$$-90 = -\tan^{-1}\frac{\omega_{\phi}}{1-\omega_{\phi}^{2}}$$

or
$$1 - \omega_{\phi}^2 = 0$$

$$\omega_{\phi} = 1 \text{ rad/sec}$$

The gain margin at this frequency $\omega_{\phi} = 1$ is

Page 180

$$GM = -20 \log_{10} |G(j\omega_{\phi}) H(j\omega_{\phi})| = 20 \log_{10} (\omega_{\phi} \sqrt{(1-\omega_{\phi}^2)^2 + \omega_{\phi}^2}) = -20 \log 1 = 0$$

Option (A) is correct. 7.88

Z = P - N

 $N \rightarrow$ Net encirclement of (-1 + j0) by Nyquist plot, $P \rightarrow$ Number of open loop poles in right had side of s - plane $Z \rightarrow$ Number of closed loop poles in right hand side of s - plane Here N = 0 (1 encirclement in CW direction and other in CCW) and P = 0Thus Z = 0

Hence there are no roots on RH of s – plane.

7.89 Option (D) is correct.

Take off point is moved after G_2 as shown below

Option (C) is correct. 7.90

> The characteristics equation is $s^2 + 2s + 2 = 0$ Comparing with $s^2 + 2\xi\omega_n + \omega_n^2 = 0$ we get $2\xi\omega_n=2$ and $\omega_n^2=2$ $\omega_n = \sqrt{2}$ $\xi = \frac{1}{\sqrt{2}}$ and

Since $\xi < 1$ thus system is under damped

Option (D) is correct. 7.91

> If roots of characteristics equation lie on negative axis at different positions (i.e. unequal), then system response is over damped. From the root locus diagram we see that for 0 < K < 1, the roots

> are on imaginary axis and for 1 < K < 5 roots are on complex plain. For K > 5 roots are again on imaginary axis.

Thus system is over damped for $0 \le K < 1$ and K > 5.

Option (C) is correct. 7.92 From SFG we have

$$I_1(s) = G_1 V_i(s) + HI_2(s) \qquad ...(1)$$

$$I_2(s) = G_2 I_1(s)$$
 ...(2)

$$V_0(s) = G_3 I_2(s) \qquad ...(3)$$

Now applying KVL in given block diagram we have

$$V_i(s) = I_1(s) Z_1(s) + [I_1(s) - I_2(s)] Z_3(s) \qquad \dots (4)$$

$$0 = [I_2(s) - I_1(s)] Z_3(s) + I_2(s) Z_2(s) + I_2(s) Z_4(s) \quad \dots (5)$$

From (4) we have

or
$$V_i(s) = I_1(s)[Z_1(s) + Z_3(S)] - I_2(s)Z_3(S)$$

or $I_1(s) = V_i \frac{1}{Z_1(s) + Z_3(s)} + I_2 \frac{Z_3(s)}{Z_1(s) + Z_3(s)}$...(6)

From (5) we have

$$I_1(s) Z_3(S) = I_2(s) [Z_2(s) + Z_3(s) + Z_4(s)] \qquad \dots (7)$$
$$I_1(s) Z_3(s)$$

or
$$I_s(s) = \frac{I_1(s) I_2(s)}{Z_3(s) + Z_2(s) + Z_4(s)}$$

Comparing (2) and (7) we have $\mathbf{7}$

$$G_2 = \frac{Z_3(s)}{Z_3(s) + Z_2(s) + Z_4(s)}$$

Comparing (1) and (6) we have

$$H = \frac{Z_3(s)}{Z_1(s) + Z_3(s)}$$

Option (B) is correct. 7.93

or

or

or

Thus

For unity negative feedback system the closed loop transfer function is

$$CLTF = \frac{G(s)}{1+G(s)} = \frac{s+4}{s^2+7s+13}, \qquad G(s) \to OL \text{ Gain}$$
$$\frac{1+G(s)}{G(s)} = \frac{s^2+7s+13}{s+4}$$
$$\frac{1}{G(s)} = \frac{s^2+7s+13}{s+4} - 1 = \frac{s^2+6s+9}{s+4}$$
$$G(s) = \frac{s+4}{s^2+6s+9}$$

For DC gain s = 0, thus

$$G(0) = \frac{4}{9}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

www.nodia.co.in

G(s)

(s-2)

2)

Option (C) is correct. 7.94

Where

and

or

or

7.95

7.96

From the Block diagram transfer function is

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$
$$G(s) = \frac{K(s-2)}{(s-2)}$$

$$G(s) = (s+2)$$

$$H(s) = (s -$$

The Characteristic equation is

$$1 + G(s)H(s) = 0$$

$$1 + \frac{K(s-2)}{(s+2)^2}(s-2) = 0$$

$$(s+2)^2 + K(s-2)^2 = 0$$

 $(1+K)s^{2} + 4(1-K)s + 4K + 4 = 0$

Routh Table is shown below. For System to be stable 1 + k > 0, and 4 + 4k > 0 and 4 - 4k > 0. This gives -1 < K < 1

As per question for $0 \le K < 1$

s^2	1+k	4+4k
s^1	4-4k	0
s^0	4+4k	

Option (B) is correct.

It is stable at all frequencies because for resistive network feedback factor is always less than unity. Hence overall gain decreases.

Option (B) is correct.

The characteristics equation is $s^2 + \alpha s^2 + ks + 3 = 0$

The Routh Table is shown below

For system to be stable
$$\alpha > 0$$
 and $\frac{\alpha K - 3}{\alpha} > 0$

Thus $\alpha > 0$ and $\alpha K > 3$

s^3	1	K	
s^2	α	3	
s^1	$\frac{\alpha K - 3}{\alpha}$	0	
s^0	3		7.100

7.97 Option (B) is correct.

Closed loop transfer function is given as

$$T(s) = \frac{9}{s^2 + 4s + 9}$$

by comparing with standard form we get natural freq.

$$\omega_A^2 = 9$$

 $\omega_n = 3$
 $2\xi\omega_n = 4$

damping factor

for second order system the setting time for 2-percent band is given by

 $\xi = \frac{4}{2 \times 3} = 2/3$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$t_s = \frac{4}{\xi \omega_n} = \frac{4}{3 \times 2/3} = \frac{4}{2} = 2$$

7.98 Option (D) is correct.

Given loop transfer function is

$$G(s) H(s) = \frac{\sqrt{2}}{s(s+1)}$$
$$G(j\omega) H(j\omega) = \frac{\sqrt{2}}{j\omega(j\omega+1)}$$

 -90°

Phase cross over frequency can be calculated as

So here

$$\begin{split} \left. \left. \begin{array}{l} \left. \varphi\left(\omega\right) \right|_{\mathrm{at}\,\omega=\omega_p} = -180^{\circ} \\ \left. \varphi\left(\omega\right) = -90^{\circ} - \mathrm{tan}^{-1}(\omega) \\ - \,\mathrm{tan}^{-1}(\omega_p) = -180^{\circ} \\ \mathrm{tan}^{-1}(\omega_p) = 90^{\circ} \\ \left. \omega_p = \infty \right. \end{split} \end{split}$$

Gain margin

 \mathbf{SO}

Here

7.99

$$20 \log_{10} \left[\frac{1}{|G(j\omega)H(j\omega)|} \right] \text{at } \omega = \omega_p$$

$$G.M. = 20 \log_{10} \left(\frac{1}{|G(j\omega)H(j\omega_p)|} \right)$$

$$|G(j\omega_p)H(j\omega_p)| = \frac{\sqrt{2}}{\omega_p \sqrt{\omega_p^2 + 1}} = 0$$

$$G.M. = 20 \log_{10} \left(\frac{1}{0} \right) = \infty$$

Option (A) is correct.

$$A = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

The controllability matrix is

$$Q_C = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 1 & -3 \end{bmatrix}$$
$$\det Q_C \neq 0$$

Thus controllable

7.104

7.105

7.106

The observability matrix is

$$Q_0 = \begin{bmatrix} C^T & A^T & C^T \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix} \neq 0$$

det $Q_0 \neq 0$ Thus observable

Option (D) is correct.

we have
$$G(s) H(s) = \frac{2\sqrt{3}}{s(s+1)}$$
or
$$G(j\omega) H(j\omega) = \frac{2\sqrt{3}}{j\omega(j\omega+1)}$$
Gain cross over frequency
$$|G(j\omega) H(j\omega)|_{at\,\omega=\omega_g} = 1$$
or
$$\frac{2\sqrt{3}}{\omega\sqrt{\omega^2+1}} = 1$$

$$12 = \omega^2(\omega^2+1)$$

$$\omega^4 + \omega^2 - 12 = 0$$

$$(\omega^2+4)(\omega^2-3) = 0$$

$$\omega^2 = 3 \text{ and } \omega^2 = -4$$
which gives
$$\omega_1, \omega_2 = \pm\sqrt{3}$$

$$\omega_g = \sqrt{3}$$

$$\phi(\omega)|_{at\,\omega=\omega_g} = -90 - \tan^{-1}(\omega_g)$$

$$= -90 - \tan^{-1}\sqrt{3} = -90 - 60 = -150$$
Phase margin = 180 + $\phi(\omega)|_{at\,\omega=\omega_g}$

$$= 180 - 150 = 30^\circ$$

7.101 Option (B) is correct.

7.102

Option (C) is correct. Closed-loop transfer function is given by

$$T(s) = \frac{a_{n-1}s + a_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1}s + a_n}$$
$$= \frac{\frac{a_{n-1}s + a_n}{s^n + a_1 s^{n-1} + \dots + a_{n-2}s^2}}{1 + \frac{a_{n-1}s + a_n}{s^n + a_1 s^{n-1} + \dots + a_{n-2}s^2}}$$

Thus
$$G(s) H(s) = \frac{a_{n-1}s + a_n}{s^n + a_1 s^{n-1} + \dots + a_{n-2} s^2}$$

For unity feed back H(s) = 1

Thus
$$G(s) = \frac{a_{n-1}s + a_n}{s^n + a_1 s^{n-1} + \dots + a_{n-2} s^2}$$

Steady state error is given by

$$E(s) = \lim_{s \to 0} R(s) \frac{1}{1 + G(s)H(s)}$$

for unity feed back H(s) = 1

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Here input

$$R(s) = \frac{1}{s^2}$$
(unit Ramp)

so

$$E(s) = \lim_{s \to 0} \frac{1}{s^2} \frac{1}{1 + G(s)}$$

$$= \lim_{s \to 0} \frac{1}{s^2} \frac{s^n + a_1 s^{n-1} + \dots + a_{n-2} s^2}{s^n + a_1 s^{n-1} + \dots + a_n}$$

$$= \frac{a_{n-2}}{a_n}$$

7.103 Option (B) is correct.

Option (A) is correct.

By applying Routh's criteria

$$s^3 + 5s^2 + 7s + 3 = 0$$

s^3	1	7
s^2	5	3
s^1	$\frac{7\times5-3}{5} = \frac{32}{5}$	0
s^0	3	

There is no sign change in the first column. Thus there is no root lying in the left-half plane.

7.107 Option (A) is correct.

Techometer acts like a differentiator so its transfer function is of the form ks.

7.108 Option (A) is correct.

Open loop transfer function is

$$G(s) = \frac{K}{s(s+1)}$$

Steady state error

$$E(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)}$$

Where

$$R(s) = \frac{1}{s}$$

so
$$E(s) = \lim_{s \to 0} \frac{s\frac{1}{s}}{1 + \frac{K}{s(s+1)}} = \lim_{s \to 0} \frac{s(s+1)}{s^2 + s + K} = 0$$

R(s) = input

H(s) = 1 (unity feedback)

7.109 Option (B) is correct.

Fig given below shows a unit impulse input given to a zero-order hold circuit which holds the input signal for a duration T & therefore, the output is a unit step function till duration T.

$$h(t) = u(t) - u(t - T)$$

$$H(s) = \frac{1}{s} - \frac{1}{s}e^{-sT} = \frac{1}{s}[1 - e^{-sT}]$$

7.110 Option (C) is correct.

Phase margin = $180^{\circ} + \theta_g$ where θ_g = value of phase at gain crossover frequency.

Here $\theta_g = -125^\circ$ so $P.M = 180^\circ - 125^\circ = 55^\circ$

7.111 Option (B) is correct.

Open loop transfer function is given by

$$G(s) H(s) = \frac{K(1+0.5s)}{s(1+s)(1+2s)}$$

Close looped system is of type 1. It must be noted that type of the system is defined as no. of poles $\frac{\text{lies}}{\text{lying}}$ at origin in OLTF.

7.112 Option (D) is correct.

Transfer function of the phase lead controller is

$$T.F = \frac{1+3Ts}{1+s} = \frac{1+(3T\omega)j}{1+(T\omega)j}$$

Phase is

Fo

or

So

$$\phi(\omega) = \tan^{-1}(3T\omega) - \tan^{-1}(T\omega)$$

$$\phi(\omega) = \tan^{-1}\left[\frac{3T\omega - T\omega}{1 + 3T^2\omega^2}\right]$$

$$\phi(\omega) = \tan^{-1}\left[\frac{2T\omega}{1 + 3T^2\omega^2}\right]$$
r maximum value of phase
$$\frac{d\phi(\omega)}{d\omega} = 0$$

$$1 = 3T^2\omega^2$$

$$T\omega = \frac{1}{\sqrt{3}}$$
maximum phase is
$$\phi_{\max} = \tan^{-1}\left[\frac{2T\omega}{1 + 3T^2\omega^2}\right] \text{ at } T\omega =$$

$$\tan^{-1} \left[\frac{2 T \omega}{1 + 3 T^2 \omega^2} \right] \text{ at } T\omega = \frac{1}{\sqrt{3}}$$
$$= \tan^{-1} \left[\frac{2 \frac{1}{\sqrt{3}}}{1 + 3 \times \frac{1}{3}} \right] = \tan^{-1} \left[\frac{1}{\sqrt{3}} \right] = 30^{\circ}$$

1

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

7.113 Option (A) is correct.

$$G(j\omega) H(j\omega)$$
 enclose the $(-1, 0)$ point so here $|G(j\omega_p) H(j\omega_p)| > 1$
 ω_p = Phase cross over frequency

Gain Margin =
$$20 \log_{10} \frac{1}{\left| G(j\omega_p) H(j\omega_p) \right|}$$

so gain margin will be less than zero.

Option (B) is correct.

The denominator of Transfer function is called the characteristic equation of the system. so here characteristic equation is $(a+1)^2(a+2) = 0$

$$(s+1)^2(s+2) = 0$$

7.115 Option (C) is correct.

In synchro error detector, output voltage is proportional to $[\omega(t)]$, where $\omega(t)$ is the rotor velocity so here n = 1

Option (C) is correct.

$$\frac{y}{x} = \frac{\sum \Delta_k P_k}{\Delta}$$

Forward path gain

$$P_1 = 5 \times 2 \times 1 = 10$$
$$\Delta = 1 - (2 \times -2) = 1 + 4 = 5$$
$$\Delta_1 = 1$$

so gain

7.116

7.117 Option (C) is correct.

By given matrix equations we can have

$$\dot{X}_1 = \frac{dx_1}{dt} = x_1 - x_2 + 0$$
$$\dot{X}_2 = \frac{dx_2}{dt} = 0 + x_2 + \mu$$
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 + x_2$$
$$\frac{dy}{dt} = \frac{dx_1}{dt} + \frac{dx_2}{dt}$$

 $\frac{y}{x} = \frac{10 \times 1}{5} = 2$

$$\frac{dy}{dt} = x_1 + \mu$$
$$\frac{dy}{dt}\Big|_{t=0} = x_1(0) + \mu(0)$$
$$= 1 + 0 = 0$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

> For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

UNIT 8 COMMUNICATION SYSTEMS 2013 **ONE MARK** The bit rate of a digital communication system is R kbits/s. The modulation used is 32-QAM. The minimum bandwidth required for ISI free transmission is (A) $R/10 \, \text{Hz}$ (B) R/10 kHz(C) R/5 Hz (D) R/5 kHz2013 **TWO MARKS** Let U and V be two independent zero mean Gaussain random variables of variances $\frac{1}{4}$ and $\frac{1}{9}$ respectively. The probability **GATE Electronics & Communication** by RK Kanodia Now in 3 Volume Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in $P(3V \ge 2U)$ is (B) 1/2(A) 4/9(D) 5/9 (C) 2/3Consider two identically distributed zero-mean random variables Uand V. Let the cumulative distribution functions of U and 2V be F(x) and G(x) respectively. Then, for all values of x

8.1

8.2

8.3

8.4

8.5

- (A) $F(x) G(x) \le 0$ (B) $F(x) - G(x) \ge 0$ (C) $(F(x) - G(x)).x \le 0$ (D) $(F(x) - G(x)) \cdot x \ge 0$ Let U and V be two independent and identically distributed random
- variables such that $P(U=+1) = P(U=-1) = \frac{1}{2}$. The entropy H(U+V) in bits is (A) 3/4(B) 1 (C) 3/2(D) $\log_2 3$

Common Data for Questions 5 and 6:

Bits 1 and 0 are transmitted with equal probability. At the receiver, the pdf of the respective received signals for both bits are as shown below.

(A) $\frac{1}{2}$ (B) $\frac{1}{4}$

(D) $\frac{1}{16}$ (C) $\frac{1}{8}$

The optimum threshold to achiev	e minimum bit error rate (BER) is
(A) $\frac{1}{2}$	(B) $\frac{4}{5}$

(C) 1 (D)
$$\frac{3}{2}$$

2012

8.6

8.7

8.8

8.9

8.10

8.12

2012

- The power spectral density of a real process X(t) for positive frequencies is shown below. The values of $E[X^2(t)]$ and |E[X(t)]|, respectively, are

(A) $6000/\pi, 0$	(B) $6400/\pi, 0$
(C) $6400/\pi$, $20/(\pi\sqrt{2})$	(D) $6000/\pi$, $20/(\pi\sqrt{2})$

In a baseband communications link, frequencies up to 3500 Hz are used for signaling. Using a raised cosine pulse with 75% excess bandwidth and for no inter-symbol interference, the maxi mum possible signaling rate in symbols per second is

(A) 1750	(B) 2625
(C) 4000	(D) 5250

A source alphabet consists of N symbols with the probability of the first two symbols being the same. A source encoder increases the probability of the first symbol by a small amount ε and decreases that of the second by ε . After encoding, the entropy of the source (A) increases (B) remains the same

(11)) moreases)	remains the san	
(C)) increases only if $N = 2$	(D)	decreases	

Two independent random variables X and Y are uniformly distributed in the interval [-1,1]. The probability that $\max[X,Y]$ is less than 1/2 is (A) 3/4(B) 9/16

(11) $0/4$	(D) 0/10
(C) $1/4$	(D) $2/3$

TWO MARKS

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

8.11 A BPSK scheme operating over an AWGN channel with noise power spectral density of $N_0/2$, uses equiprobable signals $s_1(t) = \sqrt{\frac{2E}{T}} \sin(\omega_c t)$ and $s_2(t) = -\sqrt{\frac{2E}{T}} \sin(\omega_c t)$ over the symbol interval (0, T). If the local oscillator in a coherent receiver is ahead in phase by 45° with respect to the received signal, the probability of error in the resulting system is

A)
$$Q\left(\sqrt{\frac{2E}{N_0}}\right)$$
 (B) $Q\left(\sqrt{\frac{E}{N_0}}\right)$
C) $Q\left(\sqrt{\frac{E}{2N_0}}\right)$ (D) $Q\left(\sqrt{\frac{E}{4N}}\right)$

A binary symmetric channel (BSC) has a transition probability of 1/8. If the binary symbol X is such that P(X=0) = 9/10, then the

ONE MARK

probability of erro	r for an optimum	receiver will be
(A) 7/80	[]	B) 63/80

(C) $9/10$ (D) $1/10$

^{8.13} The signal m(t) as shown is applied to both a phase modulator (with k_p as the phase constant) and a frequency modulator (with k_f as the frequency constant) having the same carrier frequency.

The ratio k_p/k_f (in rad/Hz) for the same maximum phase deviation is

(A) 8π	(B) 4π
(C) 2π	(D) π

Statement for Linked Answer Question 14 and 15:

The transfer function of a compensator is given as

	G	$T_c(s) = \frac{s+a}{s+b}$
.14	$G_c(s)$ is a lead compensator if	
	(A) $a = 1, b = 2$	(B) $a = 3, b = 2$
	(C) $a = -3, b = -1$	(D) $a = 3, b = 1$

8.15	The phase of the above le	ead compensator is maximum at
	(A) $\sqrt{2}$ rad/s	(B) $\sqrt{3}$ rad/s
	(C) $\sqrt{6}$ rad/s	(D) $1/\sqrt{3}$ rad/s

2011

8

ONE MARK

- An analog signal is band-limited to 4 kHz, sampled at the Nyquist rate and the samples are quantized into 4 levels. The quantized levels are assumed to be independent and equally probable. If we transmit two quantized samples per second, the information rate is (A) 1 bit/sec (B) 2 bits/sec (C) 3 bits/sec (D) 4 bits/sec
- 8.17 The Column -1 lists the attributes and the Column -2 lists the modulation systems. Match the attribute to the modulation system that best meets it.

	Column -1		Column -2
Р.	Power efficient transmission of	1.	Conventional
	signals		AM
Q .	Most bandwidth efficient	2.	FM
	transmission of voice signals		
R.	Simplest receiver structure	3.	VSB
s.	Bandwidth efficient transmission	4.	SSB-SC
	of signals with significant dc		
	component		
(A) P	P-4, Q-2, R-1, S-3		
(B) P	2-2, Q-4, R-1, S-3		

(C) P-3, Q-2, R-1, S-4

(D) P-2, Q-4, R-3, S-1

2011

X(t) is a stationary random process with auto-correlation function $R_X(\tau) = \exp(-\pi\tau^2)$. This process is passed through the system shown below. The power spectral density of the output process Y(t) is

8.19 A message signal $m(t) = \cos 2000\pi t + 4\cos 4000\pi t$ modulates the

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

carrier $c(t) = \cos 2\pi f_c t$ where $f_c = 1$ MHz to produce an AM signal. For demodulating the generated AM signal using an envelope detector, the time constant RC of the detector circuit should satisfy (A) 0.5 ms < RC < 1 ms (B) 1 µs << RC < 0.5 ms (C) RC << 1 µs (D) RC >> 0.5 ms

Common Data For Q. 8.5 & 8.6

A four-phase and an eight-phase signal constellation are shown in the figure below.

For the constraint that the minimum distance between pairs of signal points be d for both constellations, the radii r_1 , and r_2 of the circles are

(A) $r_1 = 0.707 d, r_2 = 2.782 d$	(B) $r_1 = 0.707 d, r_2 = 1.932 d$
(C) $r_1 = 0.707 d, r_2 = 1.545 d$	(D) $r_1 = 0.707d, r_2 = 1.307d$

Assuming high SNR and that all signals are equally probable, the additional average transmitted signal energy required by the 8-PSK signal to achieve the same error probability as the 4-PSK signal is
(A) 11.90 dB
(B) 8.73 dB
(C) 6.79 dB
(D) 5.33 dB

2010

8.20

)

^{8.22} Suppose that the modulating signal is $m(t) = 2\cos(2\pi f_m t)$ and the

TWO MARKS

carrier signal is $x_C(t) = A_C \cos(2\pi f_C t)$, which one of the following is a conventional AM signal without over-modulation (A) $x(t) = A_{\alpha}m(t)\cos(2\pi f_{\alpha}t)$

$$(A) x(t) = A_C m(t) \cos(2\pi j_C t)$$

- (B) $x(t) = A_C [1 + m(t)] \cos(2\pi f_C t)$
- (C) $x(t) = A_C \cos(2\pi f_C t) + \frac{A_C}{4} m(t) \cos(2\pi f_C t)$
- (D) $x(t) = A_C \cos(2\pi f_m t) \cos(2\pi f_C t) + A_C \sin(2\pi f_m t) \sin(2\pi f_C t)$
- Consider an angle modulated signal

8.23

 $x(t) = 6\cos\left[2\pi \times 10^6 t + 2\sin\left(800\pi t\right)\right] + 4\cos\left(800\pi t\right)$ The average power of x(t) is

(A) 10 W	(B) 18 W
(C) 20 W	(D) 28 W

Consider the pulse shape s(t) as shown below. The impulse response 8.24 h(t) of the filter matched to this pulse is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

2010

Statement for linked Answer Question : 8.10 & 8.11 :

Consider a baseband binary PAM receiver shown below. The additive channel noise n(t) is with power spectral density $S_n(f) = N_0/2 = 10^{-20} \text{ W/Hz}$. The low-pass filter is ideal with unity

gain and cut-off frequency 1 MHz. Let Y_k represent the random variable $y(t_k)$.

 $Y_k = N_k$, if transmitted bit $b_k = 0$

 $Y_k = a + N_k$ if transmitted bit $b_k = 1$

Where N_k represents the noise sample value. The noise sample has a probability density function, $P_{Nk}(n) = 0.5\alpha e^{-\alpha|n|}$ (This has mean zero and variance $2/\alpha^2$). Assume transmitted bits to be equiprobable and threshold z is set to $a/2 = 10^{-6}$ V.

5	The value of the parameter α (in	V^{-1}) is
	(A) 10^{10}	(B) 10^7
	(C) 1.414×10^{-10}	(D) 2×10^{-20}

8.25

8

.26	The probability of bit error is	
	(A) $0.5 \times e^{-3.5}$	(B) $0.5 imes e^{-5}$
	(C) $0.5 \times e^{-7}$	(D) $0.5 imes e^{-10}$

The Nyquist sampling rate for the signal 8.27 $s(t) = \frac{\sin(500\pi t)}{\pi t} \times \frac{\sin(700)\pi t}{\pi t}$ is given by (B) 600 Hz (A) 400 Hz (C) 1200 Hz (D) 1400 Hz

X(t) is a stationary process with the power spectral density $S_x(f) > 0$ 8.28 , for all f. The process is passed through a system shown below

Let $S_{y}(f)$ be the power spectral density of Y(t). Which one of the following statements is correct (A) $S_{y}(f) > 0$ for all f

(B) $S_{y}(f) = 0$ for |f| > 1 kHz

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(C) $S_{y}(f) = 0$ for $f = nf_0, f_0 = 2$ kHz kHz, n any integer (D) $S_{y}(f) = 0$ for $f = (2n+1)f_{0} = 1$ kHz, n any integer

2009

ONE MARK

For a message signal $m(t) = \cos(2\pi f_m t)$ and carrier of frequency f_c , which of the following represents a single side-band (SSB) signal? (A) $\cos(2\pi f_m t)\cos(2\pi f_c t)$ (B) $\cos(2\pi f_c t)$ (C) $\cos[2\pi (f_c + f_m) t]$ (D) $[1 + \cos(2\pi f_m t) \cos(2\pi f_c t)]$

TWO MARKS

8.30 Consider two independent random variables X and Y with identical 8.37 distributions. The variables X and Y take values 0, 1 and 2 with probabilities $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{4}$ respectively. What is the conditional probability P(X + Y = 2|X - Y = 0)?

(A) 0	(B) 1/16
(C) $1/6$	(D) 1

2009

8.31 A discrete random variable X takes values from 1 to 5 with probabilities as shown in the table. A student calculates the mean X as 3.5 and her teacher calculates the variance of X as 1.5. Which of the following statements is true ?

k	1	2	3	4	5
P(X=k)	0.1	0.2	0.3	0.4	0.5

(A) Both the student and the teacher are right

(B) Both the student and the teacher are wrong

(C) The student is wrong but the teacher is right

- (D) The student is right but the teacher is wrong
- 8.32 A message signal given by $m(t) = (\frac{1}{2})\cos\omega_1 t (\frac{1}{2})\sin\omega_2 t$ amplitude - modulated with a carrier of frequency ω_C to generator $s(t)[1 + m(t)]\cos\omega_c t$. What is the power efficiency achieved by this modulation scheme ?

(\mathbf{A})	8.33%	(B) 11.11%
(C)	20%	(D) 25%

^{8.33} A communication channel with AWGN operating at a signal to noise ration SNR >> 1 and bandwidth *B* has capacity C_1 . If the SNR is doubled keeping constant, the resulting capacity C_2 is given by

(A)
$$C_2 \approx 2C_1$$
 (B) $C_2 \approx C_1 + B$
(C) $C_2 \approx C_1 + 2B$ (D) $C_2 \approx C_1 + 0.3B$

Common Data For Q. 8.19 & 8.20 :

The amplitude of a random signal is uniformly distributed between -5 V and 5 V.

^{8.34} If the signal to quantization noise ratio required in uniformly quantizing the signal is 43.5 dB, the step of the quantization is approximately

(A) 0.033 V	(B) 0.05 V
(C) 0.0667 V	(D) 0.10 V

8.35 If the positive values of the signal are uniformly quantized with a step size of 0.05 V, and the negative values are uniformly quantized with a step size of 0.1 V, the resulting signal to quantization noise ration is approximately
(A) 46 dB
(B) 43.8 dB

(C) 42 dB	(D) 40 dB
(C) 42 dB	(D) 40 dB

2008

ONE MARK

8.38

8.39

8.36	Consider	the	amplitu	ıde	modulated	(A	M)	signal	
	$A_c \cos \omega_c t + t$	$2\cos\omega_m$	$t\cos\omega_c t.$	For	demodulating	the	signal	using	8.40
	envelope de	tector, t	the minin	num v	value of A_c show	ıld be	Э		
	(A) 2				(B) 1				
	(C) 0.5				(D) 0				

The probability density function (pdf) of random variable is as shown below

2008

The corresponding commutative distribution function CDF has the form

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

A memory less source emits n symbols each with a probability p. The entropy of the source as a function of n

- (A) increases as $\log n$ (B) decreases as $\log(\frac{1}{n})$
- (C) increases as n (D) increases as $n \log n$

Noise with double-sided power spectral density on K over allfrequencies is passed through a RC low pass filter with 3 dB cut-offfrequency of f_c . The noise power at the filter output is(A) K(B) Kf_c (C) $k\pi f_c$ (D) ∞

Consider a Binary Symmetric Channel (BSC) with probability of error being p. To transmit a bit, say 1, we transmit a sequence of three 1s. The receiver will interpret the received sequence to represent 1 if at least two bits are 1. The probability that the transmitted bit will be received in error is

(A) $p^3 + 3p^2(1-p)$	(B) p^3
(C) $(1-p^3)$	(D) $p^3 + p^2(1-p)$

TWO MARKS

8.41	Four messages band limited to	W, W, 2W and $3W$ respectively are
	to be multiplexed using Time	Division Multiplexing (TDM). The
	minimum bandwidth required for	or transmission of this TDM signal is
	(A) W	(B) 3 <i>W</i>
	(C) $6W$	(D) 7 <i>W</i>

Consider the frequency modulated signal 8.42 $10\cos[2\pi \times 10^5 t + 5\sin(2\pi \times 1500t) + 7.5\sin(2\pi \times 1000t)]$ with carrier frequency of 10^5 Hz. The modulation index is (B) 10 (A) 12.5 (C) 7.5 (D) 5

.43	The signal $\cos \omega_c t + 0.5 \cos \omega_m$	$t \sin \omega_c t$ is
	(A) FM only	(B) AM only
	(C) both AM and FM $$	(D) neither AM nor FM

Common Data For Q. 8.29, 8.30 and 8.31 :

A speed signal, band limited to 4 kHz and peak voltage varying between +5 V and -5 V, is sampled at the Nyquist rate. Each

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

sample is quantized and represented by 8 bits.

8.44	If the bits 0 and 1 are transmitted	using bipolar pulses, the minimum
	bandwidth required for distortion	n free transmission is
	(A) 64 kHz	(B) 32 kHz
	(C) 8 kHz	(D) 4 kHz

- Assuming the signal to be uniformly distributed between its peak to 8.45 peak value, the signal to noise ratio at the quantizer output is (A) 16 dB (B) 32 dB (C) 48 dB (D) 4 kHz
- Assuming the signal to be uniformly distributed between its peak to 8.46 peak value, the signal to noise ratio at the quantizer output is (A) 1024 (B) 512(D) 64 (C) 256

2007

8.4

ONE MARK

- If $R(\tau)$ is the auto correlation function of a real, wide-sense stationary 8.47 random process, then which of the following is NOT true
 - (A) $R(\tau) = R(-\tau)$
 - (B) $|R(\tau)| \le R(0)$
 - (C) $R(\tau) = -R(-\tau)$
 - (D) The mean square value of the process is R(0)
- 8.48 If S(f) is the power spectral density of a real, wide-sense stationary random process, then which of the following is ALWAYS true? (A) $S(0) \leq S(f)$ (B) $S(f) \ge 0$ $(\mathbf{D}) \int_{-\infty}^{\infty} \alpha(\mathbf{A} \cdot \mathbf{I} \mathbf{a})$

(C)
$$S(-f) = -S(f)$$
 (D) $\int_{-\infty} S(f) df = 0$

If E denotes expectation, the variance of a random variable X is 8.49 given by

(A) $E[X^2] - E^2[X]$	(B) $E[X^2] + E^2[X]$
(C) $E[X^2]$	(D) $E^{2}[X]$

2007

8.50

A Hilbert transformer is a

(C) time-varying system

(A) non-linear system

(D) low-pass system

(B) non-causal system

- 8.51 In delta modulation, the slope overload distortion can be reduced by (A) decreasing the step size (B) decreasing the granular noise
 - (C) decreasing the sampling rate (D) increasing the step size
- The raised cosine pulse p(t) is used for zero ISI in digital 8.52 communications. The expression for p(t) with unity roll-off factor is given by

$$p(t) = \frac{\sin 4\pi W t}{4\pi W t (1 - 16 W^2 t^2)}$$

The value of p(t) at $t = \frac{1}{4W}$ is

- (A) 0.5(B) 0(C) 0.5 (D) ∞
- In the following scheme, if the spectrum M(f) of m(t) is as shown, 8.53 then the spectrum Y(f) of y(t) will be

8.54 During transmission over a certain binary communication channel,

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

bit errors occur independently with probability p. The probability of AT MOST one bit in error in a block of n bits is given by $(\Delta) n^n$ (B) $1 - n^n$

(A)
$$p$$
 (B) $1 - p$
(C) $np(1-p)^{n-1} + (1+p)^n$ (D) $1 - (1-p)^n$

In a GSM system, 8 channels can co-exist in 200 kHz bandwidth using TDMA. A GSM based cellular operator is allocated 5 MHz bandwidth. Assuming a frequency reuse factor of $\frac{1}{5}$, i.e. a five-cell repeat pattern, the maximum number of simultaneous channels that can exist in one cell is

- (A) 200 (B) 40
- (C) 25 (D) 5

TWO MARKS

- (A) must be less than or equal to 12.288×10^3 bits per sec
- (B) must be greater than 12.288×10^3 bits per sec
- (C) must be exactly equal to 12.288×10^3 bits per sec

(D) can take any value less than 122.88×10^3 bits per sec

Common Data For Q. 8.41 & 8.42 :

8.56

Two 4-array signal constellations are shown. It is given that ϕ_1 and ϕ_2 constitute an orthonormal basis for the two constellation. Assume that the four symbols in both the constellations are equiprobable. Let $\frac{N_0}{2}$ denote the power spectral density of white Gaussian noise.

The if ratio or the average energy of Constellation 1 to the average 8.57 energy of Constellation 2 is

(A) $4a^2$	(B) 4
(C) 2	(D) 8

- If these constellations are used for digital communications over an 8.58 AWGN channel, then which of the following statements is true ?
 - (A) Probability of symbol error for Constellation 1 is lower
 - (B) Probability of symbol error for Constellation 1 is higher
 - (C) Probability of symbol error is equal for both the constellations
 - (D) The value of N_0 will determine which of the constellations has a lower probability of symbol error

Statement for Linked Answer Question 8.44 & 8.45 :

An input to a 6-level quantizer has the probability density function f(x) as shown in the figure. Decision boundaries of the quantizer are chosen so as to maximize the entropy of the quantizer output. It is given that 3 consecutive decision boundaries are' -1!.0' and '1'.

9	The	values	of	a	and
7	THC	varues	01	u	and

8.5

(A)
$$a = \frac{1}{6}$$
 and $b = \frac{1}{12}$ (B) $a = \frac{1}{5}$ and $b = \frac{3}{40}$
(C) $a = \frac{1}{4}$ and $b = \frac{1}{16}$ (D) $a = \frac{1}{3}$ and $b = \frac{1}{24}$

b are

Assuming that the reconstruction levels of the quantizer are the 8.60 mid-points of the decision boundaries, the ratio of signal power to quantization noise power is

(A)
$$\frac{152}{9}$$
 (B) $\frac{64}{3}$
(C) $\frac{76}{2}$ (D) 28

(C)
$$\frac{76}{3}$$
 (D) 2

2006

2006

8.64

8.65

8.67

 \mathbf{S}

ONE MARK

TWO MARKS

(B) $A(\omega) = C\omega^2, \phi(\omega) = k\omega$

(D) $A(\omega) = C, \phi(\omega) = k\omega^{-1}$

A low-pass filter having a frequency response $H(j\omega) = A(\omega) e^{j\phi(\omega)}$ does not produce any phase distortions if

(A) $A(\omega) = C\omega^3, \phi(\omega) = k\omega^3$

(C) $A(\omega) = C\omega, \phi(\omega) = k\omega^2$

A signal with bandwidth 500 Hz is first multiplied by a signal q(t)8.62 where

$$g(t) = \sum_{R=-\infty}^{\infty} (-1)^k \delta(t - 0.5 \times 10^{-4} k)$$

The resulting signal is then passed through an ideal lowpass filter with bandwidth 1 kHz. The output of the lowpass filter would be (A) $\delta(t)$ (B) m(t)

(C) 0(D) $m(t)\delta(t)$

The minimum sampling frequency (in samples/sec) required to 8.63

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

reconstruct the following signal from its samples without distortion

	$x(t) = 5\left(\frac{\sin 2\pi 100t}{\pi t}\right)^3 + 7\left(\frac{\sin 2\pi 100t}{\pi t}\right)^2$ would be
(A) 2×10^3	(B) 4×10^3
(C) 6×10^3	(D) 8×10^3

The minimum step-size required for a Delta-Modulator operating at 32k samples/sec to track the signal (here u(t) is the unit-step function)

x(t) = 125[u(t) - u(t - t)]	1) + (250t)[u(t-1) - u(t-2)]
so that slope-overload is avoided,	would be
(A) 2^{-10}	(B) 2^{-8}
(C) 2^{-6}	(D) 2^{-4}

- A zero-mean white Gaussian noise is passes through an ideal lowpass filter of bandwidth 10 kHz. The output is then uniformly sampled with sampling period $t_s = 0.03$ msec. The samples so obtained would be
 - (A) correlated (B) statistically independent (C) uncorrelated (D) orthogonal
- A source generates three symbols with probabilities 0.25, 0.25, 8.66 0.50 at a rate of 3000 symbols per second. Assuming independent generation of symbols, the most efficient source encoder would have average bit rate is

The diagonal clipping in Amplitude Demodulation (using envelop detector) can be avoided it RC time-constant of the envelope detector satisfies the following condition, (here W is message bandwidth and ω is carrier frequency both in rad/sec)

(A)
$$RC < \frac{1}{W}$$
 (B) $RC > \frac{1}{W}$

(C) $RC < \frac{1}{\omega}$

8.68

(D)
$$RC > \frac{1}{\omega}$$

A uniformly distributed random variable X with probability density function

$$f_x(x) = \frac{1}{10} pu(x+5) - u(x-5)]$$

where u(.) is the unit step function is passed through a transformation given in the figure below. The probability density function of the transformed random variable Y would be

$$\begin{array}{c|c} & y \\ 1 \\ \hline \\ 2.5 \\ 2.5 \\ 2.5 \\ \end{array} x$$

(A) $f_y(y) = \frac{1}{5}[u(y+2.5) - u(y-2.25)]$

(B)
$$f_y(y) = 0.5\delta(y) + 0.5\delta(y-1)$$

C)
$$f_y(y) = 0.25\delta(y+2.5) + 0.25\delta(y-2.5) + 5\delta(y)$$

D)
$$f_y(y) = 0.25\delta(y+2.5) + 0.25\delta(y-2.5) + \frac{1}{10}[u(y+2.5) - u(y-2.5)]_{8.74}$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

In the following figure the minimum value of the constant "C", which is to be added to $y_1(t)$ such that $y_1(t)$ and $y_2(t)$ are different, is

(C)
$$\frac{\Delta^2}{12}$$
 (D) $\frac{\Delta}{L}$

^{8.70} A message signal with bandwidth 10 kHz is Lower-Side Band SSB modulated with carrier frequency $f_{c1} = 10^6$ Hz. The resulting signal is then passed through a Narrow-Band Frequency Modulator with carrier frequency $f_{c2} = 10^9$ Hz.

The bandwidth of the output	would be
(A) 4×10^4 Hz	(B) $2 \times 10^6 \text{ Hz}$
(C) $2 \times 10^9 \text{ Hz}$	(D) $2 \times 10^{10} \text{ Hz}$

Common Data For Q. 8.56 & 8.57 :

8.71

Let $g(t) = p(t)^*(pt)$, where * denotes convolution & p(t) = u(t) - u(t-1) lim with u(t) being the unit step function

The impulse response of filter matched to the signal
$$s(t) = g(t) - \delta(1-2)^* g(t)$$
 is given as :

(A)
$$s(1-t)$$
 (B) $-s(1-t)$
(C) $-s(t)$ (D) $s(t)$

8.72 An Amplitude Modulated signal is given as

$$c_{AM}(t) = 100 \left[p(t) + 0.5g(t) \right] \cos \omega_c t$$

in the interval $0 \le t \le 1$. One set of possible values of modulating

Page 190

signal and modulation	index would be
(A) $t, 0.5$	(B) $t, 1.0$
(C) $t, 2.0$	(D) $t^2, 0.5$

Common Data For Q. 8.58 & 8.59 :

The following two question refer to wide sense stationary stochastic process

- ^{8.73} It is desired to generate a stochastic process (as voltage process) with power spectral density $S(\omega) = 16/(16 + \omega^2)$ by driving a Linear-Time-Invariant system by zero mean white noise (As voltage process) with power spectral density being constant equal to 1. The system which can perform the desired task could be (A) first order lowpass R-L filter
 - (B) first order highpass R-C filter
 - (C) tuned L-C filter

8.75

8.76

(D) series R-L-C filter

The parameters of the system obtained in previous Q would be

- (A) first order R-L lowpass filter would have $R = 4\Omega L = 1H$
- (B) first order R-C highpass filter would have $R = 4\Omega C = 0.25F$
- (C) tuned L-C filter would have L = 4H C = 4F
- (D) series R-L-C lowpass filter would have $R = 1\Omega$, L = 4H, C = 4F

Common Data For Q. 8.60 & 8.61 :

Consider the following Amplitude Modulated (AM) signal, where $f_m < B$

 $X_{AM}(t) = 10(1 + 0.5\sin 2\pi f_m t)\cos 2\pi f_c t$

- The average side-band power for the AM signal given above is(A) 25(B) 12.5(C) 6.25(D) 3.125
- The AM signal gets added to a noise with Power Spectral Density $S_n(f)$ given in the figure below. The ratio of average sideband power to mean noise power would be :

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(D) $\frac{25}{N_0 B}$

(C)
$$\frac{25}{2N_0B}$$

8.77

2005	ONE MARK
Find the correct match betwe	en group 1 and group 2.
Group 1	Group 2
P. $\{1 + km(t)A\sin(\omega_c t)\}$	W. Phase modulation
Q. $km(t) A \sin(\omega_c t)$	X. Frequency modulation
R. $A\sin\{\omega_c t + km(t)\}$	Y. Amplitude modulation
S. $A\sin\left[\omega_c t + k \int_{-\infty}^{t} m(t) dt\right]$	Z. DSB-SC modulation
(A) P-Z, Q-Y, R-X, S-1	W
(B) $P - W$, $Q - X$, $R - Y$, S	-Z
(C) $P - X$, $Q - W$, $R - Z$, S	– Y
(D) $P - Y$, $Q - Z$, $R - W$, S	-X
Which of the following ana	log modulation scheme requires the

- 8.78 minimum transmitted power and minimum channel bandwidth? (A) VSB (B) DSB-SC (C) SSB (D) AM

TWO MARKS

- A device with input X(t) and output y(t) is characterized by: 8.79 $Y(t) = x^2(t)$. An FM signal with frequency deviation of 90 kHz and modulating signal bandwidth of 5 kHz is applied to this device. The bandwidth of the output signal is
 - (A) 370 kHz (B) 190 kHz (D) 95 kHz (C) 380 kHz
- A signal as shown in the figure is applied to a matched filter. Which 8.80 of the following does represent the output of this matched filter?

2005

Noise with uniform power spectral density of N_0 W/Hz is passed 8.81 though a filter $H(\omega) = 2 \exp(-j\omega t_d)$ followed by an ideal pass filter of bandwidth B Hz. The output noise power in Watts is (B) $4N_0B$ (A) $2N_0B$

(C) $8N_0B$	(D) $16N_0B$

8.82 An output of a communication channel is a random variable v with

the probability density function as shown in the figure. The mean square value of v is

A carrier is phase modulated (PM) with frequency deviation of 10 kHz by a single tone frequency of 1 kHz. If the single tone frequency is increased to 2 kHz, assuming that phase deviation remains

8.83

	,		-
unchanged,	the bandwidth	of the PM	signal is
(A) 21 kHz $$		(B)	$22~\mathrm{kHz}$
(C) 42 kHz		(D)	$44 \mathrm{kHz}$

SPECIAL EDITION (STUDY MATERIAL FORM)

is

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Common Data For Q. 8.69 and 8.70 :

Asymmetric three-level midtread quantizer is to be designed assuming equiprobable occurrence of all quantization levels.

If the probability density function is divide into three regions as shown in the figure, the value of a in the figure is

(A) $\frac{1}{3}$	(B) $\frac{2}{3}$
(C) $\frac{1}{2}$	(D) $\frac{1}{4}$

The quantization noise power for the quantization region between -a and +a in the figure is

(A) $\frac{4}{81}$	(B) $\frac{1}{9}$
(C) $\frac{5}{81}$	(D) $\frac{2}{81}$

2004

8.84

8.85

8.86

8.87

ONE MARK

In a PCM system, if the code word length is increased from 6 to 8 bits, the signal to quantization noise ratio improves by the factor $\langle \cdot \rangle \otimes \otimes$

(A) $\frac{6}{6}$		(B) 12

(D) 8 (C) 16

An AM signal is detected using an envelop detector. The carrier frequency and modulating signal frequency are 1 MHz and 2 kHz respectively. An appropriate value for the time constant of the envelop detector is

(A) $500\mu \sec$ (B) $20\mu \sec$

- (C) $0.2\mu \sec$
- (D) $1\mu \sec$
- An AM signal and a narrow-band FM signal with identical carriers, modulating signals and modulation indices of 0.1 are added together. The resultant signal can be closely approximated by
 (A) broadband FM
 (B) SSB with carrier
 - (C) DSB-SC (D) SSB without carrier
- In the output of a DM speech encoder, the consecutive pulses are of opposite polarity during time interval $t_1 \leq t \leq t_2$. This indicates that during this interval
 - (A) the input to the modulator is essentially constant
 - (B) the modulator is going through slope overload
 - (C) the accumulator is in saturation
 - (D) the speech signal is being sampled at the Nyquist rate
- 8.90 The distribution function $F_x(x)$ of a random variable x is shown in the figure. The probability that X = 1 is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

2004

TWO MARKS

8.94

A 1 mW video signal having a bandwidth of 100 MHz is transmitted to a receiver through cable that has 40 dB loss. If the effective oneside noise spectral density at the receiver is 10⁻²⁰ Watt/Hz, then the signal-to-noise ratio at the receiver is

(A) 50 dB	(B) 30 dB
(C) 40 dB	(D) 60 dB

^{8.92} Consider the signal x(t) shown in Fig. Let h(t) denote the impulse response of the filter matched to x(t), with h(t) being non-zero only in the interval 0 to 4 sec. The slope of h(t) in the interval 3 < t < 4sec is

^{8.93} A source produces binary data at the rate of 10 kbps. The binary

symbols are represented as shown in the figure.

The source output is transmitted using two modulation schemes, namely Binary PSK (BPSK) and Quadrature PSK (QPSK). Let B_1 and B_2 be the bandwidth requirements of the above rectangular pulses is 10 kHz, B_1 and B_2 are

(A) $B_1 = 20$ kHz, $B_2 = 20$ kHz	(B) $B_1 = 10 \text{ kHz}, B_2 = 20 \text{ kHz}$
(C) $B_1 = 20$ khz, $B_2 = 10$ kHz	(D) $B_1 = 10$ kHz, $B_2 = 10$ kHz

A 100 MHz carrier of 1 V amplitude and a 1 MHz modulating signal of 1 V amplitude are fed to a balanced modulator. The ourput of the modulator is passed through an ideal high-pass filter with cutoff frequency of 100 MHz. The output of the filter is added with 100 MHz signal of 1 V amplitude and 90° phase shift as shown in the figure. The envelope of the resultant signal is

Two sinusoidal signals of same amplitude and frequencies 10 kHz and 10.1 kHz are added together. The combined signal is given to an ideal frequency detector. The output of the detector is (A) 0.1 kHz sinusoid (B) 20.1 kHz sinusoid

- (C) a linear function of time (D) a constant
- Consider a binary digital communication system with equally likely 0's and 1's. When binary 0 is transmitted the detector input can lie between the levels -0.25 V and +0.25 V with equl probability : when binary 1 is transmitted, the voltage at the detector can have any value between 0 and 1 V with equal probability. If the detector has a threshold of 0.2 V (i.e., if the received signal is greater than 0.2 V, the bit is taken as 1), the average bit error probability is (A) 0.15 (B) 0.2 (C) 0.05 (D) 0.5

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

8.97 A random variable X with uniform density in the interval 0 to 1 is quantized as follows :

If $0 \le X \le 0.3$,	$x_q = 0$
If $0.3 < X \le 1$,	$x_q = 0.7$
where x_q is the quantiz	x = x = x
The root-mean square	value of the quantization noise is
(A) 0.573	(B) 0.198
(C) 2.205	(D) 0.266

^{8.98} Choose the current one from among the alternative A, B, C, D after matching an item from Group 1 with the most appropriate item in Group 2. Group 1 Group 2

1. FMP. Slope overload2. DMQ.
$$\mu$$
-law3. PSKR. Envelope detector4. PCMS. Hilbert transformT. Hilbert transformU. Matched filter(A) 1 - T, 2 - P, 3 - U, 4 - S(B) 1 - S, 2 - U, 3 - P, 4 - T(C) 1 - S, 2 - P, 3 - U, 4 - Q(D) 1 - U, 2 - R, 3 - S, 4 - Q

Three analog signals, having bandwidths 1200 Hz, 600 Hz and 600 8.99 Hz, are sampled at their respective Nyquist rates, encoded with 12 bit words, and time division multiplexed. The bit rate for the multiplexed. The bit rate for the multiplexed signal is (1) 11 - 0 1 -

(A) 115.2 kbps	(B) 28.8 kbps
--------------------------	-------------------------

- (D) 38.4 kbps (C) 57.6 kbps
- Consider a system shown in the figure. Let X(f) and Y(f) and denote 8.100 the Fourier transforms of x(t) and y(t) respectively. The ideal HPF has the cutoff frequency 10 kHz.

The positive frequencies where Y(f) has spectral peaks are

(B) 2 kHz and 244 kHz (A) 1 kHz and 24 kHz

(C) 1 kHz and 14 kHz (D) 2 kHz and 14 kHz

2003 **ONE MARK** The input to a coherent detector is DSB-SC signal plus noise. The 8.101 noise at the detector output is (A) the in-phase component (B) the quadrature - component

The noise at the input to an ideal frequency detector is white. The 8.102 detector is operating above threshold. The power spectral density of the noise at the output is

(D) the envelope

(A) raised - cosine	(B) flat
(C) parabolic	(D) Gaussian

At a given probability of error, binary coherent FSK is inferior to 8.103 binary coherent PSK by. (A) 6 dB(B) 3 dB

(C) 2 dB	(D) 0 dB
--------------------	----------

2003

(C) zero

TWO MARKS

Let X and Y be two statistically independent random variables uniformly distributed in the ranges (-1,1) and (-2,1) respectively. Let Z = X + Y. Then the probability that $(z \le -1)$ is (B) $\frac{1}{2}$

(A) zero
(B)
$$\frac{1}{6}$$

(C) $\frac{1}{3}$
(D) $\frac{1}{12}$

Common Data For Q. 8.90 & 8.91 :

 (\mathbf{A})

(C)

8.106

8.108

8.109

X(t) is a random process with a constant mean value of 2 and the auto correlation function $R_{xx}(\tau) = 4(e^{-0.2|\tau|}+1).$

Let X be the Gaussian random variable obtained by sampling the 8.105 process at $t = t_i$ and let 2 7

$$Q(\alpha) = \int_{\alpha}^{\infty} -\frac{1}{\sqrt{2\pi}} e^{\frac{1}{2} dy}$$

The probability that $[x \le 1]$ is
(A) $1 - Q(0.5)$ (B) $Q(0.5)$
(C) $Q\left(\frac{1}{2\sqrt{2}}\right)$ (D) $1 - Q\left(\frac{1}{2\sqrt{2}}\right)$
Let Y and Z be the random variable obtained by sampling $X(t)$ at
 $t = 2$ and $t = 4$ respectively. Let $W = Y - Z$. The variance of W is
(A) 13.36 (B) 9.36

(C) 2.64(D) 8.00

A sinusoidal signal with peak-to-peak amplitude of 1.536 V is 8.107 quantized into 128 levels using a mid-rise uniform quantizer. The

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

quantization-noise power is	
(A) 0.768 V	
(B) $12 \times 10^{-6} V^2$	

(D) 3.072 V Let $x(t) = 2\cos(800\pi) + \cos(1400\pi t) \cdot x(t)$ is sampled with the

(B) $48 \times 10^{-6} V^2$

rectangular pulse train shown in the figure. The only spectral components (in kHz) present in the sampled signal in the frequency range 2.5 kHz to 3.5 kHz are

(A) 2.7, 3.4	(B) 3.3, 3.6
(C) $2.6, 2.7, 3.3, 3.4, 3.6$	(D) $2.7, 3.3$

A DSB-SC signal is to be generated with a carrier frequency $f_c = 1$ MHz using a non-linear device with the input-output characteristic $V_0 = a_0 v_i + a_1 v_i^3$ where a_0 and a_1 are constants. The output of the non-linear device can be filtered by an appropriate band-pass filter. Let $V_i = A_c^i \cos(2\pi f^i c^t) + m(t)$ is the message signal. Then the value of f_c^i (in MHz) is $(\mathbf{D}) \cap \mathfrak{sss}$

$$\begin{array}{cccc} (A) & 1.0 & (B) & 0.333 \\ (B) & 0.5 & (D) & 3.0 \end{array}$$

Common Data For Q. 8.95 & 8.96 :

Let $m(t) = \cos[(4\pi \times 10^3) t]$ be the message signal &

 $c(t) = 5\cos[(2\pi \times 10^6 t)]$ be the carrier.

c(t) and m(t) are used to generate an AM signal. The modulation 8.110 index of the generated AM signal is 0.5. Then the quantity Total sideband power is

(A) $\frac{1}{2}$	(B) $\frac{1}{4}$
(C) $\frac{1}{3}$	(D) $\frac{1}{8}$

c(t) and m(t) are used to generated an FM signal. If the peak 8.111 frequency deviation of the generated FM signal is three times the transmission bandwidth of the AM signal, then the coefficient of the term $\cos \left[2\pi (1008 \times 10^3 t)\right]$ in the FM signal (in terms of the Bessel coefficients) is

(A) $5J_4(3)$	(B) $\frac{5}{2}J_8(3)$
(C) $\frac{5}{2}J_8(4)$	(D) $5J_4(6)$

Choose the correct one from among the alternative A, B, C, D after 8.112 matching an item in Group 1 with most appropriate item in Group 2.

Group 2
1. Clock recovery
2. Demodulation of FM
3. Frequency conversion

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

S. Mixer	4. Summing the two inputs
	5. Generation of FM
	6. Generation of DSB-Sc
(A) $P-1; Q-3; R-2; S-4$	(B) $P-6; Q = 5; R-2; S-3$
(C) $P-6; Q-1; R-3; S-2$	(D) $P-5; Q-6; R-1; S-3$

A superheterodyne receiver is to operate in the frequency range 550 8.113 kHz - 1650 kHz, with the intermediate frequency of 450 kHz. Let $R = C_{\rm max}/C_{\rm min}$ denote the required capacitance ratio of the local oscillator and I denote the image frequency (in kHz) of the incoming signal. If the receiver is tuned to 700 kHz, then

(A) $R = 4.41, I = 1600$	(B) $R = 2.10, I - 1150$
(C) $R = 3.0, I = 600$	(D) $R = 9.0, I = 1150$

If E_b , the energy per bit of a binary digital signal, is 10^{-5} watt-8.114 sec and the one-sided power spectral density of the white noise, $N_0 = 10^{-6}$ W/Hz, then the output SNR of the matched filter is (Λ) oc 1D (D) 10 1D

(A) 26 dB	(B) 10 dB
(C) 20 dB	(D) 13 dB

The input to a linear delta modulator having a step-size $\Delta = 0.628$ 8.115 is a sine wave with frequency f_m and peak amplitude E_m . If the sampling frequency $f_x = 40$ kHz, the combination of the sine-wave frequency and the peak amplitude, where slope overload will take place is

f_m	
8 kHz	
$4 \mathrm{~kHz}$	
2 kHz	
$1 \mathrm{~kHz}$	
	8 kHz 4 kHz 2 kHz

If S represents the carrier synchronization at the receiver and ρ 8.116 represents the bandwidth efficiency, then the correct statement for the coherent binary PSK is

Page 194

	(A) $\rho = 0.5, S$ is required (C) $\rho = 0.5, S$ is not required	
.117		B B B
	2002	ONE MARK
.118	_	blitude modulated by symmetrical Which of the following frequencies dated signal ? (B) 1010 kHz (D) 1030 kHz
.119	Consider a sample signal $y(t) = 5$ where $x(t) = 10\cos(8\pi \times 10^3) t$ and	$n = -\infty$
	When $y(t)$ is passed through an infraction for the set of 5 KHz, the set put of 5	
	frequency of 5 KHz, the output of (A) $5 \times 10^{-6} \cos(8\pi \times 10^3) t$	(b) $5 \times 10^{-5} \cos(8\pi \times 10^3) t$
	(C) $5 \times 10^{-1} \cos(8\pi \times 10^3) t$	(D) $10\cos(8\pi \times 10^3) t$
.120	For a bit-rate of 8 Kbps, the best frequencies in a coherent binary 1 (A) 16 kHz and 20 kHz (C) 20 kHz and 40 kHz	possible values of the transmitted FSK system are (C) 20 kHz and 32 kHz (D) 32 kHz and 40 kHz
.121	_	requires the transmit and receive the transmit antenna is vertically receiver antenna should be

- (C) at 45° with respect to horizontal polarization
- (D) at 45° with respect to vertical polarization

2002

8.122

8.123

TWO MARKS

An angle-modulated signal is given by

$s(t) = \cos 2\pi (2 \times 10^6 t + 30 \sin 150 t + 40 \cos 150 t).$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

The maximum frequency and ph	ase deviations of $s(t)$ are
(A) 10.5 kHz, 140 π rad	(B) 6 kHz, 80π rad
(C) 10.5 kHz, 100 π rad	(D) 7.5 kHz, 100π rad
In the figure $m(t) = \frac{2\sin 2\pi t}{t}, s(t)$	$t = \cos 200\pi t \text{ and } n(t) = \frac{\sin 199\pi t}{t}$
•	
The output $y(t)$ will be	

(A) $\frac{\sin 2\pi t}{t}$	(B) $\frac{\sin 2\pi t}{t} + \frac{\sin \pi t}{t} \cos 3\pi t$
(C) $\frac{\sin 2\pi t}{t} + \frac{\sin 0.5\pi t}{t} \cos 1.5\pi t$	(D) $\frac{\sin 2\pi t}{t} + \frac{\sin \pi t}{t} \cos 0.75\pi t$

A signal $x(t) = 100 \cos(24\pi \times 10^3) t$ is ideally sampled with a sampling 8.124 period of 50μ sec and then passed through an ideal lowpass filter 8.133 with cutoff frequency of 15 kHz. Which of the following frequencies is/are present at the filter output?

- (A) 12 kHz only (B) 8 kHz only
- (C) 12 kHz and 9 kHz(D) 12 kHz and 8 kHz

If the variance α_x^2 of d(n) = x(n) - x(n-1) is one-tenth the 8.125 8.134 variance α_x^2 of stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation function $\frac{R_{xx}(k)}{\alpha_x^2}$ at k = 1 is (A) 0.95 (B) $0.90 \alpha_x^2$

- (C) 0.10 (D) 0.05

2001

ONE MARK

- A bandlimited signal is sampled at the Nyquist rate. The signal can 8.126 be recovered by passing the samples through
 - (A) an RC filter
 - (B) an envelope detector
 - (C) a PLL

2001

- (D) an ideal low-pass filter with the appropriate bandwidth
- 8.127 The PDF of a Gaussian random variable X is given by

$$p_x(x) = \frac{1}{3\sqrt{2\pi}} e^{-\frac{(x-4)^2}{18}}$$
. The probability of the event $\{X=4\}$ is
(A) $\frac{1}{2}$ (B) $\frac{1}{3\sqrt{2\pi}}$

(C) 0 (D)
$$\frac{1}{4}$$

TWO MARKS

8.136

8.138

8.139

A video transmission system transmits 625 picture frames per second. 8.128 Each frame consists of a 400×400 pixel grid with 64 intensity levels per pixel. The data rate of the system is

(A) 16 Mbps	(B) 100 Mbps
(C) 600 Mbps	(D) 6.4 Gbps

The Nyquist sampling interval, for the signal $\sin c(700t) + \sin c(500t)$ 8.129 8.137 is

(A) $\frac{1}{350}$ sec	(B) $\frac{\pi}{350}$ sec
(C) $\frac{1}{700}$ sec	(D) $\frac{\pi}{175}$ sec

During transmission over a communication channel, bit errors occur 8.130 independently with probability p. If a block of n bits is transmitted, the probability of at most one bit error is equal to

(A)
$$1 - (1 - p)^n$$

(B) $p + (n - 1)(1 - p)$
(C) $np(1 - p)^{n-1}$
(D) $(1 - p)^n + np(1 - p)^{n-1}$

The PSD and the power of a signal g(t) are, respectively, $S_q(\omega)$ and 8.131 P_g . The PSD and the power of the signal ag(t) are, respectively,

- (A) $a^2 S_g(\omega)$ and $a^2 P_g$ (B) $a^2 S_g(\omega)$ and $a P_g$ (D) $aS_a(\omega)$ and aP_s
- (C) $aS_q(\omega)$ and a^2P_q

2000

ONE MARK

The amplitude modulated waveform $s(t) = A_c [1 + K_a m(t)] \cos \omega_c t$ 8.132 is fed to an ideal envelope detector. The maximum magnitude **TWO MARKS**

of $K_0 m(t)$ is greater than 1. Which of the following could be the detector output ? (B) $A_c^2 [1 + K_a m(t)]^2$

(A) $A_c m(t)$ (D) $A_c [1 + K_a m(t)]^2$ (C) $[A_c(1 + K_a m(t))]$

The frequency range for satellite communication is (A) 1 KHz to 100 KHz (B) 100 KHz to 10 KHz (C) 10 MHz to 30 MHz (D) 1 GHz to 30 GHz

2000

In a digital communication system employing Frequency Shift Keying (FSK), the 0 and 1 bit are represented by sine waves of 10 KHz and 25 KHz respectively. These waveforms will be orthogonal for a bit interval of (A) $45\mu \sec$ (B) $200\mu \sec$

(C) $50\mu \sec$ (D) $250\mu \sec$

A message m(t) bandlimited to the frequency f_m has a power of P_m 8.135

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

. The power of the output signal in the figure is

$m(t)\cos\omega_{o}$	Ideal Low Pass Filter Cut off Frequency f_m Output Pass Band Gain = 1 $(\omega_o > 2\pi f_m)$
(A) $\frac{P_m \cos \theta}{2}$	(B) $\frac{P_m}{4}$
(C) $\frac{P_m \sin^2 \theta}{4}$	(D) $\frac{P_m \cos^2 \theta}{4}$
The Hilbert transform	n of $\cos \omega_1 t + \sin \omega_2 t$ is
(A) $\sin \omega_1 t - \cos \omega_2 t$	(B) $\sin \omega_1 t + \cos \omega_2 t$

(C) $\cos \omega_1 t - \sin \omega_2 t$ (D) $\sin \omega_1 t + \sin \omega_2 t$

In a FM system, a carrier of 100 MHz modulated by a sinusoidal signal of 5 KHz. The bandwidth by Carson's approximation is 1 MHz. If $y(t) = (\text{modulated waveform})^3$, than by using Carson's approximation, the bandwidth of y(t) around 300 MHz and the and the spacing of spectral components are, respectively.

(A) 3 MHz, 5 KHz	(B) 1 MHz, 15 KHz
(C) 3 MHz, 15 KHz	(D) 1 MHz, 5 KHz

1999

ONE MARK

The input to a channel is a bandpass signal. It is obtained by linearly modulating a sinusoidal carrier with a single-tone signal. The output of the channel due to this input is given by

 $y(t) = (1/100)\cos(100t - 10^{-6})\cos(10^{6}t - 1.56)$ The group delay (t_a) and the phase delay (t_p) in seconds, of the channel are

(A) $t_g = 10^{-6}, t_p = 1.56$	(B) $t_g = 1.56, t_p = 10^{-6}$
(C) $t_g = 10^8, t_p = 1.56 \times 10^{-6}$	(D) $t_g = 10^8, t_p = 1.56$

A modulated signalisgiven by $s(t) = m_1(t) \cos(2\pi f_t t) + m_2(t) \sin(2\pi f_t t)$

	where the baseband signal $m_1(t)$ a 10 kHz, and 15 kHz, respectively. signal, in kHz, is (A) 10 (C) 25	The bandwidth of the modulated (B) 15 (D) 30	8.147	 The image channel selectivity of upon (A) IF amplifiers only (B) RF and IF amplifiers only (C) Preselector, RF and IF amplifier (D) Preselector, and RF amplifier 			
8.140	A modulated signal is given by where a ω_c and $\Delta \omega$ are positive complex envelope of $s(t)$ is given (A) $\exp(-at)\exp[j(\omega_c + \Delta \omega)t]u($ (B) $\exp(-at)\exp(j\Delta \omega t)u(t)$ (C) $\exp(j\Delta \omega t)u(t)$	constants, and $\omega_c >> \Delta \omega$. The by	8.148		uantisation, increasing the number he quantisation noise power by a (B) 8 (D) 2		
	(D) $\exp[j\omega_c + \Delta\omega)t]$		8.149	Flat top sampling of low pass sig: (A) gives rise to aperture effect (C) leads to aliasing			
	1999 The Nucurist compliant frequency.	TWO MARKS		tortion	(D) introduces delay dis-		
8.141	The Nyquist sampling frequency $6 \times 10^4 \sin c^2 (400t) * 10^6 \sin c^3 (100)$ (A) 200 GATE Electronics &	(B) 300	8.150	A DSB-SC signal is generated u modulating signal $x(t)$. The envel (A) $x(t)$	using the carrier $\cos(\omega_e t + \theta)$ and lope of the DSB-SC signal is (B) $ x(t) $		
	by RK Ka			(C) only positive portion of $x(t)$	(D) $x(t)\cos\theta$		
Pu	Now in 3 V schase Online at maximum of and get POSTAL and On visit www.no	liscount from online store line Test Series Free	8.151	 Quadrature multiplexing is (A) the same as FDM (B) the same as TDM (C) a combination of FDM and T (D) quite different from FDM and 			
	(C) 500	(D) 1000	8.152		ge signal $x(t)$ is $X(f)$. The unit of		
8.142		t PCM coder is 2 volts. The signal er ratio (in dB) for an input of		$ \begin{array}{l} X(f) \text{ is} \\ (A) \text{ volt} \\ (C) \text{ volt/sec} \end{array} $	(B) volt-sec (D) volt ²		
	(A) 47.8(C) 95.6	(B) 49.8(D) 99.6	8.153	Compression in PCM refers to real (A) higher signal amplitudes	lative compression of (B) lower signal amplitudes		
8.143	The input to a matched filter is g			(C) lower signal frequencies	(D) higher signal frequencies		
	$s(t) = \begin{cases} 10 \sin(2\pi \times 10^6 t) \\ 0 & \text{i} \end{cases}$		8.154	bandwidth B_0 of the OOK signal			
	The peak amplitude of the filter of (A) 10 volts	output is (B) 5 volts		(A) $B_p = \frac{B_0}{4}$	(B) $B_p = \frac{B_0}{2}$		
	(C) 10 millivolts	(D) 5 millivolts		(C) $B_p = B_0$	(D) $B_p = 2B_0$		
8.144	Four independent messages have bandwidths of 100 Hz, 200 Hz and 400 Hz, respectively. Each is sampled at the Nyquist rate, and the samples are time division multiplexed (TDM) and transmitted. The transmitted sample rate (in Hz) is (A) 1600 (B) 800		8.155	8.155 The spectral density of a real valued random process has			
			For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014				
	(C) 400	(D) 200		(A) an even symmetry(C) a conjugate symmetry	(B) an odd symmetry(D) no symmetry		
	1998	ONE MARK	8.156	The probability density function	of the envelope of narrow band		
8.145	The amplitude spectrum of a Gau (A) uniform (C) Gaussian	(B) a sine function (D) an impulse function		Gaussian noise is(A) Poisson(C) Rayleigh	(B) Gaussian(D) Rician		
8.146	The ACF of a rectangular pulse of	f duration T is					

- The ACF of a rectangular pulse of duration T is
 - (A) a rectangular pulse of duration ${\cal T}$

8.146

- (B) a rectangular pulse of duration $2\,T$
- (C) a triangular pulse of duration T
- (D) a triangular pulse of duration 2T

1997

8.157 The line code that has zero dc component for pulse transmission of random binary data is

ONE MARK

Page 197

- (A) Non-return to zero (NRZ)
- (B) Return to zero (RZ)
- (C) Alternate Mark Inversion (AM)
- (D) None of the above
- 8.158 A probability density function is given by $p(x) = Ke^{-x^2/2} \infty < x < \infty$. The value of K should be
 - (A) $\frac{1}{\sqrt{2\pi}}$ (B) $\sqrt{\frac{2}{\pi}}$ (C) $\frac{1}{2\sqrt{\pi}}$ (D) $\frac{1}{\pi\sqrt{2}}$
- 8.159 A deterministic signal has the power spectrum given in the figure is, The minimum sampling rate needed to completely represent this signal is

(C) 3 kHz

8.160

- (D) None of these t order low pass trans
- A communication channel has first order low pass transfer function. The channel is used to transmit pulses at a symbol rate greater than the half-power frequency of the low pass function. Which of the network shown in the figure is can be used to equalise the received pulses?

- 8.161 The power spectral density of a deterministic signal is given by $[\sin(f)/f^2]$ where f is frequency. The auto correlation function of this signal in the time domain is
 - (A) a rectangular pulse
 - (C) a sine pulse
- (B) a delta function(D) a triangular pulse

1996

ONE MARK

- 8.162 A rectangular pulse of duration T is applied to a filter matched to this input. The out put of the filter is a
 - (A) rectangular pulse of duration T
 - (B) rectangular pulse of duration 2T
 - (C) triangular pulse
 - (D) sine function
- 8.163 The image channel rejection in a superheterodyne receiver comes

from

8.164

8.165

- (A) IF stages only (B) RF stages only
- (C) detector and RF stages only (D) detector RF and IF stages

1996 TWO MARKS

The number of bits in a	binary PCM system is increased from n to			
n+1. As a result, the signal to quantization noise ratio will improve				
by a factor				
(A) $\frac{n+1}{n}$	(B) $2^{(n+1)/n}$			
(C) $2^{2(n+1)/n}$	(D) which is independent of n			
The auto correlation fun	ction of an energy signal has			
(A) no symmetry	(B) conjugate symmetry			

(A) no symmetry(B) conjugate symmetry(C) odd symmetry(D) even symmetry

8.166 An FM signal with a modulation index 9 is applied to a frequency tripler. The modulation index in the output signal will be

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

					J	
WW	/W.	no	di	a.	СО	.in

(A) 0	(B) 3
(C) 9	(D) 27

SOLUTIONS

Option (B) is correct. 8.1

> In ideal Nyquist Channel, bandwidth required for ISI (Inter Symbol reference) free transmission is R_{h} ---

$$W = \frac{\pi v_0}{2}$$

Here, the used modulation is 32 - QAM (Quantum Amplitude modulation i.e., q = 32 $2^{v} = 32$

or

v = 5 bits So, the signaling rate (sampling rate) is

 $R_b = \frac{R}{5}$

 $(R \rightarrow \text{given bit rate})$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Hence, for ISI free transmission, minimum bandwidth is $W = \frac{R_b}{2} = \frac{R}{10} \text{ kHz}$ Option (B) is correct.

 $\sigma_u^2 = \frac{1}{4}$

 $\sigma_v^2 = \frac{1}{9}$

8.2

Given, random variables U and V with mean zero and variances $\frac{1}{4}$ and $\frac{1}{9}$ $\overline{U} = \overline{V} = 0$ i.e.,

and

 $P(U \ge 0) = \frac{1}{2}$ so, $P(V \ge 0) = \frac{1}{2}$ and

The distribution is shown in the figure below

 $Y = \frac{v-0}{\sigma_v} = \frac{v}{Y_3} = 3V$

and

 $\overline{X} = 2\overline{U} = 0$ $\overline{Y} = 2 \overline{V} = 0$ $\overline{X^2} = \overline{4 \, U^2} = 1$ and $\overline{Y^2} = \overline{9 V^2} = 1$ also, Therefore, X - Y is also a normal random variable with $\overline{X - Y} = 0$ Hence, $P(X - Y \ge 0) = P(X - Y \le 0) = \frac{1}{2}$

or, we can say

Thus,

$$P(2U - 3V \le 0) = \frac{1}{2}$$
$$P(3V \ge 2U) = \frac{1}{2}$$

Option (C) is correct. 8.3

> The mean of random variables U and V are both zero $\overline{U} = \overline{V} = 0$ i.e., Also, the random variables are identical $f_U(u) = f_V(v)$ i.e., $F_U(u) = F_V(v)$ or,

i.e., their cdf are also same. So,

$$F_U(u) = F_{2V}(2v)$$

i.e., the cdf of random variable 2V will be also same but for any instant

 $2V \geq U$

Therefore,

8.4

G(x) = F(x) $x G(x) \ge xF(x)$ but, $[F(x) - G(x)]x \le 0$ or,

Option (C) is correct.

Given,
$$P(U=+1) = P(U=-1) = \frac{1}{2}$$

where U is a random variable which is identical to V i.e.,

$$P(V = +1) = P(V = -1) = \frac{1}{4}$$

So, random variable U and V can have following values U = +1, -1; V = +1, -1

Therefore the random variable U + V can have the following values,

P(U+V)

$$U+V = \begin{cases} -2 & \text{When } U = V = -1 \\ 0 & \text{When } U = 1, V = 1 \text{ or } u = -1, v = 1 \end{cases}$$

|2|When U = V = 1

Hence, we obtain the probabilities for U + V as follows

U+V

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

 $=\frac{3}{2}$

Option (D) is correct.

8.5

For the shown received signal, we conclude that if 0 is the transmitted signal then the received signal will be also zero as the threshold is 1 and the pdf of bit 0 is not crossing 1. Again, we can observe that there is an error when bit 1 is received as it crosses the threshold. The probability of error is given by the area enclosed by the 1 bit pdf (shown by shaded region)

 $P~({\rm error~when~bit~1~received}) = \frac{1}{2} \times 1 \times 0.25 = \frac{1}{8}$

 $P\left(\frac{\text{received } 1}{\text{transmitted } 0}\right) = \frac{1}{8}$ Since, the 1 and 0 transmission is equiprobable:

i.e.,
$$P(0) = P(1) = \frac{1}{2}$$

Hence bit error rate (BER) is BER

$$= P\left(\frac{\text{received }0}{\text{transmitted }1}\right)P(0) + P\left(\frac{\text{received }1}{\text{transmitted }0}\right)P(1)$$
$$= 0 + \frac{1}{8} \times \frac{1}{2}$$
$$= \frac{1}{16}$$

Option (B) is correct.

8.6

The optimum threshold is the threshold value for transmission as obtained at the intersection of two pdf. From the shown pdf. We obtain at the intersection

(transmitted, received) =
$$\left(\frac{4}{5}, \frac{1}{5}\right)$$

x

we can obtain the intersection by solving the two linear eqs

Hence for threshold $=\frac{4}{5}$, we have

BER
=
$$P\left(\frac{\text{received }1}{\text{transmitted }0}\right)P(0) + P\left(\frac{\text{received }0}{\text{transmitted }1}\right)P(1)$$

= $\left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{2} + \left(\frac{1}{2} \times \frac{4}{5} \times \frac{1}{5}\right) \times \frac{1}{2}$
= $\frac{1}{20} < (\text{BER for threshold} = 1)$

Hence, optimum threshold is $\frac{4}{5}$

Option (A) is correct.

The mean square value of a stationary process equals the total area under the graph of power spectral density, that is

> $E[X^{2}(t)] = \int_{-\infty}^{\infty} S_{X}(f) df$ $E[X^{2}(t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{X}(\omega) \, d\omega$

or,

=

8.7

$$E[X^2(t)] = 2 \times \frac{1}{2\pi} \int_0^\infty S_X(\omega) \, d\omega$$
 (Since the PSD is even)

 $=\frac{1}{\pi}$ [area under the triangle + integration of delta function]

$$= \frac{1}{\pi} \Big[2 \Big(\frac{1}{2} \times 1 \times 10^3 \times 6 \Big) + 400 \\= \frac{1}{\pi} [6000 + 400] = \frac{6400}{\pi}$$

|E[X(t)]| is the absolute value of mean of signal X(t) which is also equal to value of $X(\omega)$ at $(\omega = 0)$. From given PSD

$$S_X(\omega)|_{\omega=0} = 0$$

$$S_X(\omega) = |X(\omega)|^2 = 0$$

$$|X(\omega)|_{\omega=0}^2 = 0$$

$$|X(\omega)|_{\omega=0} = 0$$

Option (C) is correct. 8.8

For raised cosine spectrum transmission bandwidth is given as

 $B_T = W(1 + \alpha)$ $\alpha \rightarrow \text{Roll of factor}$ $R_{b(1+a)}$ $R_{b(1+a)}$

$$B_T = \frac{-\sigma}{2}(1+\alpha)$$
 $R_b \rightarrow \text{Maximum signaling rate}$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

$$3500 = \frac{R_b}{2}(1+0.75)$$
$$R_b = \frac{3500 \times 2}{1.75} = 4000$$

Option (D) is correct.

8.9

8.10

Entropy function of a discrete memory less system is given as

$$H = \sum_{k=0}^{N-1} P_k \log \left(\frac{1}{P_k} \right)$$

where P_k is probability of symbol S_k . For first two symbols probability is same, so

$$H = P_1 \log\left(\frac{1}{P_1}\right) + P_2 \log\left(\frac{1}{P_2}\right) + \sum_{k=3}^{N-1} P_k \log\left(\frac{1}{P_k}\right)$$
$$= -\left(P_1 \log P_1 + P_2 \log P_2 + \sum_{k=3}^{N-1} P_k \log P_k\right)$$
$$= -\left(2P \log P + \sum_{k=3}^{N-1} P_k \log P_k\right) \qquad (P_1 = P_2 = P)$$
$$P_1 = P + \varepsilon, \ P_2 = P - \varepsilon$$

Now,

So,
$$H' = -\left[(P+\varepsilon)\log(P+\varepsilon) + (P-\varepsilon)\log(P-\varepsilon) + \sum_{k=3}^{N-1} P_k \log P_k\right]$$

By comparing, $H' < H$, Entropy of source decreases.

Option (B) is correct.

Probability density function of uniformly distributed variables Xand Y is shown as

Since X and Y are independent.

$$P\left\{\left[\max\left(x,y\right)\right] < \frac{1}{2}\right\} = P\left(X < \frac{1}{2}\right)P\left(Y < \frac{1}{2}\right)$$
$$P\left(X < \frac{1}{2}\right) = \text{shaded area} = \frac{3}{4}$$

Similarly for Y: $P\left(Y < \frac{1}{2}\right) = \frac{3}{4}$

 So

Alternate Method:

From the given data since random variables X and Y lies in the interval [-1,1] as from the figure X, Y lies in the region of the square ABCD.

 $P\left\{ \left[\max\left(x,y\right) \right] < \frac{1}{2} \right\} = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$\phi_1(t)=\sqrt{rac{2}{T}}\sin{(\omega_c t)},\ 0\leq t< T$$

But here local oscillator is ahead with 45° . so,

$$\phi_1(t) = \sqrt{\frac{2}{T}} \sin\left(\omega_c t + 45^\circ\right)$$

The coordinates of message points are

$$s_{11} = \int_0^T s_1(t) \phi_1(t) dt$$

$$= \int_0^T \sqrt{\frac{2E}{T}} \sin \omega_c t \sqrt{\frac{2}{T}} \sin (\omega_c t + 45^\circ) dt$$

$$= \sqrt{\frac{2E}{T}} \int_0^T \sin (\omega_c t) \sin (\omega_c t + 45^\circ) dt$$

$$= \sqrt{\frac{2E}{T}} \sqrt{\frac{2}{T}} \int_0^T \frac{1}{2} [\sin 45^\circ + \sin (2\omega_c t + 45^\circ)] dt$$

$$= \frac{1}{T} \sqrt{E} \int_0^T \frac{1}{\sqrt{2}} dt + \underbrace{\frac{1}{T}} \sqrt{E} \int_0^T \frac{\sin (2\omega_c t + 45^\circ) dt}{\sqrt{2}}$$

$$= \sqrt{\frac{E}{2}}$$

 $s_{21} = -\sqrt{\frac{E}{2}}$

Similarly, Signal space diagram

Now here the two message points are s_{11} and s_{21} . The error at the receiver will be considered. When : (i) s_{11} is transmitted and s_{21} received

(ii) s_{21} is transmitted and s_{11} received So, probability for the 1^{st} case will be as :

$$P\left(\frac{s_{21} \text{ received}}{s_{11} \text{ transmitted}}\right) = P(X < 0) \text{ (as shown in diagram)}$$
$$= P\left(\sqrt{E/2} + N < 0\right)$$
$$= P\left(N < -\sqrt{E/2}\right)$$

Taking the Gaussian distribution as shown below :

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Probability for $\max[X, Y] < 1/2$: The points for $\max[X, Y] < 1/2$ will be inside the region of square AEFG.

 $P\left\{\max[X, Y] < \frac{1}{2}\right\} = \frac{\text{Area of } \Box AEFG}{\text{Area of square } ABCD}$ So, $\frac{\frac{3}{2}\times\frac{3}{2}}{\frac{3}{2}\times\frac{3}{2}}$ 2×2

Option (B) is correct. 8.11

> In a coherent binary PSK system, the pair of signals $s_1(t)$ and $s_2(t)$ used to represent binary system 1 and 0 respectively.

9

16

$$s_1(t) = \sqrt{rac{2E}{T}} \sin \omega_c t$$

 $s_2(t) = -\sqrt{rac{2E}{T}} \sin \omega_c t$

Mean of the Gaussian distribution $=\sqrt{E/2}$ Variance $=\frac{N_0}{2}$

Putting it in the probability function :

$$P\left(N < -\sqrt{\frac{E}{2}}\right) = \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi \frac{N_0}{2}}} e^{-\frac{\left(x + \sqrt{E/2}\right)^2}{2N_0/2}} dx$$
$$= \int_{-\infty}^{0} \frac{1}{\sqrt{\pi N_0}} e^{-\frac{\left(x + \sqrt{E/2}\right)^2}{N_0}} dx$$

Taking, $\frac{x + \sqrt{E/2}}{\sqrt{N_0/2}} = t$

$$dx = \sqrt{\frac{N_0}{2}} dt$$

So,
$$P(N < -\sqrt{E/2}) = \int_{\sqrt{E/N_0}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t}{2}} dt Q\left(\sqrt{\frac{E}{N_0}}\right)$$

where Q is error function.

Since symbols are equiprobable in the 2^{nd} case So,

$$P\left(\frac{s_{11}\,\mathrm{received}}{s_{21}\,\mathrm{transmitted}}
ight) = Q\left(\sqrt{\frac{E}{N_0}}
ight)$$

So the average probability of error

$$= \frac{1}{2} \left[P\left(\frac{s_{21} \text{ received}}{s_{11} \text{ transmitted}}\right) + P\left(\frac{s_{11} \text{ received}}{s_{21} \text{ transmitted}}\right) \right]$$
$$= \frac{1}{2} \left[Q\left(\sqrt{\frac{E}{N_0}}\right) + Q\left(\sqrt{\frac{E}{N_0}}\right) \right] = Q\left(\sqrt{\frac{E}{N_0}}\right)$$

8.12 Option () is correct.

8.13

Option (B) is correct. General equation of FM and PM waves are given by

$$\phi_{FM}(t) = A_c \cos\left[\omega_c t + 2\pi k_f \int_0^t m(\tau) d\tau
ight]$$
 $\phi_{PM}(t) = A_c \cos\left[\omega_c t + k_p m(t)
ight]$

 $k_p[m(t)]_{\max} = 2\pi k_f \left[\int_0^t m(\tau) \, d\tau \right]_{\max}$

 $k_p \times 2 = 2\pi k_f [x(t)]_{\max}$

 $x(t) = \int_{0}^{t} m(\tau) \, d\tau$

For same maximum phase deviation.

where,

So,

$$\frac{k_p}{k_f} = 4\pi$$

 $[x(t)]_{\max} = 4$

 $k_p \times 2 = 2\pi k_f \times 4$

8.14 Option (A) is correct.

$$G_C(s) = \frac{s+a}{s+b} = \frac{j\omega+a}{j\omega+b}$$
$$\phi = \tan^{-1}\left(\frac{\omega}{a}\right) - \tan^{-1}\left(\frac{\omega}{b}\right)$$

Phase lead angle

$$\phi = \tan^{-1} \left(\frac{\frac{\omega}{a} - \frac{\omega}{b}}{1 + \frac{\omega^2}{ab}} \right) = \tan^{-1} \left(\frac{\omega(b-a)}{ab + \omega^2} \right)$$

For phase-lead compensation $\phi > 0$

$$-a > 0$$
$$b > a$$

b

Note: For phase lead compensator zero is nearer to the origin as compared to pole, so option (C) can not be true.

8.15 Option (A) is correct.

$$\phi = \tan^{-1}\left(\frac{\omega}{a}\right) - \tan^{-1}\left(\frac{\omega}{b}\right)$$
$$\frac{d\phi}{d\omega} = \frac{1/a}{1 + \left(\frac{\omega}{a}\right)^2} - \frac{1/b}{1 + \left(\frac{\omega}{b}\right)^2} = 0$$
$$\frac{1}{a} + \frac{\omega^2}{ab^2} = \frac{1}{b} + \frac{1}{b}\frac{\omega^2}{a^2}$$
$$\frac{1}{a} - \frac{1}{b} = \frac{\omega^2}{ab}\left(\frac{1}{a} - \frac{1}{b}\right)$$
$$\omega = \sqrt{ab} = \sqrt{1 \times 2} = \sqrt{2} \text{ rad/sec}$$

8.16 Option (D) is correct.

Quantized 4 level require 2 bit representation i.e. for one sample 2 bit are required. Since 2 sample per second are transmitted we require 4 bit to be transmitted per second.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

8.17 Option (B) is correct.

In FM the amplitude is constant and power is efficient transmitted. No variation in power.

There is most bandwidth efficient transmission in SSB- SC. because we transmit only one side band.

Simple Diode in Non linear region (Square law) is used in conventional AM that is simplest receiver structure. In VSB dc. component exists.

$$S_x(f) = F\{R_x(\tau)\} = F\{\exp(-\pi\tau^2)\}$$

The given circuit can be simplified as

$$\begin{array}{c} G(f) \\ \hline f 2\pi f - 1 \end{array} \longrightarrow Y(t) \end{array}$$

Power spectral density of output is

$$S_{y}(f) = |G(f)|^{2} S_{x}(f)$$

= $|j2\pi f - 1|^{2} e^{-\pi f^{2}}$
= $(\sqrt{(2\pi f)^{2} + 1})^{2} e^{-\pi f^{2}}$

Option (B) is correct.

or

8.19

Highest frequency component in m(t) is $f_m = 4000\pi/2\pi = 2000$ Hz Carrier frequency $f_c = 1$ MHz

 $S_u(f) = (4\pi^2 f^2 + 1) e^{-\pi f^2}$

For Envelope detector condition

$$1/f_C << RC << 1/f_m$$

1 µs << RC << 0.5 ms

8.20 Option (D) is correct.

Four phase signal constellation is shown below

Now

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

 d^2

 r_2

$$\theta = \frac{2\pi}{M} = \frac{2\pi}{8} = \frac{\pi}{4}$$

Applying Cooine law we have

$$= r_2^2 + r_2^2 - 2r_2^2 \cos \frac{\pi}{4}$$

= $2r_2^2 - 2r_2^2 \ 1/\sqrt{2} = (2 - \sqrt{2}) r_2^2$
= $\frac{d}{\sqrt{2} - \sqrt{2}} = 1.3065 d$

or

Option (D) is correct. 8.21

> Here P_e for 4 PSK and 8 PSK is same because P_e depends on d. Since P_e is same, d is same for 4 PSK and 8 PSK.

Additional Power SNR

$$= (SNR)_2 - (SNR)_1$$

= $10 \log\left(\frac{E_{S2}}{No}\right) - 10 \log\left(\frac{E_{S1}}{No}\right)$
= $10 \log\left(\frac{E_{S2}}{E_{S1}}\right)$

$$= 10 \log\left(\frac{r_2}{r_1}\right)^2 \Rightarrow 20 \log\left(\frac{r_2}{r_1}\right) = 20 \log\frac{1.3065 \text{d}}{0.707 \text{d}}$$

Additional SNR = 5.33 dB

Option (C) is correct. 8.22

Conventional AM signal is given by

 $x(t) = A_C [1 + \mu m(t)] \cos\left(2\pi f_C t\right)$

Where $\mu < 1$, for no over modulation. In option (C)

$$x(t) = A_C \left[1 + \frac{1}{4} m(t) \right] \cos(2\pi f_C t)$$

Thus $\mu = \frac{1}{4} < 1$ and this is a conventional AM-signal without overmodulation

Option (B) is correct. 8.23

Power

8.24

$$P = \frac{(6)^2}{2} = 18 \,\mathrm{W}$$

Option (C) is correct. Impulse response of the matched filter is given by

$$H(f) = \begin{cases} 1, & |f| < 1 \text{ MHz} \\ 0, & \text{elsewhere} \end{cases}$$

Noise variance (power) is given as

 $\int_0^{1\,\times\,10^6} 2$

$$P = \sigma^{2} = \int_{0}^{f_{o}} |H(f)|^{2} N_{o} df = \frac{2}{\alpha^{2}} \text{ (given)}$$

$$^{1 \times 10^{6}} 2 \times 10^{-20} df = \frac{2}{\alpha^{2}}$$

$$2 \times 10^{-20} \times 10^{6} = \frac{2}{\alpha^{2}}$$

$$\alpha^{2} = 10^{14}$$

$$\alpha = 10^{7}$$

Option (D) is correct. 8.26

or

Probability of error is given by

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$\begin{split} P_e &= \frac{1}{2} [P(0/1) + P(1/0)] \\ P(0/1) &= \int_{-\infty}^{\alpha/2} 0.5 e^{-\alpha |n-a|} dn = 0.5 e^{-10} \end{split}$$
 where $a = 2 \times 10^{-6} \, \mathrm{V}$ and $\alpha = 10^7 \, V^{-1}$

$$egin{aligned} P(1/0) &= \int_{a/2}^\infty 0.5 \, e^{-lpha |\, n \, |} dn \ = 0.5 \, e^{-10} \ P_e \ &= 0.5 \, e^{-10} \end{aligned}$$

Option (C) is correct. 8.27

 $S(t) = \sin c (500t) \sin c (700t)$

S(f) is convolution of two signals whose spectrum covers $f_1 = 250$ Hz

and
$$f_2 = 350$$
 Hz. So convolution extends
 $f = 25 + 350 = 600$ Hz

Nyquist sampling rate

$$N = 2f = 2 \times 600 = 1200 \,\mathrm{Hz}$$

Option (D) is correct.

For the given system, output is written as

$$y(t) = \frac{d}{dt}[x(t) + x(t - 0.5)]$$

$$y(t) = \frac{dx(t)}{dt} + \frac{dx(t - 0.5)}{dt}$$

Taking Laplace on both sides of above equation

$$Y(s) = sX(s) + se^{-0.5s}X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = s(1 + e^{-0.5s})$$

$$H(f) = jf(1 + e^{-0.5 \times 2\pi f}) = jf(1 + e^{-\pi f})$$

Power spectral density of output

$$S_Y(f) = |H(f)|^2 S_X(f) = f^2 (1 + e^{-\pi f})^2 S_X(f)$$

For $S_Y(f) = 0$, $1 + e^{-\pi f} = 0$
 $f = (2n+1) f_0$

or

8.29

8.28

Option (C) is correct.

$$\cos(2\pi f_m t)\cos(2\pi f_c t) \longrightarrow \text{DSB suppressed carrier}$$
$$\cos(2\pi f_c t) \longrightarrow \text{Carrier Only}$$
$$\cos[2\pi (f_c + f_m) t] \longrightarrow \text{USB Only}$$
$$+ \cos(2\pi f_m t)\cos(2\pi f_c t)] \longrightarrow \text{USB with carrier}$$

$$[1 + \cos(2\pi f_m t)\cos(2\pi f_c t)] \longrightarrow \text{USB}$$
 with carries

 $f_0 = 1 \,\mathrm{KHz}$

8.30 Option (C) is correct. We have

$$p(X=0) = p(Y=0) = \frac{1}{2}$$
$$p(X=1) = p(Y=1) = \frac{1}{4}$$
$$p(X=2) = p(Y=2) = \frac{1}{4}$$
$$X+Y=2 \longrightarrow A$$

Let and

Now

$$P(X + Y = 2 | X - Y = 0) = \frac{P(A \cap B)}{P(B)}$$

 $P(A \cap B) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$

 $X - Y = 0 \longrightarrow B$

Event $P(A \cap B)$ happen when X + Y = 2 and X - Y = 0. It is only the case when X = 1 and Y = 1.

Thus

Now event P(B) happen when

P(B)

$$X - Y = 0 \text{ It occurs when } X = Y, \text{ i.e.}$$

$$X = 0 \text{ and } Y = 0 \text{ or}$$

$$X = 1 \text{ and } Y = 1 \text{ or}$$

$$X = 2 \text{ and } Y = 2$$

$$P(B) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{6}{16}$$

$$P(A \cap B) = \frac{1}{16} - 1$$

Thus

Now

8.31

The mean is

$$\overline{X} = \Sigma x_i p_i(x)$$

= 1 × 0.1 + 2 × 0.2 + 3 × 0.4 + 4 × 0.2 + 5 × 0.1
= 0.1 + 0.4 + 1.2 + 0.8 + 0.5 = 3.0

6/16 - 6

$$\overline{X^2} = \sum x_i^2 p_i(x)$$

= 1 × 0.1 + 4 × 0.2 + 9 × 0.4 + 16 × 0.2 + 25 × 0.1

 $\sigma_x^2 = \overline{X^2} - (\overline{X})^2$

 $= 10.2 - (3)^2 = 1.2$

$$= 0.1 + 0.8 + 3.6 + 3.2 + 2.5 = 10.2$$

Variance

8

$$m(t) = \frac{1}{2} \cos \omega_1 t - \frac{1}{2} \sin \omega_2 t$$

$$s_{AM}(t) = [1 + m(t)] \cos \omega_c t$$

$$m(t) = \frac{|m(t)|_{\max}}{V_c}$$

$$m = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{\sqrt{2}}$$

$$\eta = \frac{m^2}{m^2 + 2} \times 100\%$$

$$= \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{\left(\frac{1}{\sqrt{2}}\right)^2 + 2} \times 100\% = 20\%$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

8.33 Option (B) is correct.

We have

$$C_1 = B \log_2 \left(1 + \frac{S}{N} \right)$$

$$\approx B \log_2 \left(\frac{S}{N} \right) \qquad \text{As } \frac{S}{N} >> 1$$

If we double the
$$\frac{S}{N}$$
 ratio then

$$C_2 \approx B \log_2\left(\frac{2S}{N}\right)$$
$$\approx B \log_2 2 + B \log_2 \frac{S}{N} \approx B + C_1$$

8.34 Option (C) is correct.

We have
or

$$43.5 = 1.76 + 6n$$

 $6n = 43.5 + 1.76$
 $6n = 41.74 \rightarrow n \approx 7$
No. of quantization level is

 $2^7 = 128$

Step size required is

$$=\frac{V_H - V_L}{128} = \frac{5 - (-5)}{128} = \frac{10}{128}$$

 $= .078125 \approx .0667$

Option (B) is correct.

8.35

For positive values step size

$$s_{+} = 0.05 \text{ V}$$

For negative value step size

$$s_{-} = 0.1 \text{ V}$$

No. of quantization in +ive is

$$= \frac{5}{s_+} = \frac{5}{0.05} = 100$$
$$2^{n+} = 100 \longrightarrow n^+ = 7$$

No. of quantization in -ve

Thus

 $Q_1 = \frac{5}{s} = \frac{5}{0.1} = 50$

Thus

$$2^{n^-} = 50 \longrightarrow n^- = 6$$

 $\left(\frac{S}{N}\right)_+ = 1.76 + 6n^+ = 1.76 + 42 = 43.76 \text{ dB}$
 $\left(\frac{S}{N}\right)_- = 1.76 + 6n^- = 1.76 + 36 = 37.76 \text{ dB}$
 $\left(\frac{S}{N}\right)_0 = 43.76 \text{ dB}$

Best

Option (A) is correct.

8.36

 $egin{aligned} x_{AM}(t) &= A_c \cos \omega_c + 2 \cos \omega_m t \cos \omega_c t \ &= A_C \Big(1 + rac{2}{A_c} \cos \omega_m t \Big) \cos \omega_c t \end{aligned}$

For demodulation by envelope demodulator modulation index must be less than or equal to 1.

Thus

We have

 $\frac{2}{A_c} \le 1$ $A_c \ge 2$

Hence minimum value of $A_c = 2$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

^{8.37} Option (A) is correct. CDF is the integration of PDF. Plot in option (A) is the integration of plot given in question.

8.38 Option (A) is correct. The entropy is

Since

$$p_1 = p_2 = \dots = p_n = \frac{1}{n}$$

 $\frac{N_0}{2} = K$

 $H = \sum_{n=1}^{n} \frac{1}{n} \log n = \log n$

 $H = \sum_{i=1}^{m} p_i \log_2 \frac{1}{n}$ bits

8.39 Option (C) is correct.

PSD of noise is

The 3-dB cut off frequency is

$$f_c = \frac{1}{2\pi RC} \qquad \dots (2)$$

Output noise power is

$$=\frac{N_0}{4RC} = \left(\frac{N_0}{2}\right)\frac{1}{2RC} = K\pi f_c$$

8.40 Option (D) is correct.

At receiving end if we get two zero or three zero then its error. Let p be the probability of 1 bit error, the probability that transmitted bit error is

= Three zero + two zero and single one
=
$${}^{3}C_{3}p^{3} + 3C_{2}p^{2}(1-p)$$

= $p^{3} + p^{2}(1-p)$

8.41 Option (D) is correct. Bandwidth of TDM is

$$=\frac{1}{2}$$
 (sum of Nyquist Rate)

 $=\frac{1}{2}[2W+2W+4W+6W]=7W$

Page 204

Option (B) is correct.
We have
$$\theta_i = 2\pi 10^5 t + 5\sin(2\pi 1500t) + 7.5\sin(2\pi 1000t)$$

 $\omega_i = \frac{d\theta_i}{dt} = 2\pi 10^5 + 10\pi 1500\cos(2\pi 1500t) + 15\pi 1000\cos(2\pi 1000t)$
Maximum frequency deviation is
 $\Delta \omega_{\text{max}} = 2\pi (5 \times 1500 + 7.5 \times 1000)$

$$\Delta f_{\text{max}} = 15000$$

Modulation index is $= \frac{\Delta f_{\text{max}}}{f_m} = \frac{15000}{1500} = 10$

8.43 Option (C) is correct.

8.42

8.44

8.46

8.47

8.50

...(1)

Option (B) is correct.

$$f_m = 4 \text{ KHz}$$

$$f_s = 2f_m = 8 \text{ kHz}$$

Bit Rate $R_b = nf_s = 8 \times 8 = 64$ kbps

The minimum transmission bandwidth is

$$BW = \frac{R_b}{2} = 32 \text{ kHz}$$

8.45 Option (C) is correct.

$$\left(\frac{S_0}{N_0}\right) = 1.76 + 6n \text{ dB}$$

= 1.76 + 6 × 8 = 49.76 dB We have $n = 8$

Option (B) is correct.

As Noise
$$\propto \frac{1}{L^2}$$

To reduce quantization noise by factor 4, quantization level must be two times i.e. 2L.

Now
$$L = 2^n = 2^8 = 256$$

Thus $2L = 512$

Option (C) is correct.

Autocorrelation is even function.

8.48 Option (B) is correct.

Power spectral density is non negative. Thus it is always zero or greater than zero.

The variance of a random variable x is given by

$$E[X^2] - E^2[X]$$

Option (A) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

A Hilbert transformer is a non-linear system.

8.51 Option (D) is correct.

Slope overload distortion can be reduced by increasing the step size

$$\frac{\Delta}{T_{i}} \ge$$
 slope of $x(t)$

Option (C) is correct.

We have
$$p(t) = \frac{\sin(4\pi Wt)}{4\pi Wt(1 - 16 W^2 t^2)}$$

at $t = \frac{1}{4W}$ it is $\frac{0}{0}$ form. Thus applying L' Hospital rule
$$p^{(\frac{1}{4W})} = \frac{4\pi W\cos(4\pi Wt)}{4\pi W[1 - 48 W^2 t^2]}$$

$$=\frac{\cos\left(4\pi\,Wt\right)}{1-48\,W^2t^2}=\frac{\cos\pi}{1-3}=0.5$$

8.53 Option (B) is correct. The block diagram is as shown below

Here

$$M_{1}(f) = \hat{M}(f)$$

$$Y_{1}(f) = M(f) \left(\frac{e^{j2\pi B} + e^{-j2\pi B}}{2} \right)$$

$$Y_{2}(f) = M_{1}(f) \left(\frac{e^{j2\pi B} - e^{-j2\pi B}}{2} \right)$$

$$Y(f) = Y_{1}(f) + Y_{2}(f)$$

All waveform is shown below

8.54 Option (C) is correct.

By Binomial distribution the probability of error is

$$p_e = {}^n C_r p^r (1-p)^n$$

Probability of at most one error

Probability of no error + Probability of one error

$$a^{n} C_{0} p^{0} (1-p)^{n-0} + {}^{n} C_{1} p^{1} (1-p)^{n-1}$$

$$= C_0 p (1-p)^n + C_1 p (1-p)^{n-1}$$
$$= (1-p)^n + np(1-p)^{n-1}$$

Option (B) is correct. Bandwidth allocated for 1 Channel = 5 M Hz

Average bandwidth for 1 Channel
$$\frac{5}{5} = 1$$
 MHz

Total Number of Simultaneously Channel $=\frac{1M \times 8}{200k} = 40$ Channel

8.56 Option (A) is correct.

8.55

Chip Rate
$$R_C = 1.2288 \times 10^6$$
 chips/sec
Data Rate $R_b = \frac{R_C}{G}$

Since the processing gain G must be at least 100, thus for G_{\min} we get

$$R_{b\max} = \frac{R_C}{G_{\min}} = \frac{1.2288 \times 10^6}{100} = 12.288 \times 10^3 \text{ bps}$$

8.57 Option (B) is correct. Energy of constellation 1 is

$$E_{g1}$$

$$= (0)^{2} + (-\sqrt{2} a)^{2} + (-\sqrt{2} a)^{2} + (\sqrt{2} a)^{2} + (-2\sqrt{2} a)^{2}$$

$$= 2a^{2} + 2a^{2} + 2a^{2} + 8a^{2} = 16a^{2}$$

Energy of constellation 2 is

$$E_{g2} = a^{2} + a^{2} + a^{2} + a^{2} = 4a^{2}$$

Ratio = $\frac{E_{g1}}{E_{g2}} = \frac{16a^{2}}{4a^{2}} = 4$

8.58 Option (A) is correct.

Noise Power is same for both which is
$$\frac{N_0}{2}$$
.

Thus probability of error will be lower for the constellation 1 as it has higher signal energy.

8.59 Option (A) is correct.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Area under the pdf curve must be unity

$$2a + 4a + 4b = 1$$
$$2a + 8b = 1$$

$$2a + 8b = 1 \qquad \dots(1)$$

For maximum entropy three region must by equivaprobable thus

2a = 4b = 4b

From
$$(1)$$
 and (2) we get

$$b = \frac{1}{12}$$
 and $a = \frac{1}{6}$

8.60 Option (*) is correct.

Thus

i.e.

8.61

8.62

Option (B) is correct. A LPF will not produce phase distortion if phase varies linearly with frequency.

$$\begin{aligned} \phi(\omega) & \propto \omega \\ \phi(\omega) &= k\omega \end{aligned}$$

 $\varphi($

Option (B) is correct.

Let m(t) is a low pass signal, whose frequency spectra is shown below

Fourier transform of g(t)

$$G(t) = \frac{1}{0.5 \times 10^{-4}} \sum_{k=-\infty}^{\infty} \delta(f - 20 \times 10^{3} k)$$

Spectrum of G(f) is shown below

...(2)

$$=\frac{3}{2}\times3000 = 4500$$
 bits/sec

 $= 0.25 \log_2 4 + 0.25 \log_2 4 + 0.5 \log_2 2$

 $= 0.5 + 0.5 + \frac{1}{2} = \frac{3}{2}$ bits/symbol

Now when m(t) is sampled with above signal the spectrum of sampled signal will look like.

When sampled signal is passed through a LP filter of BW 1 kHz, only m(t) will remain.

8.63 Option (C) is correct.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

The highest frequency signal in x(t) is $1000 \times 3 = 3$ kHz if expression is expanded. Thus minimum frequency requirement is

$$f = 2 \times 3 \times 10^3 = 6 \times 10^3 \text{ Hz}$$

8.64 Option (B) is correct.

We have

 $\begin{aligned} x(t) &= 125t[u(t)-u(t-1)] + (250-125t)[u(t-1)-u(t-2)] \\ \text{The slope of expression } x(t) \text{ is } 125 \text{ and sampling frequency } f_s \text{ is} \\ 32 \times 1000 \text{ samples/sec.} \end{aligned}$

Let Δ be the step size, then to avoid slope overload

$$\frac{\Delta}{T_s} \ge \text{slope } x(t)$$
$$\Delta f_s \ge \text{slope } x(t)$$
$$\Delta \times 32000 \ge 125$$
$$\Delta \ge \frac{125}{32000}$$
$$\Delta = 2^{-8}$$

8.65 Option (A) is correct.

The sampling frequency is

$$f_s = \frac{1}{0.03 \text{m}} = 33 \text{ kHz}$$

Since $f_s \ge 2f_m$, the signal can be recovered and are correlated.

8.66 Option (B) is correct.

We have $p_1 = 0.25$, $p_2 = 0.25$ and $p_3 = 0.5$

$$H = \sum_{i=1}^{3} p_1 \log_2 \frac{1}{p_1} \text{ bits/symbol}$$
$$= p_1 \log_2 \frac{1}{p_1} + p_2 \log_2 \frac{1}{p_2} + p_3 \log_2 \frac{1}{p_3}$$

$$= 0.25 \log_2 \frac{1}{0.25} + 0.25 \log_2 \frac{1}{0.25} + 0.5 \log_2 \frac{1}{0.5}$$

Option (A) is correct.

The diagonal clipping in AM using envelop detector can be avoided if

 $= R_b H$

 $R_b = 3000$ symbol/sec

$$\frac{1}{\omega_c} << RC < \frac{1}{W}$$
$$\frac{1}{RC} \ge \frac{W\mu\sin Wt}{1+\mu\cos Wt}$$

We can say that RC depends on W, thus

$$RC < \frac{1}{W}$$

Option (B) is correct.

Option (B) is correct.

But from

8.68

8.69

8.70

When $\Delta/2$ is added to y(t) then signal will move to next quantization level. Otherwise if they have step size less than $\frac{\Delta}{2}$ then they will be on the same quantization level.

Option (C) is correct.

After the SSB modulation the frequency of signal will be $f_c - f_m$ i.e. 1000 - 10 kHz \approx 1000 kHz

The bandwidth of FM is

$$BW = 2\left(\beta + 1\right) \Delta f$$

p(t) = u(t) - u(t-1)

For
$$NBFM\beta \ll 1$$
, thus

$$BW_{NBFM} \approx 2 \bigtriangleup f = 2(10^9 - 10^6) \approx 2 \times 10^9$$

8.71 Option (A) is correct.

 $g(t) = p(t)^* p(t)$

$$g(t) = g(t) - \delta(t-2)^* \ g(t) = g(t) - g(t-2)$$

All signal are shown in figure below :

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

The impulse response of matched filter is

$$h(t) = s(T-t) = s(1-t)$$

Here T is the time where output SNR is maximum.

8.72 Option (A) is correct.

We have $x_{AM}(t) = 10 [P(t) + 0.5g(t)] \cos \omega_c t$ where p(t) = u(t) - u(t-1)and g(t) = r(t) - 2r(t-1) + r(t-2)For desired interval $0 \le t \le 1$, p(t) = 1 and g(t) = t, Thus we have,

$$x_{AM}(t) = 100(1 - 0.5t)\cos\omega_c t$$

Page 207

Hence modulation index is 0.5

Option (A) is correct. 8.73

> We know that $S_{YY}(\omega) = |H(\omega)|^2 \cdot S_{XX}(\omega)$ Now $S_{YY}(\omega) = \frac{16}{16 + \omega^2}$ and $S_{XX}(\omega) = 1$ white noise

Thus

$$\frac{16}{16+\omega^2} = |H(\omega)|^2$$
$$|H(\omega)| = \frac{4}{\sqrt{16+\omega^2}}$$

or

or

$$16 + \omega^{2}$$

$$|H(\omega)| = \frac{4}{\sqrt{16 + \omega^{2}}}$$

$$H(s) = \frac{4}{4 + s}$$

which is a first order low pass RL filter.

Option (A) is correct. 8.74

8.75

We have

or

 $\frac{\frac{R}{L}}{\frac{R}{L}+s} = \frac{4}{4+s}$ Comparing we get L = 1 H and $R = 4\Omega$

Option (C) is correct.

We have
$$x_{AM}(t) = 10(1 + 0.5 \sin 2\pi f_m t) \cos 2\pi f_c t$$

The modulation index is 0.5

 $P_c = \frac{(10)^2}{2} = 50$

 $P_s = \frac{(10)^2}{2} = 50$

 $\frac{R}{R+sL} = \frac{4}{4+s}$

Carrier power

Side band power

Side band power

Mean noise power = Area under the PSD curve $=4\left[\frac{1}{2}\times B\times \frac{N_o}{2}\right]=BN_o$

 $P_s = \frac{m^2 P_c}{2} = \frac{(0.5)^2 (50)}{2} = 6.25$

The ratio of average sideband power to mean noise power is $\frac{\text{Side Band Power}}{\text{Noise Power}} = \frac{6.25}{N_0 B} = \frac{25}{4N_o B}$

Option (D) is correct. 8.77

> $\{1 + km(t)\}A\sin(\omega_c t) \longrightarrow \text{Amplitude modulation}$ $dm(t) A_{\sin}(\omega_c t) \longrightarrow \text{DSB-SC}$ modulation $A\sin\{\cos t + km(t)\} \longrightarrow$ Phase Modulation $A\sin[\omega_c^t + k]_{-\infty}^t m(t) dt \longrightarrow$ Frequency Modulation

Option (C) is correct. 8.78

> $VSB \longrightarrow f_m + f_c$ DSB - SC $\rightarrow 2f_m$ $SSB \longrightarrow f_m$ $AM \longrightarrow 2f_m$

Thus SSB has minimum bandwidth and it require minimum power.

Option (A) is correct. 8.79

> Let x(t) be the input signal where (1)(1) 0

$$x(t) = \cos\left(\cos t + \beta_1 \cos \omega_m t\right)$$

$$y(t) = x^2(t) = \frac{1}{2} + \frac{\cos\left(2\omega_c t + 2\beta_1 \cos \omega_m t\right)}{2}$$

 $\wedge f$

00

Here

$$\beta = 2\beta_1 \text{ and } \beta_1 = \frac{\Delta f}{f_m} = \frac{90}{5} = 18$$

 $BW = 2(\beta + 1)f_m = 2(2 \times 18 + 1) \times 5 = 370 \text{ kHz}$

Option (C) is correct. 8.80

The transfer function of matched filter is

$$h(t) = x(t - t) = x(2 - t)$$

The output of matched filter is the convolution of x(t) and h(t) as shown below

Option (B) is correct. 8.81

We have

$$egin{aligned} H(f) &= 2 \, e^{-j\omega t_d} \ &|\, H(f)| &= 2 \ &G_0(f) &= |\, H(f)|^2 \, G_i(f) \end{aligned}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

 $=4N_o$ W/Hz

 $=4N_o \times B$

www.nodia.co.in

8.82 Option (C) is correct.

As the area under pdf curve must be unity

$$\frac{1}{2}(4 \times k) = 1 \longrightarrow k = \frac{1}{2}$$

Now mean square value is

$$\begin{aligned} \sigma_v^2 &= \int_{-\infty}^{+\infty} v^2 p(v) \, dv \\ &= \int_0^4 v^2 \left(\frac{v}{8}\right) dv \qquad \text{as } p(v) = \frac{1}{8} v \\ &= \int_0^4 \left(\frac{v^3}{8}\right) dv = 8 \end{aligned}$$

8.83 Option (D) is correct.

The phase deviation is

$$\beta = \frac{\Delta f}{f_m} = \frac{10}{1} = 10$$

If phase deviation remain same and modulating frequency is changed

$$BW = 2(\beta + 1)f'_m = 2(10 + 1)2 = 44 \text{ kHz}$$

Option (B) is correct.

As the area under pdf curve must be unity and all three region are equivaprobable. Thus are under each region must be $\frac{1}{3}$.

$$2a \times \frac{1}{4} = \frac{1}{3} \longrightarrow a = \frac{2}{3}$$

Option (A) is correct. 8.85

8.84

$$N_q = \int_{-a}^{+a} x^2 p(x) \, dx = 2 \int_{0}^{a} x^2 \cdot \frac{1}{4} \, dx = \frac{1}{2} \left[\frac{x^3}{3} \right]_{0}^{a} = \frac{a^3}{6}$$

Substituting $a = \frac{2}{3}$ we have

$$N_q = \frac{4}{81}$$

8.86 Option (C) is correct. When word length is 6

$$\left(\frac{S}{N}\right)_{\!\!N=6}=2^{2\times 6}=2^{12}$$

When word length is 8

$$\left(\frac{S}{N}\right)_{N=8} = 2^{2\times8} = 2^{16}$$

Now

v
$$\frac{\left(\frac{S}{N}\right)_{N=8}}{\left(\frac{S}{N}\right)_{N=6}} = \frac{2^{16}}{2^{12}} = 2^4 = 16$$

Thus it improves by a factor of 16.

8.87 Option (B) is correct.

Carrier frequency $f_c = 1 \times 10^6 \text{ Hz}$ Modulating frequency

 $f_m = 2 \times 10^3 \text{ Hz}$

For an envelope detector

$$2\pi f_c > \frac{1}{Rc} > 2\pi f_m$$
$$\frac{1}{2\pi f_c} < RC < \frac{1}{2\pi f_m}$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$\begin{aligned} \frac{1}{2\pi f_c} < RC < \frac{1}{2\pi f_m} \\ \frac{1}{2\pi 10^6} < RC < \frac{1}{2\times 10^3} \\ 1.59\times 10^{-7} < RC < 7.96\times 10^{-5} \end{aligned}$$

so, $20 \ \mu sec$ sec best lies in this interval.

8.88 Option (B) is correct.

 $S_{AM}(t) = A_c [1 + 0.1 \cos \omega_m t] \cos \omega_m t$ $s_{NBFM}(t) = A_c \cos [\omega_c t + 0.1 \sin \omega_m t]$ $s(t) = S_{AM}(t) + S_{NB} f_m(t)$

$$= A_c [1 + 0.1 \cos \omega_m t] \cos \omega_c t + A_c \cos (\omega_c t + 0.1 \sin \omega_m t)$$
$$= A_c \cos \omega_c t + A_c 0.1 \cos \omega_m t \cos \omega_c t$$

$$+A_c \cos \omega_c t \cos \left(0.1 \sin \omega_m t\right) - A_c \sin \omega_c t \sin \left(0.1 \sin \omega_m t\right)$$

As
$$0.1 \sin \omega_m t \approx +0.1 \text{ to } -0.1$$

so,
$$\cos \left(0.1 \sin \omega_m t\right) \approx 1$$

As when θ is small $\cos \theta \approx 1$ and $\sin \theta \cong \theta$, thus

$$\sin\left(0.1\sin\omega_{m}t\right)$$

$$= 0.1 \operatorname{sincos} \omega_c t \cos \omega_m t + A_c \cos \omega_c t$$

$$= \underbrace{2A_c \cos \omega_c t}_{\text{cosec}} + \underbrace{0.1A_c \cos \left(\omega_c + \omega_m\right) t}_{USB}$$

Thus it is SSB with carrier.

Option (A) is correct.

8.89

Consecutive pulses are of same polarity when modulator is in slope overload.

Consecutive pulses are of opposite polarity when the input is constant.

8.90 Option
$$(D)$$
 is correct.

or

$$F(x_1 \le X < x_2) = p(X = x_2) - P(X = x_1)$$

$$P(X = 1) = P(X = 1^+) - P(X = 1^-)$$

$$= 0.55 - 0.25 = 0.30$$

8.91 Option (A) is correct. The SNR at transmitter is

$$SNR_{tr} = \frac{\Gamma_{tr}}{\mathbb{N}B}$$

$$10^{-3} = 10^9$$

$$\frac{10^{-20} \times 100 \times 10^6}{10^{-20} \times 100 \times 10^6} = 10$$

In dB $SNR_{tr} = 10 \log 10^9 = 90 \text{ dB}$ Cable Loss = 40 db

At receiver after cable loss we have

$$SNR_{Bc} = 90 - 40 = 50 \text{ dB}$$

Option (B) is correct. The impulse response of matched filter is

8.92

8.93

h(t) = x(T-t)

Since here T = 4, thus

$$h(t) = x(4-t)$$

The graph of h(t) is as shown below.

From graph it may be easily seen that slope between 3 < t < 4 is -1.

Option (C) is correct.

The required bandwidth of M array PSK is

$$BW = \frac{2R_b}{n}$$

where $2^n = M$ and R_b is bit rate For BPSK, $M = 2 = 2^n \longrightarrow n = 1$

I OF DI SII,	
Thus	$B_1 = \frac{2R_b}{1} = 2 \times 10 = 20 \text{ kHz}$
For QPSK,	$M = 4 = 2^n \longrightarrow n = 2$
Thus	$B_2 = \frac{2R_b}{2} = 10 \text{ kHz}$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

8.94 Option (C) is correct.

We have

MHz

 $f_c = 100 \text{ MHz} = 100 \times 10^6 \text{ and } f_m = 1$

$$= 1 \times 10^{6}$$

The output of balanced modulator is

$$\begin{split} V_{BM}(t) &= [\cos \omega_c t] [\cos \omega_c t] \\ &= \frac{1}{2} [\cos \left(\omega_c + \omega_m\right) t + \cos \left(\omega_c - \omega_m\right) t] \end{split}$$

If $V_{BM}(t)$ is passed through HPF of cut off frequency $f_{H} = 100 \times 10^{6}$, then only $(\omega_{c} + \omega_{m})$ passes and output of HPF is

$$V_{HP}(t) = rac{1}{2} \cos\left(\omega_c + \omega_m
ight) t$$

Now

$$V_0(t) = V_{HP}(t) + \sin(2\pi \times 100 \times 10^6) t$$

t

8.97

$$= \frac{1}{2} \cos \left[2\pi 100 \times 10^6 + 2\pi \times 1 \times 10^6 t \right] + \sin \left(2\pi \times 100 \times 10^6 \right) t$$
$$= \frac{1}{2} \cos \left[2\pi 10^8 + 2\pi 10^6 t \right] + \sin \left(2\pi 10^8 \right)$$

 $=\frac{1}{2}\left[\cos\left(2\pi 10^8 t\right)t\cos\left(2\pi 10^6 t\right)\right] - \sin\left[2\pi 10^8 t\sin\left(2\pi 10^6 t\right) + \sin 2\pi 10^8 t\right]$

 $=\frac{1}{2}\cos(2\pi 10^{6}t)\cos 2\pi 10^{8}t + \left(1 - \frac{1}{2}\sin 2\pi 10^{6}t\right)\sin 2\pi 10^{8}t$

This signal is in form

 $= A\cos 2\pi 10^8 t + B\sin 2\pi 10^8 t$ Now

GATE **ELECTRONICS & COMMUNICATION**

by **RK Kanodia & Ashish Murolia** in 3 Volumes

Fully Revised

Every Unit Contain All Questions of Last 15 Year Papers Purchase from Nodia Online Store at Maximum Discount with from Shipping

The envelope of this signal is

$$=\sqrt{A^2+B^2}$$

$$= \sqrt{\left(\frac{1}{2}\cos\left(2\pi 10^{6}t\right)\right)^{2} + \left(1 - \frac{1}{2}\sin\left(2\pi 10^{6}t\right)^{2}}$$
$$= \sqrt{\frac{1}{4}\cos^{2}(2\pi 10^{6}t) + 1 + \frac{1}{4}\sin^{2}(2\pi 10^{6}t) - \sin\left(2\pi 10^{6}t\right)}$$
$$= \sqrt{\frac{1}{4} + 1 - \sin\left(2\pi 10^{6}t\right)}$$
$$= \sqrt{\frac{5}{4} - \sin\left(2\pi 10^{6}t\right)}$$

Option (A) is correct. 8.95

s(t)

$$= A \cos [2\pi 10 \times 10^{3} t] + A \cos [2\pi 10.1 \times 10^{3} t]$$
Here
$$T_{1} = \frac{1}{10 \times 10^{3}} = 100 \mu \sec$$
and
$$T_{2} = \frac{1}{10.1 \times 10^{3}} = 99 \mu \sec$$
Period of added signal will be LCM $[T_{1}, T_{2}]$
Thus
$$T = LCM[100, 99] = 9900 \mu \sec$$
Thus frequency
$$f = \frac{1}{9900\mu} = 0.1 \text{ kHz}$$

Option (A) is correct.

8.96

The pdf of transmission of 0 and 1 will be as shown below :

Probability of error of 1 $P(0 \le X \le 0.2) = 0.2$ Probability of error of 0: $P(0.2 \le X \le 0.25) = 0.05 \times 2 = 0.1$ Average error = $\frac{P(0 \le X \le 0.2) + P(0.2 \le X \le 0.25)}{2}$

Option (B) is correct. The square mean value is

> $\sigma^2 = \int_{-\infty}^{\infty} (x - x_q)^2 f(x) \, dx$ $=\int_0^1 (x-x_q)^2 f(x) \, dx$

 $=\frac{0.2+0.1}{0}=0.15$

$$= \int_0^{0.3} (x-0)^2 f(x) \, dx + \int_{0.3}^{0.1} (x-0.7)^2 f(x) \, dx$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

$$= \left[\frac{x^3}{3}\right]_0^{0.3} + \left[\frac{x^3}{3} + 0.49x - 14\frac{x^2}{2}\right]_{0.3}^1$$

$$\sigma^2 = 0.039$$

RMS = $\sqrt{\sigma^2} = \sqrt{0.039} = 0.198$

Option (C) is correct. 8.98

> $FM \longrightarrow Capture effect$ $DM \longrightarrow Slope over load$ $PSK \longrightarrow Matched filter$

$$PCM \longrightarrow \mu - law$$

Option (C) is correct. 8.99

> Since $f_s = 2f_m$, the signal frequency and sampling frequency are as follows

- $f_{m1} = 1200 \text{ Hz} \longrightarrow 2400 \text{ samples per sec}$
 - $f_{m2} = 600 \text{ Hz} \longrightarrow 1200 \text{ samples per sec}$

$$f_{m3} = 600 \text{ Hz} \longrightarrow 1200 \text{ samples per sec}$$

Thus by time division multiplexing total 4800 samples per second will be sent. Since each sample require 12 bit, total 4800×12 bits per second will be sent

Thus bit rate $R_b = 4800 \times 12 = 57.6$ kbps

Option (B) is correct. 8.100

> The input signal X(f) has the peak at 1 kHz and -1 kHz. After balanced modulator the output will have peak at $f_c \pm 1$ kHz i.e.:

$$10 \pm 1 \longrightarrow 11$$
 and 9 kHz

$$10 \pm (-1) \longrightarrow 9$$
 and 11 kHz

9 kHz will be filtered out by HPF of 10 kHz. Thus 11 kHz will remain. After passing through 13 kHz balanced modulator signal will have 13 ± 11 kHz signal i.e. 2 and 24 kHz.

Thus peak of Y(f) are at 2 kHz and 24 kHz.

10 + 1

or

Option (A) is correct. 8.101

> The input is a coherent detector is DSB - SC signal plus noise. The noise at the detector output is the in-phase component as the quadrature component $n_n(t)$ of the noise n(t) is completely rejected by the detector.

Option (C) is correct. 8.102

> The noise at the input to an ideal frequency detector is white. The PSD of noise at the output is parabolic

Option (B) is correct. 8.103

We h

have
$$P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_d}{2\eta}}\right)$$

Since P_e of Binary FSK is 3 dB inferior to binary PSK

Option (D) is correct. 8.104 The pdf of Z will be convolution of pdf of X and pdf of Y as shown below.

Now

$$p[Z \le z] = \int_{-\infty}^{z} f_Z(z) dz$$
$$p[Z \le -2] = \int_{-\infty}^{-2} f_Z(z) dz$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$= \text{Area} [z \le -2]$$
$$= \frac{1}{2} \times \frac{1}{6} \times 1 = \frac{1}{12}$$

Option (D) is correct. 8.105

> $R_{XX}(\tau) = 4(e^{-0.2|\tau|} + 1)$ We have $R_{XX}(0) = 4(e^{-0.2|0|} + 1) = 8 = \sigma^2$ $\sigma = 2\sqrt{2}$ or $\mu = 0$ mean $P(x \le 1) = F_r(1)$ Now

$$= 1 - Q\left(\frac{X-\mu}{\sigma}\right) \quad \text{at } x = 1$$
$$= 1 - Q\left(\frac{1-0}{2\sqrt{2}}\right) = 1 - Q\left(\frac{1}{2\sqrt{2}}\right)$$

Option (C) is correct. 8.106

$$E[X^{2}(t)] = R_{x}(10)$$

= 4 [e^{-0.2|0|} + 1] = 4 [1 + 1] = 8
$$E[Y^{2}] = E[X^{2}(2)] = 8$$

$$E[Z^{2}] = E[X^{2}(4)] = 8$$

$$E[YZ] = R_{XX}(2) = 4 [e^{-0.2(4-2)} + 1] = 6.68$$

$$E[W^{2}] = \sigma_{w}^{2} = 8 + 8 - 2 \times 6.68 = 2.64$$

 $E[W^{2}] = E[Y - Z]^{2} = E[Y^{2}] + E[Z^{2}] - 2E[YZ]$ $= \sigma_{w}^{2}$

Option (C) is correct. 8.107

Step size
$$\delta = \frac{2m_p}{L} = \frac{1.536}{128} = 0.012 \text{ V}$$

Quantization Noise power $= \frac{\delta^2}{12} = \frac{(0.012)^2}{12}$
 $= 12 \times 10^{-6} V^2$

W = Y - Z

Option (D) is correct.

8.108

$$f \frac{1}{10^{-3}} = 1 \text{ k Hz}$$

The Fourier Series coefficient of given pulse train is

$$egin{aligned} C_n &= rac{1}{T_o} \int_{-T_o/2}^{-T_o/2} A \, e^{-jn\omega_o t} \, dt \ &= rac{1}{T_o} \int_{-T_o/6}^{-T_o/6} A \, e^{-jn\omega_o t} \, dt \ &= rac{A}{T_o(-j\eta\omega_o)} [e^{-j\omega_o t}]_{-T_o/6}^{-T_o/6} \ &= rac{A}{(-j2\pi n)} (e^{-j\omega_o t} - e^{j\eta\omega_o T_o/6}) \ &= rac{A}{j2\pi n} (e^{j\eta\pi/3} - e^{-j\eta\pi/3}) \ C_n &= rac{A}{\pi n} \sin inom{n\pi}{3} \end{pmatrix} \end{aligned}$$

or

8.109

Given

From C_n it may be easily seen that 1,2,4,5,7, harmonics are present and $0, 3, 6, 9, \dots$ are absent. Thus p(t) has 1 kHz, 2 kHz, 4 kHz, 5 kHz, $7~\mathrm{kHz}, \ldots$ frequency component and $3~\mathrm{kHz},\, 6~\mathrm{kHz}..$ are absent. The signal x(t) has the frequency components 0.4 kHz and 0.7 kHz. The sampled signal of x(t) i.e. $x(t)^* p(t)$ will have

> 1 ± 0.4 and 1 ± 0.7 kHz 2 ± 0.4 and 2 ± 0.7 kHz 4 ± 0.4 and 4 ± 0.7 kHz

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Thus in range of 2.5 kHz to 3.5 kHz the frequency present is 2 + 0.7 = 2.7 kHz 4 - 0.7 = 3.3 kHzOption (C) is correct. $v_i = A_c^1 \cos\left(2\pi f_c t\right) + m(t)$

$$v_0 = a_o v_i + a v_i^3$$

$$v_0$$

$$= a_0 [A'_c \cos(2\pi f'_c t) + m(t)] + a_1 [A'_c \cos(2\pi f'_c t) + m(t)]^3$$

 $= a_0 A'_c \cos(2\pi f'_c t) + a_0 m(t) + a_1 [(A'_c \cos 2\pi f'_c t)^3]$

+
$$(A'_c \cos(2\pi f'_c)t)^2 m(t) + 3A'_c \cos(2\pi f'_c t)m^2(t) + m^3(t)]$$

$$= a_0 A'_c \cos(2\pi f'_c t) + a_0 m(t) + a_1 (A'_c \cos 2f'_c t)^3 + 3a_1 A'^2_c \Big[\frac{1 + \cos(4\pi f_c t)}{2} \Big] m(t) = 3a_1 A'_c \cos(2\pi f'_c t) m^2(t) + m^3(t)$$

The term $2a_1 A'_c (\cos 4\pi f_c t) m(t)$ is a DSR SC simple basis a corrigin

The term $3a_1A_c(\frac{\cos 4\pi f_c \cdot}{2})m(t)$ is a DSB-SC signal having carrier frequency 1. MHz. Thus $2f'_c = 1$ MHz or $f'_c = 0.5$ MHz

8.110 Option (D) is correct.

$$P_T = P_c \left(1 + \frac{\alpha^2}{2} \right)$$
$$P_{sb} = \frac{P_c \alpha^2}{2} = \frac{P_c (0.5)^2}{2}$$
$$\frac{P_{sb}}{P_c} = \frac{1}{8}$$

or

8.111

Option (D) is correct.

AM Band width $= 2f_m$

Peak frequency deviation $= 3(2f_m) = 6f_m$

Modulation index
$$\beta = \frac{\delta_{m}}{f_{m}} = 0$$

The FM signal is represented in terms of Bessel function as

$$x_{FM}(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos(\omega_c - n\omega_n) t$$
$$\omega_c + n\omega_m = 2\pi (1008 \times 10^3)$$
$$0^6 + n4\pi \times 10^3 = 2\pi (1008 \times 10^3), n = 4$$

 $2\pi 10^6 + n4\pi \times 1$ Thus coefficient = $5J_4(6)$

8.112 Option (B) is correct.

Ring modulation
$$\rightarrow$$
 Generation of DSB - SC
 $VCO \rightarrow$ Generation of FM
Foster seely discriminator \rightarrow Demodulation of fm
mixer \rightarrow frequency conversion

8.113 Option (A) is correct.

 $f_{\text{max}} = 1650 + 450 = 2100 \text{ kHz}$ $f_{\text{min}} = 550 + 450 = 1000 \text{ kHz}$

or

 $f = \frac{1}{2\pi\sqrt{LC}}$

frequency is minimum, capacitance will be maximum

$$R = \frac{C_{\text{max}}}{C_{\text{min}}} = \frac{f_{\text{max}}^2}{f_{\text{min}}^2} = (2.1)^2$$
$$R = 4.41$$

or

$$f_{i} = f_{c} + 2f_{IF} = 700 + 2(455) = 1600 \text{ kHz}$$

8.114 Option (D) is correct.

$$E_b = 10^{-6} \text{ watt-sec}$$

$$N_o = 10^{-5} \text{ W/Hz}$$
SNR) matched filler $= \frac{E_o}{\frac{N_o}{2}} = \frac{10^6}{2 \times 10^{-5}} = .05$
(SNR) $dB = 10 \log 10 (0.05) = 13 \text{ dB}$

For slopeoverload to take place
$$E_m \ge \frac{\Delta f_s}{2\pi f_m}$$

This is satisfied with $E_m = 1.5$ V and $f_m = 4$ kH

This is satisfied with
$$E_m = 1.5$$
 V and $f_m = 4$ kHz

8.116 Option (A) is correct.

If

 $s \rightarrow$ carrier synchronization at receiver $\rho \rightarrow$ represents bandwidth efficiency

then for coherent binary PSK
$$\rho = 0.5$$
 and s is required.

Option (B) is correct.

8.117

Bit Rate =
$$8k \times 8 = 64$$
 kbps
(SNR) $q = 1.76 + 6.02n$ dB

$$= 1.76 + 6.02 \times 8 = 49.8 \text{ dB}$$

8.118 Option (C) is correct.

The frequency of message signal is

$$f_c = 1000 \text{ kHz}$$

1 The frequency of message signal is

$$f_m = \frac{1}{100 \times 10^{-6}} = 10 \text{ kHz}$$

Here message signal is symmetrical square wave whose FS has only odd harmonics i.e. 10 kHz, 30 kHz 50 kHz. Modulated signal contain $f_c \pm f_m$ frequency component. Thus modulated signal has

- $f_c \pm f_m = (1000 \pm 10) \text{ kH} = 1010 \text{ kHz}, 990 \text{ kHz}$
- $f_c \pm 3f_m = (1000 \pm 10) \text{ kH} = 1030 \text{ kHz}, 970 \text{ kHz}$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

www.nodia.co.in

Thus, there is no 1020 kHz component in modulated signal. 8.119 Option (C) is correct.

We have

$$x(t) = 10\cos\left(8\pi \times 10^3\right)t$$

 $y(t) = 5 \times 10^{-6} x(t) \sum_{s=1}^{+\infty} \delta(t - nT_s)$

$$T_s = 100 \mu \sec$$

The cut off f_c of LPF is 5 kHz

We know that for the output of filter

$$= \frac{x(t) y(t)}{T_s}$$

= $\frac{10 \cos(8\pi \times 10^3) t \times 5 \times 10^{-6}}{100 \times 10^{-6}}$
= $5 \times 10^{-1} \cos(8\pi \times 10^3) t$

Option (C) is correct. Transmitted frequencies in coherent BFSK should be integral of bit rate 8 kHz.

8.121 Option (B) is correct.

8.120

For best reception, if transmitting waves are vertically polarized, then receiver should also be vertically polarized i.e. transmitter and receiver must be in same polarization.

8.122 Option (D) is correct.

$$s(t) = \cos 2\pi (2 \times 10^6 t + 30 \sin 150 t + 40 \cos 150 t)$$
$$= \cos \{4\pi 10^6 t + 100\pi \sin (150 t + \theta)\}$$

Angle modulated signal is

 $s(t) = A\cos\{\omega_c t + \beta\sin(\omega_m t + \theta)\}$

Phase deviations $\beta = 100\pi$

Frequency deviations

$$\Delta f = \beta f_m = 100\pi \times \frac{150}{2\pi} = 7.5 \text{ kHz}$$

Page 212

Option (*) is correct.
We have

$$m(t) s(t) = y_1(t)$$

 $= \frac{2 \sin (2\pi t) \cos (200\pi t)}{t}$
 $= \frac{\sin (202\pi t) - \sin (198\pi t)}{t}$
 $y_1(t) + n(t)$
 $= y_2(t) = \frac{\sin 202\pi t - \sin 198\pi t}{t} + \frac{\sin 199\pi t}{t}$
 $y_2(t) s(t) = u(t)$

 $\frac{\left[\sin 202\pi t - \sin 198\pi t + \sin 199\pi t\right]\cos 200\pi t}{t}$

$$= \frac{1}{2} [\sin (402\pi t) + \sin (2\pi t) - \{\sin (398\pi t) - \sin (2\pi t)\}\]$$

 $+\sin\left(399\pi t\right) - \sin\left(\pi t\right)]$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

After filtering

8.123

We

 $y(t) = \frac{\sin(2\pi t) + \sin(2\pi t) - \sin(\pi t)}{2t}$ $= \frac{\sin(2\pi t) + 2\sin(0.5t)\cos(1.5\pi t)}{\frac{2t}{2t}}$ $= \frac{\sin 2\pi t}{2t} + \frac{\sin 0.5\pi t}{t}\cos 1.5\pi t$

Option (B) is correct. 8.124

The signal frequency is

 $f_m = \frac{24\pi 10^3}{2\pi} = 12 \text{ kHz}$ $T_s = 50\mu \sec \rightarrow f_s = \frac{1}{T_s} = \frac{1}{50} \times 10^6 = 20$

kHz

After sampling signal will have $f_s \pm f_m$ frequency component i.e. 32 and 12 kHz

At filter output only 8 kHz will be present as cutoff frequency is 15 kHz.

Option (A) is correct. 8.125

$$d(n) = x(n) - x(n-1)$$

$$E[d(n)]^2 = E[x(n) - x(n-1)]^2$$
or
$$E[d(n)]^2$$

$$= E[x(n)]^2 + E[x(n-1)]^2 - 2E[x(n)x(n-1)]$$
or
$$\sigma_d^2 = \sigma_x^2 + \sigma_x^2 - 2R_{xx}(1)$$
as $k = 1$
As we have been given $\sigma_d^2 = \frac{\sigma_x^2}{10}$, therefore
$$\frac{\sigma_x^2}{10} = \sigma_x^2 + \sigma_x^2 - 2R_{xx}(1)$$

or

$$2R_{xx}(1) = \frac{19}{10}\sigma_x^2$$
$$\frac{R_{xx}}{\sigma_x^2} = \frac{19}{20} = 0.95$$

or

8.126 Option (A) is correct.
An ideal low - pass filter with appropriate bandwidth
$$f_m$$
 is used to
recover the signal which is sampled at nyquist rate $2f_m$.
8.127 Option (A) is correct.
For any PDF the probability at mean is $\frac{1}{2}$. Here given PDF is
Gaussian random variable and $X = 4$ is mean.
8.128 Option (C) is correct.
We require 6 bit for 64 intensity levels because $64 = 2^6$
Data Rate = Frames per second × pixels per frame × bits per pixel
 $= 625 \times 400 \times 400 \times 6 = 600$ Mbps sec
8.129 Option (C) is correct.
We have
 $\sin c(700t) + \sin c(500t) = \frac{\sin(700\pi t)}{700\pi t} + \frac{\sin(500\pi t)}{500\pi t}$
Here the maximum frequency component is $2\pi f_m = 700\pi$ i.e.
 $f_m = 350$ Hz
Thus Nyquist rate
 $f_s = 2f_m$
 $= 2(350) = 700$ Hz
Thus sampling interval
 $= \frac{1}{700}$ sec
8.130 Option (D) is correct.
Probability of error $= p$
Probability of no error $= q = (1 - p)$
Probability for at most one bit error
 $=$ Probability of no bit error
 $+$ probability of 1 bit error
 $= (1 - p)^n + np(1 - p)^{n-1}$
8.131 Option (A) is correct.
If $g(t) \stackrel{FT}{\longrightarrow} G(\omega)$

lf g(t)then PSD of g(t) is

and power is

PSD of
$$ag(t)$$
 is

or

 $S_{ag}(\omega) = |a(G(\omega))|^2$ $=a^2|G(\omega)|^2$

 $ag(t) \xleftarrow{FT} aG(\omega)$

 $P_g = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_g(\omega) \, d\omega$

 $S_g(\omega) = |G(\omega)|^2$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

 $S_{ag}(\omega) = a^2 S_g(\omega)$

	Similarly	$P_{ag} = a^2 P_g$
8.132	Option (C) is correct. The envelope of the inp of envelope detector.	out signal is $[1 + k_a m(t)]$ that will be output
8.133	Option (D) is correct. Frequency Range for satellite communication is 1 GHz to 30 GHz,	
8.134	Option (B) is correct. Waveform will be orthogonal when each bit contains integer number of cycles of carrier.	
	Bit rate	$R_b = HCF(\underline{f}, \underline{f})$ = $HCF(10k, 25k)$

 $P_m = \overline{m^2(t)}$

Page 213

= 5 kHz
$$T_b = \frac{1}{R_b} = \frac{1}{5k} = 0.2 \text{ msec} = 200 \ \mu \text{sec}$$

Option (D) is correct. 8.135 We have

Thus bit interval is

The input to LPF is

 $x(t) = m(t)\cos\omega_o t\cos(\omega_o t + \theta)$ $=\frac{m(t)}{2}[\cos(2\omega_o t+\theta)+\cos\theta]$ $=\frac{m(t)\cos\left(2\omega_{o}t+\theta\right)}{2}+\frac{m(t)\cos\theta}{2}$

The output of filter will be

$$y(t) = \frac{m(t)\cos\theta}{2}$$

Power of output signal is

$$P_y = \overline{y^2(t)} = \frac{1}{4}\overline{m^2(t)}\cos^2\theta = \frac{P_m\cos^2\theta}{4}$$

Option (A) is correct. 8.136

> Hilbert transformer always adds -90° to the positive frequency component and 90° to the negative frequency component. Hilbert Trans form

$$\cos \omega t \to \sin \omega t$$
$$\sin \omega t \to \cos \omega t$$

 $\cos \omega_1 t + \sin \omega_2 t \rightarrow \sin \omega_1 t - \cos \omega_2 t$

Option (A) is correct. 8.137

Thus

times.

SO

We have

 $x(t) = A_c \cos\left\{\omega_c t + \beta \sin \omega_m t\right\}$ $y(t) = \{x(t)\}^3$

 $= A_c^2 \cos\left(3\omega_c t + 3\beta \sin \omega_m t\right) + 3\cos\left(\omega_c t + \beta \sin \omega_m t\right)$

Thus the fundamental frequency doesn't change but BW is three

$$BW = 2(\Delta f) = 2(\Delta f \times 3) = 3$$
 MHz

- Option (C) is correct. 8.138
- Option (C) is correct. 8.139

This is Quadrature modulated signal. In QAM, two signals having bandwidth. $B_1 \& B_2$ can be transmitted simultaneous over a bandwidth of $(B_1 + B_2)$ Hz

$$B.W. = (15 + 10) = 25 \text{ kHz}$$

Option (B) is correct. 8.140

> A modulated signal can be expressed in terms of its in-phase and quadrature component as

> > S(t)

 $= S_1(t)\cos(2\pi f_c t) - S_Q(t)\sin(2\pi f_c t)$ Here S(t) $= \left[e^{-at} cps \Delta \omega t \cos \omega_c t - e^{at} \sin \Delta \omega t \sin \omega_c t \right] \mu(t)$

$$= \left[e^{-at}\cos\Delta\omega t\right]\cos 2\pi f_c t - \left[e^{-at}\sin\Delta\omega t\right]\sin 2\pi f_c t$$

 $= S_1(t)\cos 2\pi f_c t - S_Q(t)\sin 2\pi f_c t$

Complex envelope of s(t) is

 $\overline{S}(t) = S_1(t) + jS_Q(t)$ $= e^{-at} \cos \Delta \omega t + j e^{-at} \sin \Delta \omega t$ $= e^{-at} \left[\cos \Delta \omega t + j \sin \Delta \omega t \right]$ $= \exp\left(-at\right) \exp\left(j\Delta\omega t\right) \mu\left(t\right)$

8.141 Option (B) is correct. Given function

Let

 $= 6 \times 10^4 \sin c^2 (400t) * 10^6 \sin c^3 (100t)$

$$g_1(t) = 6 \times 10^4 \sin c^2(400t)$$

$$g_2(t) = (10^6) \sin c^3(100t)$$

We know that $g_1(t) * g_2(t) \rightleftharpoons G_1(\omega) G_2(\omega)$ occupies minimum of Bandwidth of $G_1(\omega)$ or $G_2(\omega)$

Band width of
$$G_1(\omega)$$

$$= 2 \times 400 = 800 \text{ rad/sec}$$
 or $= 400 \text{ Hz}$

Band width of
$$G_2(\omega)$$

 $= 3 \times 100 = 300 \text{ rad/sec}$ or 150 Hz

Sampling frequency
$$= 2 \times 150 = 300 \text{ Hz}$$

Option (B) is correct. 8.142

> For a sinusoidal input SNR(dB) is PCM is obtained by following formulae.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

SNR(dB) = 1.8 + 6n

n = 8

 $SNR(dB) = 1.8 + 6 \times 8 = 49.8$

www.nodia.co.in

Here	
So.	

Option (D) is correct. 8.143

 $t = T_0$

8.144

We know that matched filter output is given by

$$g_0(t) = \int_{-\infty}^{\infty} g(\lambda) g(T_0 - t + \lambda) d\lambda$$
 at

n is no. of bits

$$[g_0(t)]_{\max} = \int_{-\infty}^{\infty} g(\lambda) g(\lambda) d\lambda = \int_{-\infty}^{\infty} g^2(t) dt$$
$$= \int_{0}^{1 \times 10^{-4}} [10 \sin(2\pi \times 10^6)^2] dt$$
$$[g_0(t)]_{\max} = \frac{1}{2} \times 100 \times 10^{-4} = 5 \text{ mV}$$

Option (B) is correct.

Sampling rate must be equal to twice of maximum frequency.

$$f_s = 2 \times 400 = 800 \, \text{Hz}$$

Option (C) is correct. 8.145

> The amplitude spectrum of a gaussian pulse is also gaussian as shown in the fig.

> > Y

0

$$R_{xx}(\tau) = \frac{1}{T} \int_{T/2}^{T/2} x(t-\tau) \, dt$$

When x(t) is shifted to right $(\tau > 0), x(t - \tau)$ will be shown as dotted line.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

$$R_{xx}(\tau) = \frac{1}{T} \int_{-\frac{T}{2}+\tau}^{\frac{T}{2}+\tau} A^2 dt$$
$$= \frac{A^2}{T} \Big[\frac{T}{2} + \frac{T}{2} - \tau \Big] = \frac{A^2}{T} \Big[\frac{T}{2} - \tau \Big]$$

 (τ) can be negative or positive, so generalizing above equations

$$R_{xx}(\tau) = \frac{A^2}{T} \left[\frac{T}{2} - |\tau| \right]$$

 $R_{xx}(\tau)$ is a regular pulse of duration T.

8.147 Option (B) is correct

Selectivity refers to select a desired frequency while rejecting all others. In super heterodyne receiver selective is obtained partially by RF amplifier and mainly by IF amplifier.

8.148 Option (C) is correct. In PCM, SNR α 2²ⁿ so if bit increased from 8 to 9

$$\frac{SNR_{1}}{SNR_{2}} = \frac{2^{2 \times 8}}{2^{2 \times 9}} = 2^{2} = \frac{1}{4}$$

so SNR will increased by a factor of 4

8.149 Option (A) is correct.

In flat top sampling an amplitude distortion is produced while reconstructing original signal x(t) from sampled signal s(t). High frequency of x(t) are mostly attenuated. This effect is known as aperture effect.

8.150 Option (A) is correct.

Carrier
$$C(t) = \cos(\omega_e t + \theta)$$

Modulating signal = $x(t)$
DSB - SC modulated signal = $x(t) c(t) = x(t) \cos(\omega_e t + \theta)$
envelope = $|x(t)|$

8.151 Option (D) is correct.

In Quadrature multiplexing two baseband signals can transmitted or modulated using I_4 phase & Quadrature carriers and its quite different form FDM & TDM.

8.152 Option (A) is correct.

Fourier transform perform a conversion from time domain to frequency domain for analysis purposes. Units remain same.

8.153 Option (A) is correct.

In PCM, SNR is depends an step size (i.e. signal amplitude) *SNR* can be improved by using smaller steps for smaller amplitude. This is obtained by compressing the signal.

- 8.154 Option (C) is correct. Band width is same for BPSK and APSK(OOK) which is equal to twice of signal Bandwidth.
- 8.155 Option (A) is correct. The spectral density of a real value random process symmetric about vertical axis so it has an even symmetry.
- 8.156 Option (A) is correct.

8.157 Option (C) is correct.

It is one of the advantage of bipolar signalling (AMI) that its spectrum has a dc null for binary data transmission PSD of bipolar signalling is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

8.158 Option (A) is correct.

Probability Density function (PDF) of a random variable x defined as

$$P_x(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
$$K = \frac{1}{\sqrt{2\pi}}$$

so here

8.159 Option (C) is correct.

Here the highest frequency component in the spectrum is 1.5 kHz [at 2 kHz is not included in the spectrum]

 $\sqrt{2\pi}$

Minimum sampling freq.
$$= 1.5 \times 2 = 3 \text{ kHz}$$

8.160 Option (B) is correct.

We need a high pass filter for receiving the pulses.

8.161 Option (D) is correct.

Power spectral density function of a signal g(t) is fourier transform of its auto correlation function

> $R_g(\tau) \stackrel{\mathcal{F}}{\longleftrightarrow} S_g(\omega)$ here $S_g(\omega) = \sin c^2(f)$

so $R_g(t)$ is a triangular pulse.

$$f[\text{triang.}] = \sin c^2(f)$$

8.162 Option (C) is correct. For a signal g(t), its matched filter response given as

h(t) = g(T - t)

so here g(t) is a rectangular pulse of duration T.

output of matched filter

if we shift g(-t) for convolution y(t) increases first linearly then decreases to zero.

8.163 Option (C) is correct.

The difference between incoming signal frequency (f_c) and its image frequency (f_c) is $2I_f$ (which is large enough). The RF filter may provide poor selectivity against adjacent channels separated by a small frequency differences but it can provide reasonable selectivity against a station separated by $2I_f$. So it provides adequate suppression of image channel.

8.164

Option (C) is correct. In PCM SNR is given by

$$SNR = \frac{3}{2}2^{2n}$$

if no. of bits is increased from n to (n+1) SNR will increase by a

factor of $2^{2(n+1)/n}$

8.165 Option (D) is correct.

The auto correlation of energy signal is an even function. auto correlation function is gives as

put

Let

$$R(\tau) = \int_{-\infty}^{\infty} x(t) x(t+\tau) dt$$
$$R(-\tau) = \int_{-\infty}^{\infty} x(t) x(t-\tau) dt$$
$$t-\tau = \bar{\alpha}^{\infty}$$
$$dt = d\alpha$$

$$R(-\tau) = \int_{-\infty}^{\infty} x(\alpha + \tau) x(\alpha) \, d\alpha$$

change variable $\alpha \rightarrow t$

$$R(-\tau) = \int_{-\infty}^{\infty} x(t) x(t+\tau) dt = R(\tau)$$
$$R(-\tau) = R(\tau) \text{ even function}$$

8.166 Option (D) is correct.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy

www.nodia.co.in

UNIT 9

ELECTROMAGNETICS

2013

ONE MARK

9.5

9.6

9.7

9.8

- ^{9.1} Consider a vector field $\vec{A}(\vec{r})$. The closed loop line integral $\oint \vec{A} \cdot d\vec{l}$ can be expressed as
 - (A) $\oiint (\nabla \times \vec{A}) \cdot d\vec{s}$ over the closed surface bounded by the loop
 - (B) $\not \bigoplus (\nabla \cdot \vec{A}) dv$ over the closed volume bounded by the loop
 - (C) $\iiint (\nabla \cdot \vec{A}) dv$ over the open volume bounded by the loop
 - (D) $\iint (\nabla \times \vec{A}) \cdot d\vec{s}$ over the open surface bounded by the loop
- 9.2 The divergence of the vector field $\vec{A} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$ is (A) 0 (B) 1/3

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

(C) 1 (D) 3

9.3 The return loss of a device is found to be 20 dB. The voltage standing wave ratio (VSWR) and magnitude of reflection coefficient are respectively
(A) 1.22 and 0.1
(B) 0.81 and 0.1

(C) - 1.22 and 0.1	(D) 2.44 and 0.2
2013	TWO MARKS

Statement for Linked Answer Questions 52 and 53:

A monochromatic plane wave of wavelength $\lambda = 600 \,\mu\text{m}$ is propagating in the direction as shown in the figure below. \vec{E}_i , \vec{E}_r and \vec{E}_t denote incident, reflected, and transmitted electric field vectors associated with the wave.

9.4

The angle of incidence θ_i and the expression for \dot{E}_i are (A) 60° and $\frac{E_0}{\sqrt{2}} (\hat{a}_x - \hat{a}_z) e^{-j\frac{\pi \times 10^4(x+2)}{3\sqrt{2}}} \text{V/m}$

(B) 45° and
$$\frac{E_0}{\sqrt{2}}(\hat{a}_x + \hat{a}_z)e^{-j\frac{\pi \times 10^4 z}{3}}$$
 V/m

(C) 45° and
$$\frac{E_0}{\sqrt{2}}(\hat{a}_x - \hat{a}_z)e^{-j\frac{\pi \times 10^4(x+z)}{3\sqrt{2}}}$$
V/m
(D) 60° and $\frac{E_0}{\sqrt{2}}(\hat{a}_x - \hat{a}_z)e^{-j\frac{\pi \times 10^4z}{3}}$ V/m
The expression for \vec{E}_r is
(A) $0.23\frac{E_0}{\sqrt{2}}(\hat{a}_x + \hat{a}_z)e^{-j\frac{\pi \times 10^4(x-z)}{3\sqrt{2}}}$ V/m
(B) $-\frac{E_0}{\sqrt{2}}(\hat{a}_x + \hat{a}_z)e^{j\frac{\pi \times 10^4z}{3}}$ V/m
(C) $0.44\frac{E_0}{\sqrt{2}}(\hat{a}_x + \hat{a}_z)e^{-j\frac{\pi \times 10^4(x-z)}{3\sqrt{2}}}$ V/m
(D) $\frac{E_0}{\sqrt{2}}(\hat{a}_x + \hat{a}_z)e^{-j\frac{\pi \times 10^4(x+z)}{3}}$ V/m

2012

ONE MARK

A plane wave propagating in air with $\boldsymbol{E} = (8\boldsymbol{a}_x + 6\boldsymbol{a}_y + 5\boldsymbol{a}_z) e^{j(\omega t + 3x - 4y)} \text{V/m}$ is incident on a perfectly conducting slab positioned at $x \leq 0$. The \boldsymbol{E} field of the reflected wave is (A) $(-8\boldsymbol{a}_x - 6\boldsymbol{a}_y - 5\boldsymbol{a}_z) e^{j(\omega t + 3x + 4y)} \text{V/m}$

(B) $(-8a_x + 6a_y - 5a_z) e^{j(\omega t + 3x + 4y)^-}$ V/m (C) $(-8a_x - 6a_y - 5a_z) e^{j(\omega t - 3x - 4y)}$ V/m (D) $(-8a_x + 6a_y - 5a_z) e^{j(\omega t - 3x - 4y)}$ V/m

The electric field of a uniform plane electromagnetic wave in free space, along the positive x direction is given by $\boldsymbol{E} = 10 (\boldsymbol{a}_y + j\boldsymbol{a}_z) e^{-j25x}$. The frequency and polarization of the wave, respectively, are (A) 1.2 GHz and left circular (B) 4 Hz and left circular

(C) 1.2 GHz and right circular (D) 4 Hz and right circular

A coaxial-cable with an inner diameter of 1 mm and outer diameter of 2.4 mm is filled with a dielectric of relative permittivity 10.89. Given $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}, \quad \varepsilon_0 = \frac{10^{-9}}{36\pi} \text{ F/m}, \text{ the characteristic}$ impedance of the cable is

(A) 330Ω	(B) 100Ω
(C) 143.3Ω	(D) 43.4Ω

The radiation pattern of an antenna in spherical co-ordinates is given by $F(\theta) = \cos^4 \theta$; $0 \le \theta \le \pi/2$. The directivity of the antenna is

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

(A) 10 dB	$(B) 12.6 \mathrm{dB}$
(C) $11.5 \mathrm{dB}$	(D) $18 \mathrm{dB}$

9.10

2012

TWO MARKS

A transmission line with a characteristic impedance of 100Ω is used to match a 50 Ω section to a 200 Ω section. If the matching is to be done both at 429 MHz and 1 GHz, the length of the transmission line can be approximately

(A) $82.5 \mathrm{cm}$	(b) $1.05 \mathrm{m}$
$(C) 1.58 \mathrm{cm}$	(D) $1.75 \mathrm{m}$

9.11 The magnetic field among the propagation direction inside a rectangular waveguide with the cross-section shown in the figure is

 $H_z = 3\cos(2.094 \times 10^2 x)\cos(2.618 \times 10^2 y)\cos(6.283 \times 10^{10} t - \beta z)$

The phase velocity v_p of the wave inside the waveguide satisfies

(A) $v_p > c$	(B) $v_p = c$
(C) $0 < v_p < c$	(D) $v_p = 0$

Statement for Linked Answer Question 7 and 8 :

An infinitely long uniform solid wire of radius a carries a uniform dc current of density J

9.12 The magnetic field at a distance r from the center of the wire is proportional to

(A) r for r < a and $1/r^2$ for r > a (B) 0 for r < a and 1/r for r > a(C) r for r < a and 1/r for r > a (D) 0 for r < a and $1/r^2$ for r > a

9.13 A hole of radius b(b < a) is now drilled along the length of the wire at a distance d from the center of the wire as shown below.

The magnetic field inside the hole is

- (A) uniform and depends only on d
- (B) uniform and depends only on b
- (C) uniform and depends on both b and d
- (D) non uniform

2011

ONE MARK

9.18

- 9.14 Consider the following statements regarding the complex Poynting vector \vec{P} for the power radiated by a point source in an infinite homogeneous and lossless medium. $\operatorname{Re}(\vec{P})$ denotes the real part of \vec{P} , S denotes a spherical surface whose centre is at the point source, and \hat{n} denotes the unit surface normal on S. Which of the following statements is TRUE?
 - (A) $\operatorname{Re}(\vec{P})$ remains constant at any radial distance from the source 9.19
 - (B) $\operatorname{Re}(\tilde{P})$ increases with increasing radial distance from the source
 - (C) $\oint_{s} \operatorname{Re}(\vec{P}) \cdot \hat{n} \, dS$ remains constant at any radial distance from the source
 - (D) $\oint_{s} \operatorname{Re}(\vec{P}) \cdot \hat{n} \, dS$ decreases with increasing radial distance from the source
- 9.15 A transmission line of characteristic impedance 50Ω is terminated by a 50Ω load. When excited by a sinusoidal voltage source at 10 GHz, the phase difference between two points spaced 2 mm apart on the line is found to be $\pi/4$ radians. The phase velocity of the wave along the line is

- $\begin{array}{ll} (A) \ 0.8 \times 10^8 \, \mathrm{m/s} & (B) \ 1.2 \times 10^8 \, \mathrm{m/s} \\ (C) \ 1.6 \times 10^8 \, \mathrm{m/s} & (D) \ 3 \times 10^8 \, \mathrm{m/s} \end{array}$
- 9.16 The modes in a rectangular waveguide are denoted by $\frac{TE_{nn}}{TM_{mn}}$ where m and n are the eigen numbers along the larger and smaller dimensions of the waveguide respectively. Which one of the following statements is TRUE?
 - (A) The TM_{10} mode of the waveguide does not exist
 - (B) The TE_{10} mode of the waveguide does not exist
 - (C) The TM_{10} and the TE_{10} modes both exist and have the same cut-off frequencies
 - (D) The TM_{10} and the TM_{01} modes both exist and have the same cut-off frequencies

2011

TWO MARKS

9.17 A current sheet $\tilde{J} = 10 \hat{u}_y \text{ A/m}$ lies on the dielectric interface x = 0between two dielectric media with $\varepsilon_{r1} = 5, \mu_{r1} = 1$ in Region-1

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book

binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(x < 0) and $\varepsilon_{r2} = 2$, $\mu_{r2} = 2$ in Region-2 (x > 0). If the magnetic field in Region-1 at $x = 0^-$ is $\vec{H}_1 = 3\hat{u}_x + 30\hat{u}_y$ A/m the magnetic field in Region-2 at $x = 0^+$ is

x>0 (Region-2) :
$$\varepsilon_{r2} = 2$$
, $\mu_{r2} = 2$
 J
 $x = 0$

x<0 (Region-1) : $\varepsilon_{r1} = 5, \, \mu_{r1} = 1$

(A) $\vec{H}_2 = 1.5 \hat{u}_x + 30 \hat{u}_y - 10 \hat{u}_z \text{ A/m}$ (B) $\vec{H}_2 = 3 \hat{u}_x + 30 \hat{u}_y - 10 \hat{u}_z \text{ A/m}$ (C) $\vec{H}_2 = 1.5 \hat{u}_x + 40 \hat{u}_y \text{ A/m}$

- (D) $\vec{H}_2 = 3\hat{u}_x + 30\hat{u}_y + 10\hat{u}_z$ A/m
- A transmission line of characteristic impedance 50 Ω is terminated in a load impedance Z_L . The VSWR of the line is measured as 5 and the first of the voltage maxima in the line is observed at a distance of $\lambda/4$ from the load. The value of Z_L is

(A) 10 Ω	(B) 250 Ω
(C) $(19.23 + j46.15)\Omega$	(D) $(19.23 - j46.15)\Omega$

The electric and magnetic fields for a TEM wave of frequency 14 GHz in a homogeneous medium of relative permittivity ε_r and relative permeability $\mu_r = 1$ are given by $\vec{E} = E_p e^{j(\omega t - 280\pi y)} \hat{u}_z \text{ V/m}$ and $\vec{H} = 3e^{j(\omega t - 280\pi y)} \hat{u}_x \text{ A/m}$. Assuming the speed of light in free space to be $3 \times 10^8 \text{ m/s}$, the intrinsic impedance of free space to be 120π , the relative permittivity ε_r of the medium and the electric field amplitude E_p are

(A)
$$\varepsilon_r = 3, E_p = 120\pi$$
 (B) $\varepsilon_r = 3, E_p = 360\pi$
(C) $\varepsilon_r = 9, E_p = 360\pi$ (D) $\varepsilon_r = 9, E_p = 120\pi$

2010

9.20

ONE MARK

If the scattering matrix [S] of a two port network is

[S] =	$\begin{bmatrix} 0.2 \angle 0^{\circ} & 0.9 \angle 9 \\ 0.9 \angle 90^{\circ} & 0.1 \angle 9 \end{bmatrix}$	$\left. \begin{array}{c} 90^{\circ} \\ 90^{\circ} \end{array} \right $, then the network is
		(\dot{B}) lossless but not reciprocal
(C) not lossless be	ut reciprocal	(D) neither lossless nor reciprocal

9.21 A transmission line has a characteristic impedance of 50Ω and a resistance of $0.1 \Omega/m$. If the line is distortion less, the attenuation constant(in Np/m) is
(A) 500
(B) 5

(A) 500	(D) 0
(C) 0.014	(D) 0.002

^{9.22} The electric field component of a time harmonic plane EM wave traveling in a nonmagnetic lossless dielectric medium has an amplitude of 1 V/m. If the relative permittivity of the medium is 4, the magnitude of the time-average power density vector (in W/m^2) is

(A) $\frac{1}{30\pi}$	(B) $\frac{1}{60\pi}$
(C) $\frac{1}{120\pi}$	(D) $\frac{1}{240\pi}$

2010

9.24

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.podia.co.in

9.23 If $\vec{A} = xy\hat{a}_x + x^2\hat{a}_y$, then $\oint_C \vec{A} \cdot d\vec{l}$ over the path shown in the figure is $\int_{1}^{y} \int_{0}^{1} \int_{1/\sqrt{3}} \int_{2/\sqrt{3}}^{C} c$ (A) 0
(B) $\frac{2}{\sqrt{3}}$ (C) 1
(D) $2\sqrt{3}$

A plane wave having the electric field components $\vec{E}_i = 24\cos(3 \times 10^8 - \beta y)\hat{a}_x$ V/m and traveling in free space is incident normally on a lossless medium with $\mu = \mu_0$ and $\varepsilon = 9\varepsilon_0$ which occupies the region $y \ge 0$. The reflected magnetic field component is given by

(A)
$$\frac{1}{10\pi} \cos(3 \times 10^8 t + y) \hat{a}_x \text{ A/m}$$

(B) $\frac{1}{20\pi} \cos(3 \times 10^8 t + y) \hat{a}_x \text{ A/m}$
(C) $-\frac{1}{20\pi} \cos(3 \times 10^8 t + y) \hat{a}_x \text{ A/m}$
(D) $-\frac{1}{10\pi} \cos(3 \times 10^8 t + y) \hat{a}_x \text{ A/m}$

^{9.25} In the circuit shown, all the transmission line sections are lossless. The Voltage Standing Wave Ration(VSWR) on the 60 Ω line is

2009

9.26

9.27

TWO MARKS

ONE MARK

Two infinitely long wires carrying current are as shown in the figure below. One wire is in the y-z plane and parallel to the y – axis. The other wire is in the x-y plane and parallel to the x – axis. Which components of the resulting magnetic field are non-zero at the origin ?

(C) y, z components

(B) x, y components(D) x, z components

Which of the following statements is true regarding the fundamental mode of the metallic waveguides shown ?

- (A) Only P has no cutoff-frequency
- (B) Only Q has no cutoff-frequency
- (C) Only R has no cutoff-frequency
- (D) All three have cutoff-frequencies

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

2009

9.28

TWO MARKS

If a vector field \vec{V} is related to another vector field \vec{A} through $\vec{V} = \nabla \times \vec{A}$, which of the following is true? (Note : C and S_C refer to any closed contour and any surface whose boundary is C.) (A) $\oint_C \vec{V} \cdot \vec{d}l = \int_S \int_C \vec{A} \cdot \vec{d}S$ (B) $\oint_C \vec{A} \cdot \vec{d}l = \int_S \int_C \vec{V} \cdot \vec{d}S$ (C) $\oint_C \Delta \times \vec{V} \cdot \vec{d}l = \int_S \int_C \Delta \times \vec{A} \cdot \vec{d}S$ (D) $\oint_C \Delta \times \vec{V} \cdot \vec{d}l = \int_S \int_C \vec{V} \cdot \vec{d}S$

A transmission line terminates in two branches, each of length $\frac{\lambda}{4}$, as shown. The branches are terminated by 50 Ω loads. The lines are lossless and have the characteristic impedances shown. Determine the impedance Z_i as seen by the source.

A magnetic field in air is measured to be

 $\vec{B} = B_0 \left(\frac{x}{x^2 + y^2} \hat{y} - \frac{y}{x^2 + y^2} \hat{x} \right)$

What current distribution leads to this field ? [Hint · The algebra is trivial in cylindrical coordinates]

(A)
$$\vec{J} = \frac{B_0 \hat{z}}{\mu_0} \left(\frac{1}{x^2 + y^2}\right), r \neq 0$$
 (B) $\vec{J} = -\frac{B_0 \hat{z}}{\mu_0} \left(\frac{2}{x^2 + y^2}\right), r \neq 0$
(C) $\vec{J} = 0, r \neq 0$ (D) $\vec{J} = \frac{B_0 \hat{z}}{\mu_0} \left(\frac{1}{x^2 + y^2}\right), r \neq 0$

ONE MARK

For a Hertz dipole antenna, the half power beam width (HPBW) in 9.31 the E-plane is

(A) 360°	(B) 180°
(C) 90°	(D) 45°

For static electric and magnetic fields in an inhomogeneous source-9.32 free medium, which of the following represents the correct form of Maxwell's equations ?

(A)
$$\nabla \cdot E = 0$$
, $\nabla \times B = 0$
(B) $\nabla \cdot E = 0$, $\nabla \cdot B = 0$
(C) $\nabla \times E = 0$, $\nabla \times B = 0$
(D) $\nabla \times E = 0$, $\nabla \cdot B = 0$

2008

2008

9.30

TWO MARKS

A rectangular waveguide of internal dimensions (a = 4 cm and9.33 b = 3 cm) is to be operated in TE_{11} mode. The minimum operating frequency is (A) 6.25 GHz (B) 6.0 GHz

				· · ·		
((C)	$5.0~\mathrm{GHz}$	(D)	3.75	GHz

One end of a loss-less transmission line having the characteristic 9.34 impedance of 75Ω and length of 1 cm is short-circuited. At 3 GHz, the input impedance at the other end of transmission line is (A) 0(B) Resistive

(C)	Capacitive	(D)) Inductive

A uniform plane wave in the free space is normally incident on 9.35 an infinitely thick dielectric slab (dielectric constant $\varepsilon = 9$). The magnitude of the reflection coefficient is

(A) 0	(B) 0.3
(C) 0.5	(D) 0.8

In the design of a single mode step index optical fibre close to upper 9.36 cut-off, the single-mode operation is not preserved if

(A) radius as well as operating wavelength are halved

- (B) radius as well as operating wavelength are doubled
- (C) radius is halved and operating wavelength is doubled
- (D) radius is doubled and operating wavelength is halved
- At 20 GHz, the gain of a parabolic dish antenna of 1 meter and 70%9.37 efficiency is (\mathbf{P}) В

$(\mathbf{A}$) 15 dB	(B)) 25	dE
---------------	---------	-----	------	----

```
(C) 35 dB
```

2007

A plane wave of wavelength λ is traveling in a direction making an 9.38 angle 30° with positive x - axis and 90° with positive y - axis. The E field of the plane wave can be represented as $(E_0 \text{ is constant})$

(D) 45 dB

(A)
$$\vec{E} = \hat{y}E_0 e^{j\left(\omega t - \frac{\sqrt{3}\pi}{\lambda}x - \frac{\pi}{\lambda}z\right)}$$

(B) $\vec{E} = \hat{y}E_0 e^{j\left(\omega t - \frac{\pi}{\lambda}x - \frac{\sqrt{3}\pi}{\lambda}z\right)}$
(C) $\vec{E} = \hat{y}E_0 e^{j\left(\omega t + \frac{\sqrt{3}\pi}{\lambda}x + \frac{\pi}{\lambda}z\right)}$
(D) $\vec{E} = \hat{y}E_0 e^{j\left(\omega t - \frac{\pi}{\lambda}x + \frac{\sqrt{3}\pi}{\lambda}z\right)}$

If C is code curve enclosing a surface S, then magnetic field intensity 9.39 \vec{H} , the current density \vec{j} and the electric flux density \vec{D} are related by

(A)
$$\iint_{S} \vec{H} \cdot d\vec{s} = \oiint_{c} \left(\vec{j} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{t}$$

(B)
$$\iint_{S} \vec{H} \cdot d\vec{l} = \oiint_{S} \left(\vec{j} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{S}$$

(C)
$$\oiint_{S} \vec{H} \cdot d\vec{S} = \int \left(\vec{j} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{t}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(D)
$$\oint_C \vec{H} \cdot d\vec{l} \oint_c = \iint_s \left(\vec{j} + \frac{\partial \vec{D}}{\partial t}\right) \cdot d\vec{s}$$

2007

9.40

9.41

9.42

TWO MARKS

The \vec{E} field in a rectangular waveguide of inner dimension $a \times b$ is given by

$$\vec{E} = \frac{\omega\mu}{h^2} \left(\frac{\lambda}{2}\right) H_0 \sin\left(\frac{2\pi x}{a}\right)^2 \sin\left(\omega t - \beta z\right) \hat{y}$$

Where H_0 is a constant, and a and b are the dimensions along the x - axis and the y - axis respectively. The mode of propagation in the waveguide is

(A) TE_{20}	(B) TM_{11}
(C) TM_{20}	(D) TE_{10}

A load of 50 Ω is connected in shunt in a 2-wire transmission line of $Z_0 = 50\Omega$ as shown in the figure. The 2-port scattering parameter matrix (s-matrix) of the shunt element is

The parallel branches of a 2-wirw transmission line re terminated in 100Ω and 200Ω resistors as shown in the figure. The characteristic impedance of the line is $Z_0 = 50\Omega$ and each section has a length of $\frac{\lambda}{4}$. The voltage reflection coefficient Γ at the input is

Page 219

ONE MARK

The \vec{H} field (in A/m) of a plane wave propagating in free space is 9.43 given by $\vec{H} = \hat{x} \frac{5\sqrt{3}}{\eta_0} \cos(\omega t - \beta z) + \hat{y}(\omega t - \beta z + \frac{\pi}{2}).$ The time average power flow density in Watts is (B) $\frac{100}{\eta_0}$

(A)
$$\frac{\eta_0}{100}$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

(C)
$$50\eta_0^2$$

An air-filled rectangular waveguide has inner dimensions of 3 cm 9.44 \times 2 cm. The wave impedance of the TE_{20} mode of propagation in the waveguide at a frequency of 30 GHz is (free space impedance $\eta_0 = 377 \Omega$

(D) $\frac{50}{\eta_0}$

(A) 308 Ω	(B) 355 Ω
(C) 400 Ω	(D) 461 Ω

A $\frac{\lambda}{2}$ dipole is kept horizontally at a height of $\frac{\lambda_0}{2}$ above a perfectly conducting infinite ground plane. The radiation pattern in the lane 9.45 of the dipole (E plane) looks approximately as

A right circularly polarized (RCP) plane wave is incident at an angle 9.46 60° to the normal, on an air-dielectric interface. If the reflected wave is linearly polarized, the relative dielectric constant ξ_{r2} is.

(D) 3

ONE MARK

The electric field of an electromagnetic wave propagation in the positive 9.47 direction is given by $E = \hat{a}_x \sin(\omega t - \beta z) + \hat{a}_y \sin(\omega t - \beta z + \pi/2)$. The wave is

- (A) Linearly polarized in the z-direction
- (B) Elliptically polarized
- (C) Left-hand circularly polarized
- (D) Right-hand circularly polarized
- A transmission line is feeding 1 watt of power to a horn antenna having a gain of 10 dB. The antenna is matched to the transmission line. The total power radiated by the horn antenna into the free space is

(A) 10 Watts	(B) 1 Watts
(C) 0.1 Watts	(D) 0.01 Watt

2006

9.48

9.49

9.50

(C) 2

2006

TWO MARKS

When a planes wave traveling in free-space is incident normally on a medium having the fraction of power transmitted into the medium is given by

(A) $\frac{8}{9}$	(B) $\frac{1}{2}$
(C) $\frac{1}{3}$	(D) $\frac{5}{6}$

A medium of relative permittivity $\varepsilon_{r2} = 2$ forms an interface with free - space. A point source of electromagnetic energy is located in the medium at a depth of 1 meter from the interface. Due to the total internal reflection, the transmitted beam has a circular crosssection over the interface. The area of the beam cross-section at the interface is given by

(A) $2\pi m^2$	(B) $\pi^2 \text{ m}^2$
(C) $\frac{\pi}{2}$ m ²	(D) $\pi \ \mathrm{m}^2$

A rectangular wave guide having TE_{10} mode as dominant mode is having a cut off frequency 18 GHz for the mode TE_{30} . The inner broad - wall dimension of the rectangular wave guide is

(A) $\frac{5}{3}$ cm	(B) 5 cm
(C) $\frac{5}{2}$ cm	(D) 10 cm

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

A medium is divide into regions I and II about x = 0 plane, as 9.52 shown in the figure below.

$$\begin{array}{c|c|c} \operatorname{Region I} & \operatorname{Region II} \\ \mu_1 = \mu_{\theta} & \mu_2 = \mu_{\theta} \\ \varepsilon_{r_1} = 3 & \varepsilon_{r_2} = 4 \\ \sigma_1 = 0 & \sigma_2 = 0 \\ Fig Q.67 & Fig Q.67 \end{array} \rightarrow E_2$$

An electromagnetic wave with electric field $E_1 = 4\hat{a}_x + 3\hat{a}_y + 5\hat{a}_z$ is incident normally on the interface from region I. The electric file E_2 in region II at the interface is

(A)
$$E_2 = E_1$$
 (B) $4\hat{a}_x + 0.75\hat{a}_y - 1.25\hat{a}_z$

(C) $3\hat{a}_x$ -

$$+3\hat{a}_{y}+5\hat{a}_{z}$$
 (D) $-3\hat{a}_{x}+3\hat{a}_{y}+5\hat{a}_{z}$

(A)
$$\frac{2\pi^2}{5}$$
 (B) $\frac{\pi^2}{5}$
(C) $\frac{4\pi^2}{5}$ (D) $20\pi^2$

2005

ONE MARK

The magnetic field intensity vector of a plane wave is given by 9.54 $H(x, y, z, t) = 10 \sin(50000t + 0.004x + 30) \hat{a}_{y}$

where \hat{a}_y , denotes the unit vector in y direction. The wave is propagating with a phase velocity.

(A) 5×10^4 m/s	(B) $-3 \times 10^8 \text{ m/s}$
(C) $-1.25 \times 10^7 \text{ m/s}$	(D) $3 \times 10^8 \text{ m/s}$

Refractive index of glass is 1.5. Find the wavelength of a beam of 9.55 light with frequency of 10^{14} Hz in glass. Assume velocity of light is 3×10^8 m/s in vacuum

(A) 3 μm	(B) 3 mm
(C) 2 μm	(D) 1 mm

2005

TWO MARKS

Which one of the following does represent the electric field lines 9.56 for the mode in the cross-section of a hollow rectangular metallic waveguide ?

Characteristic impedance of a transmission line is 50 Ω . Input 9.57 impedance of the open-circuited line when the transmission line a short circuited, then value of the input impedance will be.

(A) 50 Ω (B) $100 + j150\Omega$ (C) $7.69 + j11.54\Omega$ (D) $7.69 - j11.54\Omega$

Two identical and parallel dipole antennas are kept apart by a 9.58 distance of $\frac{\lambda}{4}$ in the H - plane. They are fed with equal currents but the right most antenna has a phase shift of +90°. The radiation pattern is given as.

Statement of Linked Answer Questions 9.46 & 9.47 :

Voltage standing wave pattern in a lossless transmission line with characteristic impedance 50 and a resistive load is shown in the figure.

9.59	The value of the load resi	stance is
	(A) 50 Ω	(B) 200 Ω
	(C) 12.5 Ω	(D) 0
9.60	The reflection coefficient	is given by

The reflection coefficient is given	Dy
(A) - 0.6	(B) - 1
(C) 0.6	(D) 0

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Many circles are drawn in a Smith Chart used for transmission line 9.61 calculations. The circles shown in the figure represent

- (A) Unit circles
- (B) Constant resistance circles
- (C) Constant reactance circles
- (D) Constant reflection coefficient circles.

2004

9.62

9.64

The phase velocity of an electromagnetic wave propagating in a hollow metallic rectangular waveguide in the TE_{10} mode is

- (A) equal to its group velocity
- (B) less than the velocity of light in free space
- (C) equal to the velocity of light in free space
- (D) greater than the velocity of light in free space

Consider a lossless antenna with a directive gain of +6 dB. If 1 mW 9.63 of power is fed to it the total power radiated by the antenna will be (B) 1 mW(A) 4 mW

(D) 1/4 mW(C) 7 mW

2004

TWO MARKS

ONE MARK

A parallel plate air-filled capacitor has plate area of 10^{-4} m² and plate separation of 10^{-3} m. It is connect - ed to a 0.5 V, 3.6 GHz

source. The magnitude of the displacement current is $(\varepsilon = \frac{1}{36\pi} 10^{-9})$	
F/m)	

(A) 10 mA	(B) 100 mA
(C) 10 A	(D) 1.50 m Å

- (C) 10 A (D) 1.59 mA
- ^{9.65} Consider a 300 Ω , quarter wave long (at 1 GHz) transmission line as shown in Fig. It is connected to a 10 V, 50 Ω source at one end and is left open circuited at the other end. The magnitude of the voltage at the open circuit end of the line is

9.66 In a microwave test bench, why is the microwave signal amplitude modulated at 1 kHz

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

- (A) To increase the sensitivity of measurement
- (B) To transmit the signal to a far-off place
- (C) To study amplitude modulations
- (D) Because crystal detector fails at microwave frequencies
- 9.67 If $\vec{E} = (\hat{a}_x + j\hat{a}_y) e^{jkz \cdot k\omega t}$ and $\vec{H} = (k/\omega\mu) (\hat{a}_y + k\hat{a}_x) e^{jkz \cdot j\omega t}$, the timeaveraged Poynting vector is (A) null vector (B) $(k/\omega\mu) \hat{a}_z$

- (C) $(2k/\omega\mu) \hat{a}_z$ (D) $(k/2\omega\mu) \hat{a}_z$
- 9.68 Consider an impedance Z = R + jX marked with point P in an impedance Smith chart as shown in Fig. The movement from point P along a constant resistance circle in the clockwise direction by an angle 45° is equivalent to

- (A) adding an inductance in series with Z
- (B) adding a capacitance in series with Z
- (C) adding an inductance in shunt across ${\cal Z}$
- (D) adding a capacitance in shunt across Z

Page 222

the medium should be	
(A) $120\pi \Omega$	(B) $60\pi \Omega$
(C) $600\pi \Omega$	(D) $24\pi \Omega$
A lossless transmission line	is terminated in a load which reflects a
part of the incident power. T	he measured VSWR is 2. The percentage
of the power that is reflected	d back is

or the power	that is reflected	Dack 18
(A) 57.73		(B) 33.33
(C) 0.11		(D) 11.11

2003 The unit of $\nabla \times H$ is

The unit of $\bigvee \times H$ is	
(A) Ampere	(B) Ampere/meter
(C) $Ampere/meter^2$	(D) Ampere-meter

The depth of penetration of electromagnetic wave in a medium having conductivity σ at a frequency of 1 MHz is 25 cm. The depth of penetration at a frequency of 4 MHz will be (A) 6.25 dm (B) 12.50 cm

(11) 0.20 um	(D)	12.00 0	111
(C) 50.00 cm ((D)	100.00	cm

2003

9.73

9.70

TWO MARKS

ONE MARK

- Medium 1 has the electrical permittivity $\varepsilon_1 = 1.5\varepsilon_0$ farad/m and occupies the region to the left of x = 0 plane. Medium 2 has the electrical permittivity $\varepsilon_2 = 2.5\varepsilon_0$ farad/m and occupies the region to the right of x = 0 plane. If E_1 in medium 1 is $E_1 = (2u_x - 3u_y + 1u_z)$ volt/m, then E_2 in medium 2 is
 - (A) $(2.0u_x 7.5u_y + 2.5u_z)$ volt/m
 - (B) $(2.0u_x 2.0u_y + 0.6u_z)$ volt/m
 - (C) $(2.0u_x 3.0u_y + 1.0u_z)$ volt/m
 - (D) $(2.0u_x 2.0u_y + 0.6u_z)$ volt/m

If the electric field intensity is given by $E = (xu_x + yu_y + zu_z)$ volt/m, the potential difference between X(2,0,0) and Y(1,2,3) is (A) +1 volt (B) -1 volt (C) +5 volt (D) +6 volt

- A uniform plane wave traveling in air is incident on the plane boundary between air and another dielectric medium with $\varepsilon_r = 4$. The reflection coefficient for the normal incidence, is (A) zero (B) $0.5 \angle 180^{\circ}$
- (II) 2610° (D) $0.333 \angle 10^{\circ}$ (D) $0.333 \angle 180^{\circ}$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

9.76 If the electric field intensity associated with a uniform plane electromagnetic wave traveling in a perfect dielectric medium is given by $E(z,t) = 10\cos(2\pi 10^7 t - 0.1\pi z)$ V/m, then the velocity of the traveling wave is (A) 3.00×10^8 m/sec (B) 2.00×10^8 m/sec (C) 6.28×10^7 m/sec (D) 2.00×10^7 m/sec

9.77

A short - circuited stub is shunt connected to a transmission line as shown in fig. If $Z_0 = 50$ ohm, the admittance Y seen at the junction of the stub and the transmission line is

A plane electromagnetic wave propagating in free space is incident normally on a large slab of loss-less, non-magnetic, dielectric material with $\varepsilon > \varepsilon_0$. Maxima and minima are observed when the electric field is measured in front of the slab. The maximum electric field is found to be 5 times the minimum field. The intrinsic impedance of

9.69

(A) (0.01 - j0.02) mho (B) (0.02 - j0.01) mho (C) (0.04 - j0.02) mho (D) (0.02 + j0) mho

- A rectangular metal wave guide filled with a dielectric material of 9.78 relative permittivity $\varepsilon_r = 4$ has the inside dimensions 3.0 cm \times 1.2 cm. The cut-off frequency for the dominant mode is (A) 2.5 GHz (B) 5.0 GHz
 - (C) 10.0 GHz (D) 12.5 GHz
- Two identical antennas are placed in the $\theta = \pi/2$ plane as shown 9.79 in Fig. The elements have equal amplitude excitation with 180° polarity difference, operating at wavelength λ . The correct value of the magnitude of the far-zone resultant electric field strength normalized with that of a single element, both computed for $\phi = 0$, is

2002

9.80

The VSWR can have any value between (A) 0 and 1(B) -1 and +1

(D) 1 and ∞ (C) 0 and ∞

- In in impedance Smith movement along a constant resistance circle 9.81 gives rise to
 - (A) a decrease in the value of reactance
 - (B) an increase in the value of reactance
 - (C) no change in the reactance value
 - (D) no change in the impedance
- The phase velocity for the TE_{10} -mode in an air-filled rectangular 9.82 waveguide is (c is the velocity of plane waves in free space) (A) less than c(B) equal to c

 - (C) greater than c(D) none of these

2002

TWO MARKS

ONE MARK

- A plane wave is characterized by $\vec{E} = (0.5\hat{x} + \hat{y}e^{j\pi/2})e^{j\omega t jkz}$. This 9.83 9.91 wave is
 - (B) circularly polarized (A) linearly polarized

Distilled water at 25° C is characterized by $\sigma = 1.7 \times 10^{-4}$ mho/m 9.84 and $\varepsilon = 78\varepsilon_0$ at a frequency of 3 GHz. Its loss tangent tan δ is $\left(\varepsilon = \frac{10^{-9}}{36\pi} \text{ F/m}\right)$

(A) 1.3×10^{-5}	(B) 1.3×10^{-3}
(C) $1.3 \times 10^{-4}/78$	(D) $1.3 \times 10^{-5}/78\varepsilon_0$

(C) elliptically polarized

The electric field on the surface of a perfect conductor is 2 V/m. 9.85 The conductor is immersed in water with $\varepsilon = 80\varepsilon_o$. The surface charge density on the conductor is $(\varepsilon = \frac{10^{-9}}{36\pi} \text{ F/m})$ (B) 2 C/m^2 (A) 0 C/m^2 (C) 1.8×10^{-11} C/m² (D) 1.41×10^{-9} C/m²

9.86 A person with receiver is 5 Km away from the transmitter. What is the distance that this person must move further to detect a 3-dB decrease in signal strength

$$\begin{array}{ccc} (A) \ 942 \ m \\ (C) \ 4978 \ m \\ \end{array} \qquad \begin{array}{c} (B) \ 2070 \ m \\ (D) \ 5320 \ m \\ \end{array}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

2001

9.87

9.90

A transmission line is di	istortonless if
(A) $RL = \frac{1}{GC}$	(B) $RL = GC$
(C) $LG = RC$	(D) $RG = LC$
	c?

If a plane electromagnetic wave satisfies the equal $\frac{\delta^2 E_x}{\delta Z^2} = c^2 \frac{\delta^2 E_x}{\delta t^2}$ 9.88 the wave propagates in the

- (A) x direction
- (B) z direction
- (C) y direction
- (D) xy plane at an angle of 45° between the x and z direction
- The plane velocity of wave propagating in a hollow metal waveguide 9.89 is
 - (A) grater than the velocity of light in free space
 - (B) less than the velocity of light in free space
 - (C) equal to the velocity of light free space
 - (D) equal to the velocity of light in free

The dominant mode in a rectangular waveguide is TE_{10} , because this mode has

- (A) the highest cut-off wavelength
- (B) no cut-off

2001

- (C) no magnetic field component
- (D) no attenuation

ONE MARK

TWO MARKS

A material has conductivity of 10^{-2} mho/m and a relative permittivity of 4. The frequency at which the conduction current in the medium is equal to the displacement current is

GATE	Electronics and Communication Topicwise	Solved Paper by RK Kanodia & Ashish Murolia			Page 224
	(A) 45 MHz(C) 450 MHz	(B) 90 MHz(D) 900 MHz		$egin{array}{llllllllllllllllllllllllllllllllllll$	(B) $\sqrt{\varepsilon_{r2}/\varepsilon_{r1}}$ (D) $\varepsilon_{r2}/\varepsilon_{r1}$
9.92		c wave incident on a plane surface ed with a VSWR of 3. What is the at is reflected ? (B) 25% (D) 75%	9.101	For an 8 feet $(2.4m)$ parabolic di	 (c) 127 fr (c) 127 fr (c) 127 fr (c) 127 fr (c) 126 m (c) 150 m
9.93		tter operating at a wavelength of height 124. What is the radiation (B) 36.5 Ω (D) 73 Ω	9.102	1999 An electric field on a place is de $V = 20 (r^{-1} + r^{-2})$	
9.94	In uniform linear array, four isot	ropic radiating elements are spaced shift between required for forming	9.103	 where r is the distance from the (A) a monopole (C) both a monopole and a dipole Assuming perfect conductors of propagation is NOT possible in (A) coaxial cable 	(B) a dipole
	GATE Electronics & Communication by RK Kanodia Now in 3 Volume			(B) air-filled cylindrical wavegui(C) parallel twin-wire line in air(D) semi-infinite parallel plate v	
Pu	and get POSTAL and O visit www.nc	odia.co.in	9.104	Indicate which one of the follow resonant cavity. (A) TE_{110} (C) TM_{110}	ing will NOT exist in a rectangular (B) TE_{011} (D) TM_{111}
9.95		ONE MARK n-circuit and short-circuit input he are 100 Ω and 25 Ω respectively. the line is, (B) 50 Ω (D) 100 Ω	9.105	Identify which one of the follo equation. (A) $50e^{j(\omega t - 3z)}$ (C) $\cos(y^2 + 5t)$	owing will NOT satisfy the wave (B) $\sin[\omega(10z+5t)]$ (D) $\sin(x)\cos(t)$
9.96	and H field at the boundary wil(A) minimum and minimum(C) minimum and maximum	(B) maximum and maximum(D) maximum and minimum	9.106	1999In a twin-wire transmission line are at 12.5 cm and 27.5 cm. The (A) 300 MHz(C) 2 GHz	TWO MARKS in air, the adjacent voltage maxima operating frequency is (B) 1 GHz (D) 6.28 GHz
9.97	If the diameter of a $\frac{\lambda}{2}$ dipole and , then its (A) bandwidth increases (C) gain increases	(A) bandwidth increases (B) bandwidth decrease	9.107	A transmitting antenna radiate antenna, located 100 m away fro	es 251 W isotropically. A receiving m the transmitting antenna, has an ne total received by the antenna is
			F	For more GATE Resou Study material joir	-
9.98	dielectric material with dielect	TWO MARKS mpings at 45° angle on a lossless ric constant \in_r . The transmitted on with respect to the normal. The (B) $\sqrt{1.5}$ (D) $\sqrt{2}$	9.108	http://www.facebook (A) $10 \mu W$ (C) $20 \mu W$ In air, a lossless transmission line , $C = 40 \text{ pF/m}$ is operated at 25	-
9.99		 (D) + 1 nensions 1 cm × 0.5 cm. Its cut-off (B) 10 GHz (D) 12 GHz 	9.109		(B) λ meters (D) 180 degrees h a medium [$\varepsilon_r = 8, v_r = 2, \text{ and } \sigma = 0$] = $0.5 \hat{X} e^{-(z/3)} \sin(10^8 t - \beta z) \text{ V/m}$. The
9.100		ed with different dielectric constants tio of the wavelength in the cables		wave impedance, in onms is (A) 377 (C) $182.9 \angle 14^{\circ}$	 (B) 198.5∠180° (D) 133.3

- The intrinsic impedance of copper at high frequencies is 9.110 (A) purely resistive
 - (B) purely inductive

 - (C) complex with a capacitive component
 - (D) complex with an inductive component
- The Maxwell equation $V \times H = J + \frac{\partial \overline{D}}{\partial t}$ is based on 9.111
 - (B) Gauss' law (A) Ampere's law
 - (C) Faraday's law (D) Coulomb's law
- All transmission line sections shown in the figure is have a 9.112 characteristic impedance $R_0 + j_0$. The input impedance Z_{in} equals

(C) $\frac{3}{2}R_0$ (D) $2R_0$

1998

9

	1998	TWO MARKS
9.113	The time averages Poynting vector, in W_{μ} $\vec{E} = 24 e^{j(\omega t + \beta z)} \vec{a}_y \text{ V/m}$ in free space is	T/m^2 , for a wave with 9.122

(A) $-\frac{2.4}{\pi}\vec{a}_z$	(B) $\frac{2.4}{\pi} \vec{a}_z$
(C) $\frac{4.8}{\pi}\vec{a}_z$	(D) $-\frac{4.8}{\pi}\vec{a}_z$

The wavelength of a wave with propagation constant $(0.1\pi + j0.2\pi) m^{-1}$ 9.114 is

(A) $\frac{2}{\sqrt{0.05}}$ m	(B) $10 \mathrm{m}$
(C) 20 m	(D) 30 m

The depth of penetration of wave in a lossy dielectric increases with 9.115 increasing (A) conductivity (B) normonbility

(A) conductivity	(B) permeability
(C) wavelength	(D) permittivity

9.116	The polarization of $\vec{E} = E_0 e^{j(\omega t + \beta z)} (\vec{a}_x + \vec{a}_y)$ is	wave	with	electric	field	vector
	(A) linear		(B) ellip	ptical		
	(C) left hand circular		(D) right	ht hand cir	cular	

The vector H in the far field of an antenna satisfies 9.117

- (A) $\nabla \cdot \dot{H} = 0$ and $\nabla \times \dot{H} =$ (B) $\nabla \cdot \vec{H} \neq 0$ and $\nabla \times \vec{H} \neq 0$ = 0(C) $\nabla \cdot \vec{H} = 0$ and $\nabla \times \vec{H} \neq 0$ (D) $\nabla \cdot \vec{H} \neq 0$ and $\nabla \times \vec{H} = 0$
- The radiation resistance of a circular loop of one turn is 0.01Ω . The 9.118 radiation resistance of five turns of such a loop will be (A) 0.002Ω (B) 0.01Ω
 - (C) 0.05Ω (D) 0.25Ω

An antenna in free space receives $2\,\mu W$ of power when the incident electric field is $20 \,\mathrm{mV/m}$ rms. The effective aperture of the antenna is

- (A) $0.005 \,\mathrm{m}^2$
- (B) $0.05 \,\mathrm{m}^2$
- (C) $1.885 \,\mathrm{m}^2$
- (D) 3.77 m^2

The maximum usable frequency of an ionospheric layer at 60° 9.120 incidence and with 8 MHz critical frequency is

(A) 16 MHz

(B) $\frac{16}{\sqrt{3}}$ MHz

(C) 8 MHz

- (D) 6.93 MHz
- A loop is rotating about they y-axis in a magnetic field 9.121 $B = B_0 \cos(\omega t + \phi) \vec{a}_x$ T. The voltage in the loop is (A) zero

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

(B) due to rotation only

- (C) due to transformer action only
- (D) due to both rotation and transformer action

The far field of an antenna varies with distance r as

(A) $\frac{1}{r}$	(B) $\frac{1}{r^2}$
(C) $\frac{1}{r^3}$	(D) $\frac{1}{\sqrt{r}}$

1997

9.123

9.124

9.125

A transmission line of 50Ω characteristic impedance is terminated with a 100Ω resistance. The minimum impedance measured on the line is equal to (A) 0Ω

(B) 25Ω

- (C) 50Ω
- (D) 100 Ω

A rectangular air filled waveguide has cross section of $4 \text{ cm} \times 10 \text{ cm}$. The minimum frequency which can propagate in the waveguide is (A) 0.75 GHz

- (B) 2.0 GHz
- $(C) 2.5 \, GHz$
- (D) 3.0 GHz

A parabolic dish antenna has a conical beam 2° wide, the directivity of the antenna is approximately

- (A) 20 dB
- (B) 30 dB
- (C) 40 dB
- (D) 50 dB

ONE MARK

Page	226
------	-----

TWO MARKS

9.133

- 9.126 A very lossy, $\lambda/4$ long, 50Ω transmission line is open circuited at the load end. The input impedance measured at the other end of the line is approximately (A) 0 (B) 50Ω
 - (C) ∞ (D) None of the above
- ^{9.127} The skin depth at 10 MHz for a conductor is 1 cm. The phase velocity of an electromagnetic wave in the conductor at 1,000 MHz is about (A) 6×10^6 m/sec
 - (B) $6 \times 10^7 \,\mathrm{m/sec}$
 - (C) $3 \times 10^8 \,\mathrm{m/sec}$
 - (D) $6 \times 10^8 \,\mathrm{m/sec}$

1996

1997

ONE MARK

9.128 A lossless transmission line having 50Ω characteristic impedance and length $\lambda/4$ is short circuited at one end and connected to an ideal voltage source of 1 V at the other end. The current drawn from

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

the voltage source is	
(A) 0	(B) $0.02 \mathrm{A}$
(C) ∞	(D) none of these

9.129 The capacitance per unit length and the characteristic impedance of a lossless transmission line are C and Z_0 respectively. The velocity of a travelling wave on the transmission line is

(A) $Z_0 C$	(B) $\frac{1}{Z_0 C}$
(C) $\frac{Z_0}{C}$	(D) $\frac{C}{Z_0}$

- 9.130 A transverse electromagnetic wave with circular polarization is received by a dipole antenna. Due to polarization mismatch, the power transfer efficiency from the wave to the antenna is reduced to about
 - (A) 50%
 - (B) 35.3%
 - (C) 25%
 - (D) 0%
- 9.131 A metal sphere with 1 m radius and a surface charge density of 10 Coulombs/m² is enclosed in a cube of 10 m side. The total outward electric displacement normal to the surface of the cube is (A) 40π Coulombs
 - (B) 10π Coulombs
 - $(\mathbf{C}) = \mathbf{C} + \mathbf{C}$
 - (C) 5π Coulombs
 - (D) None of these

1996

TWO MARKS

9.132 A uniform plane wave in air is normally incident on infinitely thick slab. If the refractive index of the glass slab is 1.5, then the percentage of incident power that is reflected from the air-glass interface is

- (A) 0%(B) 4%
- (C) 20%
- (D) 100%
- The critical frequency of an ionospheric layer is 10 MHz. What is the maximum launching angle from the horizon for which 20 MHz wave will be reflected by the layer ?
- (A) 0°
- (B) 30°
- (C) 45°
 (D) 90°
 - D) 90

9.134 A 1 km long microwave link uses two antennas each having 30 dB gain. If the power transmitted by one antenna is 1 W at 3 GHz, the power received by the other antenna is approximately

- (A) $98.6\,\mu\mathrm{W}$
- (B) $76.8 \,\mu W$
- (C) $63.4\,\mu\text{W}$
- (D) $55.2\,\mu\text{W}$

9.135 Some unknown material has a conductivity of 10^6 mho/m and a permeability of $4\pi \times 10^{-7}$ H/m. The skin depth for the material at 1 GHz is

- (A) $15.9\,\mu m$
- $(B)~20.9\,\mu\mathrm{m}$
- (C) $25.9\,\mu m$
- (D) $30.9 \,\mu m$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

SOLUTION

Option (D) is correct. 9.1

> Stoke's theorem states that the circulation a vector field \vec{A} around a closed path l is equal to the surface integral of the curl of \vec{A} over the open surface S bounded by l.

 $\oint \vec{A} \cdot d\vec{l} = \iint (\nabla \times \vec{A}) \cdot d\vec{s}$ i.e., Here, line integral is taken across a closed path which is denoted

by a small circle on the integral notation where as, the surface integral of $(\nabla \times \tilde{A})$ is taken over open surface bounded by the loop.

Option (D) is correct. 9.2 Given, the vector field

 $\vec{A} = x\vec{a}_x + y\vec{a}_y + z\vec{a}_z$

so,

 $\nabla \cdot \vec{A}$ (Divergence of \vec{A}) = $\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$ = 1 + 1 + 1 = 3

Option (A) is correct. 9.3

Given, the return	n loss of device as $20 \mathrm{dB}$
i.e.,	$\left \Gamma \right _{(in dB)} = - 20 \mathrm{dB} (\mathrm{loss})$
or,	$20\log \Gamma = -20$
\Rightarrow	$ \Gamma = 10^{-1} = 0.1$
Therefore, the st	tanding wave ration is given by
	$VSWR = \frac{1 + \Gamma }{1 - \Gamma }$
	$=\frac{1+0.1}{1-0.1}=\frac{1.1}{0.9}=1.22$

Option (C) is correct. 9.4

> For the given incidence of plane wave, we have the transmitting angle

> > $\theta_t = 19.2^{\circ}$

From Snell's law, we know

 $n_1 \sin \theta_i = n_2 \sin \theta_t$

$$c \sqrt{\mu_1 arepsilon_1 \sin heta_i} = c \sqrt{\mu_2 arepsilon_2 \sin heta_t}$$

...(1)

For the given interfaces, we have

$$\mu_1 = \mu_2 = 1$$

$$\varepsilon_1 = 1, \ \varepsilon_2 = 4.5$$

So, from Eq. (1)

$$\sin \theta_i = \sqrt{4.5} \sin 19.2$$

 $\theta_i \approx 45^\circ$ or, Now, the component of \vec{E}_i can be obtained as $\vec{E}_i = (\vec{E_{ox} a_x} - \vec{E_{oz} a_z}) e^{-j\beta k}$ (observed from the shown figure)

Since, the angle $\theta_i = 45^\circ$ so,

 $E_{ox} = E_{oz} = \frac{E_o}{\sqrt{2}}$ $ec{E}_i = rac{E_o}{\sqrt{2}} (ec{a_x} - ec{a_z}) e^{-jeta k}$ Therefore, ...(1)

Now, the wavelength of EM wave is $\lambda = 600 \, \mathrm{\mu m}$

 $\beta = \frac{2\pi}{\lambda} = \frac{\pi}{3} \times 10^4$ So,

Also, direction of propagation is

$$egin{aligned} ec{a}_k &= rac{a_x+a}{\sqrt{2}} \ k &= rac{x+z}{\sqrt{2}} \end{aligned}$$

So,

9.5

Substituting it in equation (1), we get

$$ec{E}_{i}=rac{E_{o}}{\sqrt{2}}ig(ec{a_{x}}-ec{a_{z}}ig)e^{-jrac{\pi imes10^{4}(x+z)}{3\sqrt{2}}}$$

Option (A) is correct.

We obtain the reflection coefficient for parallel polarized wave (since, electric field is in the plane of wave propagation) as

$$\Gamma_{\scriptscriptstyle \parallel} = rac{\eta_2 \cos heta_t - \eta_1 \cos heta_i}{\eta_2 \cos heta_t + \eta_1 \cos heta_i}$$

As we have already obtained

Also,

...(1)

$$egin{aligned} heta_i &= 45\,^\circ, \ \ heta_t &= 19.2\,^\circ \ \eta_2 &= \sqrt{rac{\mu}{arepsilon}} = \eta_0 \sqrt{rac{1}{4.5}} = rac{\eta_0}{\sqrt{4.5}} \end{aligned}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

and

$$\eta_1 = \sqrt{\frac{\mu}{\varepsilon}} = \eta_0 \sqrt{\frac{1}{1}} = \eta_0$$
(1) we get

$$= \frac{\cos 19.2^{\circ} - \sqrt{4.5} \cos 45^{\circ}}{\cos 19.2^{\circ} + \sqrt{4.5} \cos 45^{\circ}}$$

= - 0.227
\approx - 0.23

Therefore, the reflected field has the magnitude given by

 $\Gamma_{\mathbb{I}}$

$$\begin{aligned} \frac{\left| E_{ro} \right|}{\left| E_{io} \right|} &= T_{11}^{'} \\ \text{or} & \left| E_{ro} \right| = \Gamma_{\parallel} \left| E_{io} \right| = -0.23 \left| E_{io} \right| \\ \text{Hence, the expression of reflected electric field is} \\ \vec{E}_{r} &= -0.23 \frac{E_{o}}{\sqrt{2}} \left(-\vec{a_{x}} - \vec{a_{z}} \right) e^{-j\frac{\pi \times 10^{4}}{3}k} \end{aligned}$$

(2)

or

Again, we have the propagation vector of reflected wave as

$$\vec{a_k} = \frac{a_x - a_z}{\sqrt{2}}$$
$$k = \frac{x - z}{\sqrt{2}}$$

or,

Substituting it in Eq. (2), we get

$$egin{aligned} ec{E}_r &= -\ 0.23 rac{E_o}{\sqrt{2}} ig(-ec{a_x} - ec{a_z} ig) e^{-jrac{\pi imes 10^4}{3} ig(rac{x-z}{\sqrt{2}} ig)} \ ec{E}_r &= 0.23 rac{E_o}{\sqrt{2}} ig(ec{a_x} + ec{a_z} ig) e^{-rac{j\pi imes 10^4(x-z)}{3\sqrt{2}} rac{V}{m}} \end{aligned}$$

Option (C) is correct. 9.6

Electric field of the propagating wave in free space is given as

$$oldsymbol{E}_i = (8oldsymbol{a}_x + 6oldsymbol{a}_y + 5oldsymbol{a}_z)\,e^{j(\omega t + 3x - 4y)}\,\mathrm{V/m}$$

So, it is clear that wave is propagating in the direction
$$(-3a_x + 4a_y)$$

Since, the wave is incident on a perfectly conducting slab at x = 0. So, the reflection coefficient will be equal to -1.

 $E_{r_0} = (-1) E_{i_0} = -8 a_x - 6 a_y - 5 a_z$ i.e. Again, the reflected wave will be as shown in figure.

Conducting
$$3a_x + 4a_y$$

slab $-3a_x + 4a_y$ Free space $x=0$

i.e. the reflected wave will be in direction $3a_x + 4a_y$. Thus, the electric field of the reflected wave will be.

$$\boldsymbol{E}_x = (-8\boldsymbol{a}_x - 6\boldsymbol{a}_y - 5\boldsymbol{a}_z) e^{j(\omega t - 3x - 4y)} \,\mathrm{V/m}$$

Option (A) is correct.

9.7

The field in circular polarization is found to be

 $E_s = E_0(\mathbf{a}_y \pm j\mathbf{a}_z) e^{-j\beta x}$ propagating in +ve x-direction. where, plus sign is used for left circular polarization and minus sign for right circular polarization. So, the given problem has left circular polarization.

$$\beta = 25 = \frac{\omega}{c}$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$25 = \frac{2\pi f}{c} \quad \Rightarrow \quad f = \frac{25 \times c}{2\pi} = \frac{25 \times 3 \times 10^8}{2 \times 3.14} = 1.2 \,\mathrm{GHz}$$

Option (B) is correct. 9.8

Let

 $b \rightarrow$ outer diameter

 $a \rightarrow \text{inner diameter}$

Characteristic impedance,

$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0 \varepsilon_r}} \ln\left(\frac{b}{a}\right) = \sqrt{\frac{4\pi \times 10^{-7} \times 36\pi}{10^{-9} \times 10.89}} \ln\left(\frac{2.4}{1}\right) = 100 \,\Omega$$

Option (A) is correct. 9.9 The directivity is defined as

$$D = \frac{F_{\text{max}}}{F_{avg}}$$

$$F_{\text{max}} = 1$$

$$F_{avg} = \frac{1}{4\pi} \int F(\theta, \phi) \, d\Omega$$

$$= \frac{1}{4\pi} \Big[\int_0^{2\pi} \int_0^{2\pi} F(\theta, \phi) \sin \theta \, d\theta \, d\phi \Big]$$

$$= \frac{1}{4\pi} \Big[\int_0^{2\pi} \int_0^{\pi/2} \cos^4 \theta \sin \theta \, d\theta \, d\phi \Big]$$

$$= \frac{1}{4\pi} \Big[2\pi \Big(-\frac{\cos^5 \theta}{5} \Big) \Big]_0^{\pi/2} = \frac{1}{4\pi} \times 2\pi \Big[-0 + \frac{1}{5} \Big]$$

$$= \frac{1}{4\pi} \times \frac{2\pi}{5} = \frac{1}{10}$$

$$D = \frac{1}{10} = 10$$

or,

Since

9.10

 $D(\text{in dB}) = 10 \log 10 = 10 \text{ dB}$

Option (C) is correct.

$$Z_0 = \sqrt{Z_1 Z_2}$$
$$100 = \sqrt{50 \times 200}$$

This is quarter wave matching. The length would be odd multiple of $\lambda/4$.

$$f_{1} = 429 \text{ MHz}, \qquad l_{1} = \frac{c}{f_{1} \times 4} = \frac{3 \times 10^{8}}{429 \times 10^{6} \times 4} = 0.174 \text{ m}$$
$$f_{2} = 1 \text{ GHz}, \qquad l_{2} = \frac{c}{f_{2} \times 4} = \frac{3 \times 10^{8}}{1 \times 10^{9} \times 4} = 0.075 \text{ m}$$

 $l = (2m+1)\frac{\lambda}{4}$

Only option (C) is odd multiple of both l_1 and l_2 .

$$(2m+1) = \frac{1.58}{l_1} = 9$$
$$(2m+1) = \frac{1.58}{l_2} \simeq 21$$

тт

9.

9.12

$$\begin{aligned} H_z &= 3\cos(2.094 \times 10^2 x)\cos(2.618 \times 10^2 y)\cos(6.283 \times 10^{10} t - \beta z) \\ \beta_x &= 2.094 \times 10^2 \\ \beta_y &= 2.618 \times 10^2 \\ \omega &= 6.283 \times 10^{10} \, \text{rad/s} \end{aligned}$$

For the wave propagation,
$$\beta &= \sqrt{\frac{\omega^2}{c^2} - (\beta_x^2 + \beta_y^2)} \end{aligned}$$

Substituting above values,

Option () is correct.

$$\beta = \sqrt{\left(\frac{6.283 \times 10^{10}}{3 \times 10^8}\right)^2 - (2.094^2 + 2.618^2) \times 10^4}$$

~ j261

 β is imaginary so mode of operation is non-propagating.

 $I_{enclosed} = (\pi a^2) J$

 $\oint H \cdot dl = I_{enclosed}$

 $H \times 2\pi r = (\pi a^2) J$

0

$$v_p =$$

For r > a,

So,

For r < a,

$$H \propto \frac{1}{r}, \quad \text{for } r > a$$
$$I_{enclosed} = \frac{J(\pi r^2)}{\pi a^2} = \frac{Jr^2}{a^2}$$
$$\oint H \cdot dl = I_{enclosed}$$
$$H \times 2\pi r = \frac{Jr^2}{a^2}$$
$$H = \frac{Jr}{2\pi a^2}$$

 $H \propto r$, for r < a

 $H = \frac{I_o}{2\pi r} \qquad \qquad I_o = (\pi a^2) J$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Option (B) is correct. 9.13

> Assuming the cross section of the wire on x-y plane as shown in figure.

Since, the hole is drilled along the length of wire. So, it can be assumed that the drilled portion carriers current density of -J. Now, for the wire without hole, magnetic field intensity at point Pwill be given as

$$H_{\phi 1}(2\pi R) = J(\pi R^2)$$

 $H_{\phi 1}(2\pi R) = \frac{JR}{2}$

Since, point o is at origin. So, in vector form

$$\boldsymbol{H}_1 = \frac{J}{2}(x\boldsymbol{a}_x + y\boldsymbol{a}_y)$$

Again only due to the hole magnetic field intensity will be given as.

$$(H_{\phi 2})(2\pi r) = -J(\pi r^2)$$
$$H_{\phi 2} = \frac{-Jr}{2}$$

Again, if we take O' at origin then in vector form

$$\boldsymbol{H}_2 = \frac{-J}{2} (x' \boldsymbol{a}_x + y' \boldsymbol{a}_y)$$

where x' and y' denotes point 'P' in the new co-ordinate system. Now the relation between two co-ordinate system will be.

So,

$$y = y'$$

$$H_2 = \frac{-J}{2}[(x-d) a_x + y a_y]$$

x = x' + d

So, total magnetic field intensity $= H_1 + H_2 = \frac{J}{2} da_x$

So, magnetic field inside the hole will depend only on d'.

Option (C) is correct. 9.14

Power radiated from any source is constant.

Option (C) is correct. 9.15

We have d = 2 mm and f = 10 GHz

Phase

difference
$$=\frac{2\pi}{\lambda}d=\frac{\pi}{4};$$

or

- $= \lambda = 8d = 8 \times 2 \text{ mm} = 16 \text{ mm}$ $v = f\lambda = 10 \times 10^9 \times 16 \times 10^{-3}$ $= 1.6 \times 10^8 \,\mathrm{m/sec}$
- Option (A) is correct. 9.16 TM_{11} is the lowest order mode of all the TM_{mn} modes.
- Option (A) is correct.

From boundary condition

$$Bn_1 =$$

$$Hx_2 = \frac{Hx_1}{2} = 1.5$$

 $\mu_1 H x_1 = \mu_2 H x_2$

 $Hx_2 = 1.5 \hat{u}_x$

 Bn_2

or

or

 $(3\hat{u}_x + 30\hat{u}_y)\,\hat{u}_x = (1.5\hat{u}_x + A\hat{u}_y + B\hat{u}_z)\,\hat{x} + \frac{10\hat{u}_y}{z}$ $= -30\hat{u}_z = -A\hat{u}_z + B\hat{u}_y + 10\hat{u}_y$ Comparing we get A = 30 and B = -10 $\overline{H}_{z} = 1.5 \hat{u}_{x} + 30 \hat{u}_{y} - 10 \hat{u}_{z} \,\mathrm{A/m}$

Option (A) is correct.

So

9.18

9.19

9.20

9.21

Since voltage maxima is observed at a distance of $\lambda/4$ from the load and we know that the separation between one maxima and minima equals to $\lambda/4$ so voltage minima will be observed at the load, Therefore load can not be complex it must be pure resistive.

Now
$$|\Gamma| = \frac{s-1}{s+1}$$

also
$$R_L = \frac{R_0}{s}$$
 (since voltage maxima is formed at the load)
 $R_L = \frac{50}{5} = 10 \Omega$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

From the expressions of
$$\vec{E} \& \vec{H}$$
, we can write,
 $\beta = 280 \pi$
or $\frac{2\pi}{\lambda} = 280 \pi \Rightarrow \lambda = \frac{1}{140}$
Wave impedance, $Z_w = \left|\frac{\vec{E}}{|\vec{H}|}\right| = \frac{E_p}{3} = \frac{120 \pi}{\sqrt{\varepsilon_r}}$
again, $f = 14 \text{ GHz}$
Now $\lambda = \frac{C}{\sqrt{\varepsilon_r f}} = \frac{3 \times 10^8}{\sqrt{\varepsilon_r 14 \times 10^9}} = \frac{3}{140\sqrt{\varepsilon_r}}$
or $\frac{3}{140\sqrt{\varepsilon_r}} = \frac{1}{140}$
or $\varepsilon_r = 9$
Now $\frac{E_p}{3} = \frac{120\pi}{\sqrt{9}} = E_p = 120\pi$
Option (C) is correct.
For a lossless network
 $|S_{11}|^2 + |S_{21}|^2 = 1$
For the given scattering matrix
 $S_{11} = 0.2/0^\circ, S_{12} = 0.9/90^\circ$
 $S_{21} = 0.9/90^\circ, S_{22} = 0.1/90^\circ$
Here, $(0.2)^2 + (0.9)^2 \neq 1$ (not lossless)

For

Option (D) is correct.

 $S_{12} = S_{21} = 0.9/90^{\circ}$ (Reciprocal)

distortion less transmission line characteristics impedance
$$Z_0 = \sqrt{\frac{R}{G}}$$

Attenuation constant

$$\alpha = \sqrt{RG}$$

So,
$$\alpha = \frac{R}{Z_0} = \frac{0.1}{50} = 0.002$$

Option (C) is correct. 9.22

Intrinsic impedance of EM wave

$$\eta = \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{\mu_0}{4\varepsilon_0}} = \frac{120\pi}{2} = 60\pi$$

Time average power density

$$P_{av} = \frac{1}{2}EH = \frac{1}{2}\frac{E^2}{\eta} = \frac{1}{2\times 60\pi} = \frac{1}{120\pi}$$

9.23 Option (C) is correct.

$$A = xy\hat{a}_x + x^2\hat{a}_y$$
$$\vec{d}l = dx\hat{a}_x + dy\hat{a}_y$$
$$\oint_C \vec{A} \cdot \vec{d}l = \oint_C (xy\hat{a}_x + x^2\hat{a}_y) \cdot (dx\hat{a}_x + dy\hat{a}_y)$$
$$= \oint_C (xydx + x^2dy)$$

$$=\int_{1/\sqrt{3}}^{2/\sqrt{3}} x dx + \int_{2/\sqrt{3}}^{1/\sqrt{3}} 3x dx + \int_{1}^{3} \frac{4}{3} dy + \int_{3}^{1} \frac{1}{3} dy$$

$$=\frac{1}{2}\left[\frac{4}{3}-\frac{1}{3}\right]+\frac{3}{2}\left[\frac{1}{3}-\frac{4}{3}\right]+\frac{4}{3}\left[3-1\right]+\frac{1}{3}\left[1-3\right]=1$$

9.24 Option (A) is correct.

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

In the given problem

$$\eta_1 = \sqrt{rac{\mu_0}{arepsilon_0}} = 120\pi$$
 $\eta_2 = \sqrt{rac{\mu}{arepsilon}} = \sqrt{rac{\mu_0}{9arepsilon_0}}$
 $= rac{120}{3} = 40\pi$

Reflection coefficient

$$\tau = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{400\pi - 120\pi}{40\pi + 120\pi} = -\frac{1}{2}$$

 τ is negative So magnetic field component does not change its direction Direction of incident magnetic field

$$\hat{a}_E \times \hat{a}_H = \hat{a}_K$$

 $\hat{a}_E \times \hat{a}_H = \hat{a}_K$

$$a_Z \times a_H = a_y$$

 $\hat{a}_H = \hat{a}_x \ (+x \ \text{direction})$ So, reflection magnetic field component

$$H_{r} = \left| \frac{\tau \times 24}{\eta} \right| \cos(3 \times 10^{8} + \beta y) \, \hat{a}_{x}, \ y \ge 0$$
$$= \left| \frac{1 \times 24}{2 \times 120\pi} \right| \cos(3 \times 10^{8} + \beta y) \, \hat{a}_{x}, \ y \ge 0$$
$$\beta = \frac{\omega}{v_{c}} = \frac{3 \times 10^{8}}{3 \times 10^{8}} = 1$$
$$H_{r} = \frac{1}{10\pi} \cos(3 \times 10^{8} + y) \, \hat{a}_{x}, \ y \ge 0$$

So,

9.25 Option (B) is correct.

For length of $\lambda/4$ transmission line

$$Z_{\rm in} = Z_o \left[\frac{Z_L + j Z_o \tan \beta l}{Z_o + j Z_L \tan \beta l} \right]$$
$$Z_L = 30 \,\Omega, \qquad \qquad Z_o = 30 \,\Omega, \, \beta = \frac{2\pi}{\lambda}, \, l = \frac{\lambda}{4}$$

$$\mathrm{So},$$

$$Z_{\rm in} = Z_o \left[\frac{\frac{Z_L}{\tan\beta l} + jZ_o}{\frac{Z_o}{\tan\beta l} + jZ_L} \right] = \frac{Z_0^2}{Z_L} = 60 \,\Omega$$

 $\tan \beta l = \tan \left(\frac{2\pi}{\lambda} \cdot \frac{\lambda}{4} \right) = \infty$

For length of $\lambda/8$ transmission line

$$Z_{\rm in} = Z_o \left[\frac{Z_L + j Z_o \tan \beta l}{Z_o + j Z_L \tan \beta l} \right]$$
$$Z_o = 30 \ \Omega, \ Z_L = 0 \ ({\rm short})$$
$$\tan \beta l = \tan \left(\frac{2\pi}{\lambda} \cdot \frac{\lambda}{8} \right) = 1$$
$$Z_{\rm in} = j Z_o \tan \beta l = 30j$$

Circuit is shown below.

$$Z_0 = 60 \Omega$$

$$C_0 = 60 \Omega$$

$$C_0 = 60 \Omega$$

$$C_0 = 60 \Omega$$

Reflection coefficient

$$\tau = \left| \frac{Z_L - Z_o}{Z_L + Z_o} \right| = \left| \frac{60 + 3j - 60}{60 + 3j + 60} \right| = \frac{1}{\sqrt{17}}$$

VSWR = $\frac{1 + |\tau|}{1 - |\tau|} = \frac{1 + \sqrt{17}}{1 - \sqrt{17}} = 1.64$

9.26 Option (D) is correct.

Due to 1 A current wire in x - y plane, magnetic field be at origin will be in x direction.

Due to 1 A current wire in y - z plane, magnetic field be at origin will be in z direction.

Thus x and z component is non-zero at origin.

9.27 Option (A) is correct.

Rectangular and cylindrical waveguide doesn't support TEM modes and have cut off frequency.

Coaxial cable support TEM wave and doesn't have cut off frequency. Option (B) is correct.

have
$$V = \nabla \times A$$
 ...(1)

By Stokes theorem

We

9.28

$$\oint A \cdot dl = \oint (\nabla \times A) \cdot ds \qquad \dots (2)$$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

From (1) and (2) we get

$$\oint A \cdot dl = \oiint V \cdot ds$$

9.29 Option (D) is correct.

The transmission line are as shown below. Length of all line is $\frac{\lambda}{4}$

$$Z_{i1} = \frac{Z_{01}^2}{Z_{L1}} = \frac{100^2}{50} = 200\Omega$$
$$Z_{i2} = \frac{Z_{02}^2}{Z_{L2}} = \frac{100^2}{50} = 200\Omega$$
$$Z_{L3} = Z_{i1} || Z_{i2} = 200\Omega || 200\Omega = 100\Omega$$
$$Z_i = \frac{Z_0^2}{Z_{L3}} = \frac{50^2}{100} = 25\Omega$$

Option (C) is correct. 9.30

We have

 $\vec{B} = B_0 \left(\frac{x}{x^2 + y^2} a_y - \frac{y}{x^2 + y^2} a_x \right)$ To convert in cylindrical substituting $x = r\cos\phi$ and $y = r\sin\phi$ $a_x = \cos \phi a_r - \sin \phi a_\phi$ $a_y = \sin \phi a_r + \cos \phi a_\phi$

In (1) we have

$$B = B_0 a_{\phi}$$
$$\vec{H} = \frac{\vec{B}}{\mu_0} = \frac{\vec{B}_0 a_{\phi}}{\mu_0}$$

Now

and

 $\vec{J} = \nabla \times \vec{H} = 0$

since H is constant

Option (C) is correct. 9.31

> The beam-width of Hertizian dipole is 180° and its half power beamwidth is 90°.

Option (D) is correct. 9.32 Maxwell equations

$$\nabla - \vec{B} = 0$$
$$\nabla \cdot \vec{E} = \rho/E$$
$$\nabla \times \vec{E} = -\vec{B}$$
$$\nabla \times \hat{H} = \vec{D} + \vec{J}$$

For static electric magnetic fields

$$\nabla \cdot \vec{B} = 0$$
$$\nabla \cdot \vec{E} = \rho/E$$
$$\nabla \times \vec{E} = 0$$
$$\widehat{\nabla} \times \vec{H} = \vec{J}$$

Option (A) is correct. 9.33 Cut-off Frequency is

$$f_c = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

For TE_{11} mode,

$$f_c = \frac{3 \times 10^{10}}{2} \sqrt{\left(\frac{1}{4}\right)^2 + \left(\frac{1}{3}\right)^2} = 6.25 \text{ GHz}$$

Option (D) is correct. 9.34

$$Z_{in} = Z_o \frac{Z_L + iZ_o \tan{(\beta l)}}{Z_o + iZ_L \tan{(\beta l)}}$$

For $Z_L = 0$, $Z_{in} = iZ_o \tan\left(\beta l\right)$ The wavelength is

> $\lambda = \frac{c}{f} = \frac{3 \times 10^8}{3 \times 10^9} = 0.1 \text{ m or } 10 \text{ cm}$ $\beta l = \frac{2\pi}{\lambda} l = \frac{2\pi}{10} \times 1 = \frac{\pi}{5}$ $Z_{in} = iZ_o \tan \frac{\pi}{5}$

Thus

9.35

Thus Z_{in} is inductive because $Z_o \tan \frac{\pi}{5}$ is positive Option (C) is correct.

We have

$$\eta = \sqrt{\frac{\mu}{\varepsilon}}$$

Reflection coefficient

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_2}$$

Substituting values for η_1 and η_2 we have

$$\tau = \frac{\sqrt{\frac{\mu_o}{\varepsilon_o \varepsilon_r}} - \sqrt{\frac{\mu_o}{\varepsilon_o}}}{\sqrt{\frac{\mu_o}{\varepsilon_o \varepsilon_r}} + \sqrt{\frac{\mu_o}{\varepsilon_o}}} = \frac{1 - \sqrt{\varepsilon_r}}{1 + \sqrt{\varepsilon_r}} = \frac{1 - \sqrt{9}}{1 + \sqrt{9}} \qquad \text{since}$$

= -0.5

Option (C) is correct.

 $\varepsilon_r = 9$

...(1) 9.36

constant

In single mode optical fibre, the frequency of limiting mode increases as radius decreases

Hence
$$r \propto \frac{1}{f}$$

So. if radius is doubled, the frequency of propagating mode gets halved, while in option (D) it is increased by two times.

Option (D) is correct. 9.37

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

www.nodia.co.in

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{20 \times 10^9} = \frac{3}{200}$$
$$G_p = \eta \pi^2 \left(\frac{D}{\lambda}\right)^2 = 0.7 \times \pi^2 \left(\frac{1}{\frac{3}{100}}\right)^2 = 30705.4$$
$$= 44.87 \text{ dB}$$

Option
$$(A)$$
 is correct.

Gain

$$\gamma = \beta \cos 30^{\circ} x \pm \beta \sin 30^{\circ} y$$
$$= \frac{2\pi}{\lambda} \frac{\sqrt{3}}{2} x \pm \frac{2\pi}{\lambda} \frac{1}{2} y$$
$$= \frac{\pi\sqrt{3}}{\lambda} x \pm \frac{\pi}{\lambda} y$$
$$E = a_y E_0 e^{j(\omega t - \gamma)} = a_y E_0 e^{j\left[\omega t - \left(\frac{\pi\sqrt{3}}{\lambda} x \pm \frac{\pi}{\lambda} y\right)\right]}$$

Option (D) is correct. 9.39

$$\nabla \times H = J + \frac{\partial D}{\partial t}$$
 Maxwell Equations

$$\iint \nabla \times H \cdot ds = \iint_{s} \left(J + \frac{\partial D}{\partial t} \right) \cdot ds$$
$$\oint H \cdot dl = \iint_{s} \left(J + \frac{\partial D}{\partial t} \right) \cdot ds$$

Stokes Theorem

Integral form

Option (A) is correct. 9.40

$$\vec{E} = \frac{\omega\mu}{h^2} \left(\frac{\pi}{2}\right) H_0 \sin\left(\frac{2\pi x}{a}\right)^2 \sin\left(\omega t - \beta z\right) \hat{y}$$

This is TE mode and we know that

$$E_y \propto \sin\left(\frac{m\pi x}{a}\right)\cos\left(\frac{m\pi y}{b}\right)$$

Thus m = 2 and n = 0 and mode is TE_{20}

The 2-port scattering parameter matrix is

$$S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$$

$$S_{11} = \frac{(Z_L || Z_0) - Z_o}{(Z_L || Z_0) + Z_o} = \frac{(50 || 50) - 50}{(50 || 50) + 50} = -\frac{1}{3}$$

$$S_{12} = S_{21} = \frac{2(Z_L || Z_o)}{(Z_L || Z_o) + Z_o} = \frac{2(50 || 50)}{(50 || 50) + 50} = \frac{2}{3}$$

$$S_{22} = \frac{(Z_L || Z_o) - Z_o}{(Z_L || Z_o) + Z_o} = \frac{(50 || 50) - 50}{(50 || 50) + 50} = -\frac{1}{3}$$

Option (D) is correct. 9.42

The input impedance is

25

 $Z_{in} = \frac{Z_o^2}{Z_a};$ if $l = \frac{\lambda}{4}$ $Z_{in1} = \frac{Z_{o1}^2}{Z_{L1}} = \frac{50^2}{100} = 25$ $Z_{in2} = \frac{Z_{o2}^2}{Z_{L2}} = \frac{50^2}{200} = 12.5$ $Z_L = Z_{in1} \mid Z_{in2}$

Now

$$|12.5 = \frac{25}{3}$$
$$Z_s = \frac{(50)^2}{25/3} = 300$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

$$\Gamma = \frac{Z_S - Z_o}{Z_S + Z_o} = \frac{300 - 50}{300 + 50} = \frac{5}{7}$$

9.43 Option (D) is correct.

We have

watts

 $|H|^2 = H_x^2 + H_y^2 = \left(\frac{5\sqrt{3}}{\eta_o}\right)^2 + \left(\frac{5}{\eta_o}\right)^2 = \left(\frac{10}{\eta_o}\right)^2$ $P = \frac{|E|^2}{2\eta_o} = \frac{\eta_o |H|^2}{2} = \frac{\eta_o}{2} \left(\frac{10}{\eta_o}\right)^2 = \frac{50}{\eta_o}$

Option (C) is correct. 9.44

For free space

The cut-off frequency is

$$f_c = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

Since the mode is TE_{20} , m = 2 and n = 0

$$f_{c} = \frac{c}{2} \frac{m}{2} = \frac{3 \times 10^{8} \times 2}{2 \times 0.03} = 10 \text{ GHz}$$
$$\eta' = \frac{\eta_{o}}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} = \frac{377}{\sqrt{1 - \left(\frac{10^{10}}{3 \times 10^{10}}\right)^{2}}} = 400\Omega$$

Option (B) is correct. 9.45

Using the method of images, the configuration is as shown below

Here $d = \lambda, \alpha = \pi$, thus $\beta d = 2\pi$

Array factor is

$$= \cos\left[\frac{\beta d \cos \psi + \alpha}{2}\right]$$

$$= \cos\left[\frac{2\pi \cos \psi + \pi}{2}\right] = \sin\left(\pi \cos \psi\right)$$

Option (D) is correct. 9.46

The Brewster angle is

or

9.47

9.48

9.49

9.50

9.51

$$\tan \theta_n = \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}}$$
$$\tan 60^\circ = \sqrt{\frac{\varepsilon_{r2}}{1}}$$
or $\varepsilon_{r2} = 3$ Option (C) is correct.

We have $E = \hat{a}_{xx} \sin(\omega t - \beta z) + \hat{a}_y \sin(\omega t - \beta z + \pi/2)$

Here $|E_x| = |E_y|$ and $\phi_x = 0, \phi_y = \frac{\pi}{2}$

Phase difference is $\frac{\pi}{2}$, thus wave is left hand circularly polarized. Option (A) is correct.

 $10\log G = 10 \text{ dB}$ We have G = 10or $G = \frac{P_{rad}}{P_{in}}$ $10 = \frac{P_{rad}}{1 W}$ Now gain or $P_{rad} = 10$ Watts or

Option (A) is correct.

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{\sqrt{\frac{\mu_o}{\varepsilon_o \varepsilon_r}} - \sqrt{\frac{\mu_o}{\varepsilon_o}}}{\sqrt{\frac{\mu_o}{\varepsilon_o \varepsilon_r}} + \sqrt{\frac{\mu_o}{\varepsilon_o}}} = \frac{1 + \sqrt{\varepsilon_r}}{1 + \sqrt{\varepsilon_r}} = \frac{1 - \sqrt{4}}{1 + \sqrt{4}} = -\frac{1}{3}$$

The transmitted power is

$$P_t = (1 - \Gamma^2) P_i = 1 - \frac{1}{9} = \frac{8}{9}$$
$$\frac{P_t}{P_i} = \frac{8}{9}$$

Option (D) is correct.

or

or

$$\sin \theta = \frac{1}{\sqrt{\varepsilon_r}} = \frac{1}{\sqrt{2}}$$
$$\theta = 45^\circ = \frac{\pi}{4}$$

The configuration is shown below. Here A is point source.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Thus area

or

$$=\pi r^2 = \pi \times OB = \pi m^2$$

Option (C) is correct. The cut-off frequency is

$$f_c = \frac{c}{2}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{m}{b}\right)^2}$$

Since the mode is TE_{30} , m = 3 and n = 0

$$f_c = \frac{c}{2} \frac{m}{a}$$
$$18 \times 10^9 = \frac{3 \times 10^8}{2} \frac{3}{a}$$

or
$$a = \frac{1}{40} \text{ m} = \frac{5}{2} \text{ cm}$$

Option (C) is correct. 9.52

> We have $E_1 = 4u_x + 3u_y + 5u_z$

Since for dielectric material at the boundary, tangential component of electric field are equal

$$E_{21} = E_{1t} = 3\hat{a}_y + 5\hat{a}_z$$

at the boundary, normal component of displacement vector are equal

 $D_{n2}=D_{n1}$ i.e. $\varepsilon_2 E_{2n} = \varepsilon_1 E_{1n}$ or $4\varepsilon_o E_{2n} = 3\varepsilon_o 4\hat{a}_z$ or

 $E_{2n} = 3\hat{a}_x$ or

 $E_2 = E_{2t} + E_{2a} = 3\hat{a}_x + 3\hat{a}_y + 5\hat{a}_z$ Thus

Option (C) is correct. 9.53 Since antenna is installed at conducting ground,

 $R_{rad} = 80\pi^2 \left(\frac{dl}{\lambda}\right)^2 = 80\pi^2 \left(\frac{50}{0.5 \times 10^3}\right)^2 = \frac{4\pi^2}{5}\Omega$

Option (C) is correct. 9.54

> $\omega = 50,000$ and $\beta = -0.004$ $v_P = \frac{\omega}{\beta} = \frac{5 \times 10^4}{-4 \times 10^{-3}} = 1.25 \times 10^7 \text{ m/s}$ Phase Velocity is

Option (C) is correct. 9.55 Refractive index of glass $\mu = 1.5$

Frequency
$$f = 10^{14}$$
 Hz
 $c = 3 \times 10^8$ m/sec
 $\lambda = \frac{c}{f} = \frac{3 \times 10^8}{10^{14}} = 3 \times 10^{-6}$

wavelength in glass is

$$\lambda_g = \frac{\alpha}{\mu} = \frac{3 \times 10^{-6}}{1.5} = 2 \times 10^{-6} \text{ m}$$

Option (D) is correct. 9.56

Option (D) is correct. 9.57

$$Z_{o} = Z_{OC}.Z_{SC}$$

$$Z_{ZC} = \frac{Z_{o}^{2}}{Z_{OC}} = \frac{50 \times 50}{100 + j150} = \frac{50}{2 + 3j}$$

$$= \frac{50(2 - 3j)}{13} = 7.69 - 11.54j$$

Option (A) is correct. 9.58 The array factor is

$$A = \cos\left(\frac{\beta d\sin\theta + \alpha}{2}\right)$$

Here $\beta = \frac{2\pi}{\lambda}$, $d = \frac{\lambda}{4}$ and $\alpha = 90^{\circ}$ $A = \cos\left(\frac{\frac{2\pi}{\lambda}\frac{\lambda}{4}\sin\theta + \frac{\pi}{2}}{2}\right) = \cos\left(\frac{\pi}{4}\sin\theta + \frac{\pi}{2}\right)$

 π^2

7

Thus

The option (A) satisfy this equation.

Option (C) is correct. 9.59 From the diagram, VSWR is

 $s = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{4}{1} = 4$

When minima is at load $Z_0 = s.Z_L$

 \mathbf{or}

or
$$Z_L = \frac{Z_o}{s} = \frac{50}{4} = 12.5\Omega$$

Option (A) is correct. 9.60

The reflection coefficient is

$$\Gamma = \frac{Z_L - Z_O}{Z_L + Z_O} = \frac{12.5 - 50}{125. + 50} = -0.6$$

Option (C) is correct. 9.61

The given figure represent constant reactance circle.

Option (D) is correct. 9.62

We know that $v_p > c > v_q$.

Option (A) is correct. 9.63

We have
$$G_D(\theta, \phi) = \frac{4\pi U(\theta, \phi)}{P_{rad}}$$

For lossless antenna

 $P_{rad} = P_{in}$ $P_{rad} = P_{in} = 1 \text{ mW}$ Here we have $10 \log G_D(\theta, \phi) = 6 \text{ dB}$ and $G_D(\theta, \phi) = 3.98$ or

Thus the total power radiated by antenna is

$$4\pi U(\theta,\phi) = P_{rad} G_D(\theta,\phi) = 1 \text{ m } \times 3.98 = 3.98 \text{ mW}$$

9.64 Option (D) is correct.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

The capacitance is

$$C = \frac{\varepsilon_o A}{d} = \frac{8.85 \times 10^{-12} \times 10^{-4}}{10^{-3}} = 8.85 \times 10^{-13}$$

The charge on capacitor is

$$Q = CV = 8.85 \times 10^{-13} = 4.427 \times 10^{-13}$$

Displacement current in one cycle

$$I = \frac{Q}{T} = fQ = 4.427 \times 10^{-13} \times 3.6 \times 10^9 = 1.59 \text{ mA}$$

9.65 Option (C) is correct.

$$\frac{V_L}{V_{in}} = \frac{Z_O}{Z_{in}}$$
$$V_L = \frac{Z_O}{Z_{in}} V_{in} = \frac{10 \times 300}{50} = 60 \text{ V}$$

Option (D) is correct. 9.66

Option (A) is correct. 9.67

$$R_{avg} = \frac{1}{2} \operatorname{Re}\left[\vec{E} \times \vec{H}^{*}\right]$$
$$\vec{E} \times \vec{H}^{*} = (\hat{a}_{x} + j\hat{a}_{y}) e^{jkz - j\omega t} \times \frac{k}{\omega\mu} (-j\hat{a}_{x} + \hat{a}_{y}) e^{-jkz + j\omega t}$$
$$= \hat{a}_{z} \left[\frac{k}{\omega\mu} - (-j)(j)\frac{k}{\omega\mu}\right] = 0$$
$$R_{avg} = \frac{1}{2} \operatorname{Re}\left[\vec{E} \times \vec{H}^{*}\right] = 0$$

Option (A) is correct.

9.68

Thus

or

Suppose at point P impedance is

$$Z = r + j(-1)$$

If we move in constant resistance circle from point P in clockwise direction by an angle 45°, the reactance magnitude increase. Let us consider a point Q at 45° from point P in clockwise direction. It's impedance is

$$Z_1 = r - 0.5j$$

$$Z_1 = Z + 0.5j$$

Thus movement on constant r - circle by an $\angle 45^{\circ}$ in CW direction is the addition of inductance in series with Z.

Option (D) is correct. 9.69

or

or

or

9.70

or

 $VSWR = \frac{E_{max}}{E_{min}} = 5 = \frac{1 - |\Gamma|}{1 + |\Gamma|}$ We have $|\Gamma| = \frac{2}{3}$ $\Gamma = -\frac{2}{3}$ Thus $\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$ Now $-\frac{2}{3} = \frac{\eta_2 - 120\pi}{\eta_2 + 120\pi}$ $\eta_2 = 24\pi$ Option (D) is correct. $2 = \frac{1 - |\Gamma|}{1 + |\Gamma|}$ The VSWR

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

or

Thus

or

$$\frac{P_{ref}}{P_{inc}} = |\Gamma|^2 = \frac{1}{9}$$
$$P_{ref} = \frac{P_{inc}}{9}$$

 $|\Gamma| = \frac{1}{2}$

i.e. 11.11% of incident power is reflected.

Option (C) is correct. 9.71 By Maxwells equations

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + J$$

Thus $\nabla \times \vec{H}$ has unit of current density J that is A/m^2

 $\delta \propto \frac{1}{\sqrt{f}}$

 $\frac{\delta_2}{\delta} = \sqrt{\frac{f_1}{f_1}}$

Option (B) is correct. 9.72

We know that

Thus

or

$$\delta_1 \qquad \sqrt{\frac{5}{2}}$$
$$\frac{\delta_2}{25} = \sqrt{\frac{1}{4}}$$
$$\delta_2 = \sqrt{\frac{1}{4}} \times 25 =$$

Option (C) is correct. 9.73

We have

 $E_1 = 2u_x - 3u_y + 1u_z$ $E_{1t} = -3u_y + u_y$ and $E_{1n} = 2u_x$

$$E_{1t} = -3u_y + u_y = E_{2t} \qquad (x = 0 \text{ plane})$$
$$E_{1n} = 2u_x$$

12.5 cm

At the boundary the for normal component of electric field are $D_{1n}=D_{2n}$

$$arepsilon_1 E_{1n} = arepsilon_2 E_{2n}
onumber \ 1.5arepsilon_o 2u_x = 2.5arepsilon_o E_{2n}
onumber \ E_{2n} = rac{3}{2.5}u_x = 1.2u_x$$

 $E_2 = E_{2t} + E_{2n} = -3u_y + u_z + 1.2u_x$

Option (C) is correct. 9.74

or

or

or

Thus

We have

$$E = xu_x + yu_y + zu_z$$

$$dl = \hat{u}_x \, dx + \hat{u}_y \, dy + \hat{u}_z \, dz$$

$$V_{XY} = -\int_X^Y E \, dl$$

$$= \int_1^2 x dx \hat{u}_x + \int_2^0 y dy \hat{u}_z + \int_3^0 z dz \hat{u}z$$

$$= -\left[\frac{x^2}{2}\Big|_1^2 + \frac{y^2}{2}\Big|_2^0 + \frac{z^2}{2}\Big|_3^0\right]$$

$$= -\frac{1}{2}[2^2 - 1^2 + 0^2 - 2^2 + 0^2 - 3^2] = 5$$

Option (D) is correct. 9.75

$$\eta = \sqrt{\frac{\mu}{\varepsilon}}$$

Reflection coefficient

$$\tau = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$

Substituting values for η_1 and η_2 we have

$$\tau = \frac{\sqrt{\frac{\mu_o}{\varepsilon_o \varepsilon_r}} - \sqrt{\frac{\mu_o}{\varepsilon_o}}}{\sqrt{\frac{\mu_o}{\varepsilon_o \varepsilon_r}} + \sqrt{\frac{\mu_o}{\varepsilon_o}}} = \frac{1 - \sqrt{\varepsilon_r}}{1 + \sqrt{\varepsilon_r}} = \frac{1 - \sqrt{4}}{1 + \sqrt{4}} \qquad \text{since}$$

$$=\frac{-1}{3}=0.333\angle 180^{\circ}$$

Option (B) is correct. 9.76 $E(z,t) = 10\cos(2\pi \times 10^7 t - 0.1\pi z)$ We have $\omega = 2\pi \times 10^7 t$ where $\beta = 0.1\pi$ $u = \frac{\omega}{\beta} = \frac{2\pi \times 10^7}{0.1\pi} = 2 \times 10^8 \text{ m/s}$ Phase Velocity Option (A) is correct. 9.77

The fig of transmission line is as shown below. $[7 + i7 \tan \beta]$

We know that
$$Z_{in} = Z_o \frac{[Z_L + jZ_o \tan \beta l]}{[Z_o + jZ_L \tan \beta l]}$$

For line 1, $l = \frac{\lambda}{2}$ and $\beta = \frac{2\pi}{\lambda}, Z_{L1} = 100\Omega$

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

 $Z_{in1} = Z_o \frac{[Z_L + jZ_o \tan \pi]}{[Z_o + jZ_L \tan \pi]} = Z_L = 100\Omega$ Thus For line 2, $l = \frac{\lambda}{8}$ and $\beta = \frac{2\pi}{\lambda}$, $Z_{L2} = 0$ (short circuit) $Z_{in2} = Z_o \frac{[0 + jZ_o \tan \frac{\pi}{4}]}{[Z_o + 0]} = jZ_o = j50\Omega$ Thus $Y = \frac{1}{Z_{in1}} + \frac{1}{Z_{in2}} = \frac{1}{100} + \frac{1}{j50} = 0.01 - j0.02$

9.78 Option (A) is correct.

$$u = \frac{c}{\sqrt{\varepsilon_0}} = \frac{3 \times 10^8}{2} = 1.5 \times 10^8$$

In rectangular waveguide the dominant mode is TE_{10} and

$$f_{C} = \frac{v}{2} \sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}$$
$$= \frac{1.5 \times 10^{8}}{2} \sqrt{\left(\frac{1}{0.03}\right)^{2} + \left(\frac{0}{b}\right)^{2}} = \frac{1.5 \times 10^{8}}{0.06} = 2.5 \text{ GHz}$$

9.79 Option (D) is correct.

Normalized array factor =
$$2\left|\cos\frac{\psi}{2}\right|$$

 $\psi = \beta d\sin\theta\cos\phi + \delta$
 $\theta = 90^{\circ},$
 $d = \sqrt{2} s,$
 $\phi = 45^{\circ},$
 $\delta = 180^{\circ}$
Now $2\left|\cos\frac{\psi}{2}\right| = 2\cos\left[\frac{\beta d\sin\theta\cos\phi + \delta}{2}\right]$
 $= 2\cos\left[\frac{2\pi}{\lambda \cdot 2}\sqrt{2} s\cos 45^{\circ} + \frac{180}{2}\right]$
 $= 2\cos\left[\frac{\pi s}{\lambda} + 90^{\circ}\right] = 2\sin\left(\frac{\pi s}{\lambda}\right)$

9.80 Option (D) is correct.

VSWR $s = \frac{1+\Gamma}{1-\Gamma}$ where Γ varies from 0 to 1

Thus s varies from 1 to ∞ .

9.81 Option (B) is correct.

Reactance increases if we move along clockwise direction in the constant resistance circle. 9.89

9.82 Option (C) is correct. Phase velocity

$$V_P = \frac{V_C}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$$

When wave propagate in waveguide $f_c < f \rightarrow V_P > V_C$

 $E = (0.5\hat{x} + \hat{y}e^{j\frac{\pi}{2}}) e^{j(\omega t - kz)}$

9.83

Option (C) is correct.
We have
$$E =$$

$$|E_x| = 0.5 e^{j(\omega t - kz)}$$

$$|E_y| = e^{j\frac{\pi}{2}} e^{j(\omega t - kz)}$$

 $\frac{|E_x|}{|E_y|} = 0.5 e^{-\frac{\pi}{2}}$

Since $\frac{|E_x|}{|E_y|} \neq 1$, it is elliptically polarized.

Loss tangent

or

$$\tan \alpha = \frac{\sigma}{\omega \varepsilon} = \frac{1.7 \times 10^{-4}}{2\pi \times 3 \times 10^9 \times 78\varepsilon_o}$$
$$= \frac{1.7 \times 10^{-4} \times 9 \times 10^9}{3 \times 10^9 \times 39} = 1.3 \times 10^{-5}$$

9.85 Option (D) is correct. The flux density is $\sigma = \varepsilon E = \varepsilon_0 \varepsilon_r E = 80 \times 8.854 \times 10^{-12} \times 2$

$$\sigma = 1.41 \times 10^{-9} \mathrm{C/m^2}$$

9.86 Option (B) is correct.

$$P \propto \frac{1}{r^2}$$
Thus $\frac{P_1}{P_2} = \frac{r_2^2}{r_1^2}$
3 dB decrease \longrightarrow Strength is halved
Thus $\frac{P_1}{P_2} = 2$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Substituting values we have

$$2 = \frac{r_2^2}{5^2}$$

 $r_2 = 5\sqrt{2} \, \mathrm{kM} = 7071 \, \mathrm{m}$

Distance to move = 7071 - 5000 = 2071 m

Option (C) is correct.

or

9.87

9.88

A transmission line is distortion less if LG = RC

Option (B) is correct.

We have
$$\frac{d^2 E_x}{dz^2} = c^2 \frac{d^2 E_x}{dt^2}$$

This equation shows that x component of electric fields E_x is traveling in z direction because there is change in z direction.

Option (A) is correct.

In wave guide $v_p > c > v_g$ and in vacuum $v_p = c = v_g$

$$v_p \longrightarrow$$
 Phase velocity

 $c \longrightarrow$ Velocity of light

$$v_a \longrightarrow \text{Group velocity}$$

9.90 Option (A) is correct.

where

In a wave guide dominant gives lowest cut-off frequency and hence the highest cut-off wavelength.

9.91 Option (A) is correct.

or

$$|I_{c}| = |I_{d}|$$

$$|\sigma E| = |j\omega \in E|$$
or

$$\sigma = 2\pi f \varepsilon_{o} \varepsilon_{r} \qquad \omega = 2\pi f \text{ and } \varepsilon = \varepsilon_{r} \varepsilon_{0}$$
or

$$f = \frac{\sigma}{2\pi \times \varepsilon_{o} \varepsilon_{r}} = \frac{2\sigma}{4\pi \varepsilon_{o} \varepsilon_{r}} = \frac{9 \times 10^{9} \times 2 \times 10^{-2}}{4}$$
or

$$f = 45 \times 10^{6} = 45 \text{ MHz}$$

9.92 Option (B) is correct.

$$VSWR = \frac{1+\Gamma}{1-\Gamma}$$
or
$$3 = \frac{1+\Gamma}{1-\Gamma}$$
or
$$\Gamma = 0.5$$
Now
$$\frac{P_r}{P_i} = \Gamma^2 = 0.25$$

Thus 25% of incident power is reflected.

Option (A) is correct. 9.93

and height of antenna

We have

where

 $\lambda = 492 \text{ m}$

$$= 124 \text{ m} \approx$$

4It is a quarter wave monopole antenna and radiation resistance is 25Ω .

Option (C) is correct. 9.94 The array factor is

> $\psi = \beta d\cos\theta + \delta$ $d = \frac{\lambda}{4}$

> > $\psi = 0$

Distance between elements

Because of end fire 9.102

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

Thus

or

9.96

$$\theta = 60^{\circ}$$
$$0 = \frac{2\pi}{\lambda} \times \frac{\lambda}{4} \cos 60^{\circ} + \delta = \frac{\pi}{2} \times \frac{1}{2} + \delta$$
$$\delta = -\frac{\pi}{4}$$

Option (B) is correct. 9.95

$$Z_o = \sqrt{Z_{OC} \cdot Z_{SC}} = \sqrt{100 \times 25} = 10 \times 5 = 50\Omega$$

Option (C) is correct. As the impedance of perfect conductor is zero, electric field is minimum and magnetic field is maximum at the boundary.

Option (B) is correct. 9.97

BW
$$\propto \frac{1}{\text{(Diameter)}}$$

As diameter increases Bandwidth decreases.

Option (C) is correct. 9.98 The fig is as shown below :

As per snell law

or

$$\frac{\sin \theta_{t}}{\sin \theta_{i}} = \sqrt{\frac{1}{\varepsilon_{r}}}$$

$$\frac{\sin 30^{\circ}}{\sin 45^{\circ}} = \frac{1}{\sqrt{\varepsilon_{r}}}$$

$$\frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{\varepsilon_{r}}}$$

Option (C) is correct.

Cutoff frequency
$$f_c = \frac{v_p}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

For rectangular waveguide dominant mode is TE_{01}

$$f_{c} = \frac{v_{p}}{2a} = \frac{3 \times 10^{\circ}}{2 \times 10^{-2}} = 15 \times 10^{9}$$

= 15 GHz

 $\beta = \frac{2\pi}{\lambda} = \omega \sqrt{\mu \varepsilon}$

 $\lambda = \frac{2\pi}{\omega\sqrt{\mu\varepsilon}}$

 $v_p = 3 \times 10^8$

Thus

or

9.99

9,100

9.101

9.103

Option (B) is correct.

Phase Velocity

Thus

we get

or

 $\lambda \propto \frac{1}{\sqrt{\varepsilon}}$ $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$

Option (D) is correct.

$$\left(\frac{\lambda}{2}\right)d = l^2$$
$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{4 \times 10^9} = \frac{3}{40} \text{m}$$
$$\left(\frac{5}{40 \times 2}\right)d = (2.4)^2$$
$$d = \frac{80 \times (2.4)^2}{3} \approx 150 \text{ m}$$

Option (C) is correct.

We know that for a monopole its electric field varies inversely with r^2 while its potential varies inversely with r. Similarly for a dipole its electric field varies inversely as r^3 and potential varies inversely as r^2 .

In the given expression both the terms a $\left(\frac{1}{r^{-1}} + \frac{1}{r^{-2}}\right)$ are present, so this potential is due to both monopole & dipole.

Option (D) is correct.

In TE mode $E_z = 0$, at all points within the wave guide. It implies that electric field vector is always perpendicular to the waveguide axis. This is not possible in semi-infine parallel plate wave guide.

Option (A) is correct. 9.104

Option (C) is correct. 9.105

A scalar wave equation must satisfy following relation

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

$$\frac{\partial^2 E}{\partial t^2} - \mu^2 \frac{\partial^2 E}{\partial z^2} = 0 \qquad \dots (1)$$

Where

Basically ω is the multiply factor of t and β is multiply factor of z or x or y.

 $\mu = \frac{\omega}{\beta} \text{ (Velocity)}$

In option (A)

$$E = 50e^{j(\omega t - 3z)}$$
$$\mu = \frac{\omega}{\beta} = \frac{\omega}{3}$$

We can see that equations in option (C) does not satisfy equation (1)

For air

We know that distance between two adjacent voltage maxima is equal to $\lambda/2$, where λ is wavelength.

> $\frac{\lambda}{2} = 27.5 - 12.5$ $\lambda=2\times15=30\,\mathrm{cm}$ $v = \frac{C}{\lambda} = \frac{3 \times 10^{10}}{30} = 1 \,\text{GHz}$

Option (D) is correct. 9.107

Frequency

Power received by antenna

$$P_R = \frac{P_T}{4\pi r^2} \times (\text{apeture}) = \frac{251 \times 500 \times 10^{-4}}{4 \times \pi \times (100)^2} = 100 \,\mu\text{W}$$

Option (C) is correct. 9.108 Electrical path length = βl

$$\beta = \frac{2\pi}{\lambda}, \ l = 50 \,\mathrm{cm}$$

We know that

Where

$$\begin{split} \lambda &= \frac{\upsilon}{f} = \frac{1}{f} \times \frac{1}{\sqrt{LC}} \qquad \because \upsilon = \frac{1}{\sqrt{LC}} \\ &= \frac{1}{25 \times 10^6} \times \frac{1}{\sqrt{10 \times 10^{-6} \times 40 \times 10^{-12}}} \\ &= \frac{5 \times 10^7}{25 \times 10^6} = 2 \text{ m} \\ \end{split}$$
Electric path length
$$&= \frac{2\pi}{5} \times 50 \times 10^{-2} = \frac{\pi}{2} \text{ radian} \end{split}$$

Option (D) is correct. 9.109

In a lossless dielectric ($\sigma = 0$) median, impedance is given by

$$\eta = \sqrt{\frac{\mu}{\varepsilon}} / \underline{0^{\circ}} = \sqrt{\frac{\mu_0 \mu_r}{\varepsilon_0 \varepsilon_r}} = 120\pi \times \sqrt{\frac{\mu_r}{\varepsilon_r}}$$
$$= 120\pi \times \sqrt{\frac{2}{8}} = 188.4 \,\Omega$$

Option (D) is correct. 9.110

Impedance is written as

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$

Copper is good conductor i.e. $\sigma >> \omega \varepsilon$

So

 $\eta = \sqrt{\frac{j\omega\mu}{\sigma}} = \sqrt{\frac{\omega\mu}{\sigma}} / 45^{\circ}$ Impedance will be complex with an inductive component.

9.111 Option (A) is correct.

This equation is based on ampere's law as we can see

$$H \cdot dl = I_{\text{enclosed}} \quad (\text{ampere's law})$$

 $\oint_{l} H \cdot dl = \int_{s} J ds$ or

$$\int_{s} (\nabla \times H) \cdot ds = \int_{s} J ds$$
$$\nabla \times H = J$$

then it is modified to

$$\nabla \times H = J + \frac{\partial D}{\partial t}$$
 Based on continuity equation

Option (A) is correct. 9.112

Option (B) is correct. 9.113

Option (B) is correct. 9.114 Propagation constant

$$r = \alpha + i\beta = 0.1\pi + j0.2\pi$$

here

 $\beta = \frac{2\pi}{\lambda} = 0.2\pi$

$$\lambda = \frac{2}{0.2} = 10 \,\mathrm{m}$$

Option (C) is correct. 9.115

The depth of penetration or skin depth is defined as –

$$\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$$
$$\delta \propto \frac{1}{\sqrt{f}} \propto \sqrt{\lambda}$$

so depth increases with increasing in wavelength.

Option (A) is correct.

Given

9.116

9.117

So

So,

9.119

$$E(z,t) = E_o e^{j(\omega t + \beta z)} \vec{a}_x + \varepsilon_0 e^{j(\omega t + \beta z)} \vec{a}_y \qquad \dots (1$$

Generalizing

$$E(z) = \vec{a}_x E_1(z) + \vec{a}_y E_2(z) \qquad \dots (2$$

Comparing (1) and (2) we can see that $E_1(z)$ and $E_2(z)$ are in space quadrature but in time phase, their sum E will be linearly polarized

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

along a line that makes an angle ϕ with x-axis as shown below.

Option (C) is correct.
$$\vec{H} = \frac{1}{\mu} \vec{\nabla} \times \vec{A}$$

where A is auxiliary potential function.

$$\nabla \cdot H = \nabla \cdot (\nabla \times A) = 0$$

$$\lor \times H = \lor \times (\lor \times A) \neq 0$$

Option (D) is correct. 9.118

Radiation resistance of a circular loop is given as

$$R_r = \frac{8}{3}\eta \pi^3 \left[\frac{N\Delta S}{\lambda^2}\right]$$
$$R_x \propto N^2 \ N \to \text{ no. of turns}$$
$$R_{r2} = N^2 \times R_{r1}$$

 $= (5)^2 \times 0.01 = 0.25 \,\Omega$

We have

Aperture Area

$$= \frac{\text{Power Received}}{\text{Polynting vector of incident wave}}$$
$$A = \frac{W}{P}$$
$$P = \frac{E^2}{\eta_0} \ \eta_0 = 120\pi \text{ is intrinsic impedance}$$

of space

So
$$A$$

= $\frac{2 \times 10^{-6}}{\left(\frac{E^2}{\eta_0}\right)} = \frac{2 \times 10^{-6}}{\left(20 \times 10^{-3}\right)^2} \times 120 \times 3.14$

$$=\frac{2\times10^{-6}\times12\times3.14}{400\times10^{-6}}=1.884\,\mathrm{m}^2$$

9.120 Option (B) is correct.

Maximum usable frequency

$$f_m = \frac{f_o}{\sin A_e}$$
$$f_m = \frac{8 \text{MHz}}{\sin 60^\circ} = \frac{8}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{16}{\sqrt{3}} \text{ MHz}$$

9.121 Option (D) is correct.

When a moving circuit is put in a time varying magnetic field educed emf have two components. One for time variation of B and other turn motion of circuit in B.

9.122 Option (A) is correct.

Far field
$$\propto \frac{1}{r}$$

9.123 Option (B) is correct.

$$\left| Z_{\rm in} \right|_{\rm min} = \frac{Z_0}{S}$$

where S = standing wave ratio

$$S = \frac{1 + |I_L|}{1 - |\Gamma_L|}$$

$$\Gamma_L = \text{reflection coefficient}$$

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{100 - 50}{100 + 50} = \frac{50}{150} = \frac{1}{3}$$
$$S = \frac{1 + \frac{1}{3}}{1 - \frac{1}{3}} = 2$$
$$|Z_{\rm in}|_{\rm min} = \frac{50}{2} = 25\,\Omega$$

9.124 Option (A) is correct.

The cutoff frequency is given by

$$f_c = \frac{\mu'}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{2}\right)^2}$$

Here a < b, so minimum cut off frequency will be for mode TE_{01}

$$m = 0, n = 1$$

$$f_{c} = \frac{3 \times 10^{8}}{2 \times 2} \sqrt{\frac{1}{(10 \times 10^{-12})}} = \frac{3 \times 10^{8}}{2 \times 2 \times 10 \times 10^{-2}} = 0.75 \,\text{GHz}$$

9.125 Option (B) is correct.

9.126 Option (A) is correct.

For any transmission line we can write input impedance

$$Z_{in} = Z_0 \Big[rac{Z_L + j Z_0 anh h \gamma}{Z_0 + j Z_L anh h \gamma} \Big]$$

Here given $Z_L = \infty$ (open circuited at load end)

so
$$Z_{in} = Z_0 \lim_{Z_L \to \infty} \left(\frac{1 + \frac{j Z_0 \tanh k\gamma}{Z_L}}{\frac{Z_0}{Z_L} + j \tanh k\gamma} \right) = \frac{Z_0}{j \tanh k\gamma}$$

9.127 Option (A) is correct.

We know that skin depth is given by

$$s = \frac{1}{\sqrt{\pi f_{\mathrm{I}} \mu \sigma}} = 1 \times 10^{-2} \,\mathrm{m}$$

$$\frac{1}{\sqrt{\pi \times 10 \times 10^{6} \times \mu \sigma}} = 10^{-2}$$
$$\mu \sigma = \frac{10^{-3}}{\pi}$$

Now phase velocity at another frequency

$$f_2 = 1000 \text{ MHz is}$$

 $V = \sqrt{\frac{4\pi f_2}{\mu\sigma}}$
 $\mu\sigma = \frac{10^{-3}}{\pi}$ in above equation

Put

or

or

$$=\sqrt{\frac{4\times\pi\times1000\times10^6\times\pi}{10^{-3}}} \simeq 6\times10^6\,\mathrm{m/sec}$$

V

9.128 Option (A) is correct.

Input impedance of a lossless transmission line is given by

$$Z_{in} = Z_0 \left[\frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} \right]$$

$$Z_0 = \text{Charateristic impedance of line}$$

$$Z_L = \text{Load impedance}$$

$$\beta = \frac{2\pi}{\lambda} \qquad l = \text{length}$$

$$\beta l = \frac{2\pi}{\lambda} \frac{\lambda}{4} = \frac{\pi}{2}$$

so here

where

_

 \mathbf{SO}

Velocity

$$Z_0 = 50 \,\Omega$$
$$[0 + i50 \tan \pi/2]$$

$$Z_{in} = 50 \left[\frac{0 + j0 \tan \pi/2}{50 + j0 \tan \pi/2} \right] = \infty$$

 $Z_L = 0$

Thus infinite impedance, and current will be zero.

9.129 Option (B) is correct.

For lossless transmission line, we have

$$V = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} \qquad \dots (1)$$

 $E_i \rightarrow$ Incident power

Characteristics impedance for a lossless transmission line

$$Z_0 = \sqrt{\frac{L}{C}} \qquad \dots (2)$$

(Short circuited)

From eqn. (1) and (2)

$$V = \frac{1}{\sqrt{C} \left(Z_0 \sqrt{C} \right)} = \frac{1}{Z_0 C}$$

9.130 Option (C) is correct.

9.131 Option (A) is correct.

9.132 Option (C) is correct.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

Reflected power

$$E_r = \Gamma E_i$$

$$\Gamma = \text{Reflection coefficient}$$

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{1.5 - 1}{1.5 + 1} = \frac{1}{5}$$

$$E_r = \frac{1}{5} \times E_i$$

$$\frac{E_r}{E_i} = 20\%$$

9.133 Option (B) is correct.

So

We have maximum usable frequency formulae as

$$f_m = \frac{f_0}{\sin A_e}$$

Page 238

 $f_1 = 10 \, \text{MHz}$

$$20 imes 10^6 = rac{10 imes 10^6}{\sin A_e}$$
 $\sin A_e = rac{1}{2}$ $A_e = 30^\circ$

9.134 Option (C) is correct.

9.135 Option (A) is correct.

Skin depth
$$\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$$

Putting the given value

$$= 15.9\,\mu\mathrm{m}$$

$$\delta = \frac{1}{\sqrt{3.14 \times 1 \times 10^9 \times 4\pi \times 10^{-7} \times 10^6}}$$

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store Click to Buy www.nodia.co.in

ONE MARK

UNIT 10

GENERAL APTITUDE

YEAR 2013 ONE MARK

- Choose the grammatically CORRECT sentence: 10.1 (A) Two and two add four (B)Two and two become four
 - (C) Two and two are four (D) Two and two make four
- Statement: You can always give me a ring whenever you need. 10.2 Which one of the following is the best inference from the above statement?
 - (A) Because I have a nice caller tune.
 - (B) Because I have a better telephone facility
 - (C) Because a friend in need is a friend indeed

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in

- (D) Because you need not pay towards the telephone bills when you give me a ring
- In the summer of 2012, in New Delhi, the mean temperature of 10.3 Monday to Wednesday was 41°C and of Tuesday to Thursday was 43° C. If the temperature on Thursday was 15% higher than that of Monday, then the temperature in °C on Thursday was

(A) 40	(B) 43
(C) 46	(D) 49

Complete the sentence: Dare mistakes. 10.4 (A) commit (B) to commit (C) committed (D) committing

They were requested not to quarrel with others. 10.5 Which one of the following options is the closest in meaning to the word quarrel? (A) make out (B) call out

()	() = =====
(C) dig out	(D) fall out

Option (D) is correct. 10.1 They were requested not to quarrel with others. Quarrel has a similar meaning to 'fall out'

YEAR 2013

TWO MARKS

- A car travels 8 km in the first quarter of an hour, 6 km in the 10.6 second quarter and 16 km in the third quarter. The average speed 10.15 of the car in km per hour over the entire journey is (A) 30(B) 36 (C) 40 (D) 24
- Find the sum to n terms of the series 10 + 84 + 734 + ...10.7 (A) $\frac{9(9^n+1)}{10} + 1$ (B) $\frac{9(9^n-1)}{8}+1$

- (C) $\frac{9(9^n 1)}{8} + n$ (D) $\frac{9(9^n-1)}{8} + n^2$
- Statement: There were different streams of freedom movements 10.8 in colonial India carried out by the moderates, liberals, radicals, socialists, and so on.

Which one of the following is the best inference from the above statement?

- (A) The emergence of nationalism in colonial India led to our Independence
- (B) Nationalism in India emerged in the context of colonialism
- (C) Nationalism in India is homogeneous
- (D) Nationalism in India is heterogeneous

The set of values of p for which the roots of the equation $3x^2 + 2x + p(p-1) = 0$ are of opposite sign is

(A) $(-\infty, 0)$	(B) $(0,1)$
(C) $(1,\infty)$	(D) $(0,\infty)$

What is the chance that a leap year, selected at random, will contain 10.10 53 Sundays?

(A) $2/7$	(B) $3/7$
(C) $1/7$	(D) $5/7$

2012

10.9

If $(1.001)^{1259} = 3.52$ and $(1.001)^{2062} = 7.85$, then $(1.001)^{3321}$ 10.11 (A) 2.23 (B) 4.33 (D) 27.64 (C) 11.37

Choose the most appropriate alternate from the options given below 10.12 to complete the following sentence :

If the tired soldier wanted to lie down, he.....the mattress out on the balcony.

- (A) should take (B) shall take (D) will have taken (C) should have taken
- Choose the most appropriate word from the options given below to 10.13 complete the following sentence :

Give the seriousness of the situation that he had to face, his...... was impressive.

(B) nomenclature (A) beggary (C) jealousy (D) nonchalance

Which one of the following options is the closest in meaning to the 10.14

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

word given below ?	
Latitude	
(A) Eligibility	(B) Freedom
(C) Coercion	(D) Meticulousness

One of the parts (A, B, C, D) in the sentence given below contains an ERROR. Which one of the following is **INCORRECT**? I requested that he should be given the driving test today instead of tomorrow. (A) requested that

- (B) should be given
- (C) the driving test (D) instead of tomorrow

E Electronics and Communica	tion Topicwise Solved Paper by RK Kanodia & Ashish Murolia			Page 241
2012	TWO MARKS	10.22	_	s of a pair of related words followed b
legious, military law on the battlefield kep the odds and conditi Which one of the fol	of the Roman legions was discipline. In the prevailed and discipline was brutal. Discipline of units obedient, intact and fighting, even when ons were against them. lowing statements best sums up the meaning		four pairs of words. Select thein the original pair :Gladiator : Arena(A) dancer : stage(C) teacher : classroom	he pair that best expresses the relation(B) commuter : train(D) lawyer : courtroom
of the Roman le(B) The legions were(C) Disciplines was(D) The harsh disciplication	the armies inheritance from their seniors bline to which the legions were subjected to led conditions being against them.	10.23	complete the following sente Under ethical guidelines rece Association, human genes as	te word from the options given below t ence : ently adopted by the Indian Medical re to be manipulated only to correct treatments are unsatisfactory. (B) most (D) available
notes and Rs. 10 no 230. The number of (A) 5	y notes in his pocket consisting of only Rs. 20 tes. The total money values of the notes is Rs. Rs. 10 notes that Raju has is (B) 6	10.24	Choose the word from the fr opposite in meaning to the g Frequency (A) periodicity	om the options given below that is mo given word : (B) rarity
equal weight and or	(D) 10 gs of rice looking alike, seven of which have he is slightly heavier. The weighing balance is		market Book is available i	STUDY MATERIAL FORM) in 3 volume i.e. in 3 book binding Store book is available in 10 book

equal weight and one is slightly heavier. The weighing balance is of unlimited capacity. Using this balance, the minimum number of weighings required to identify the heavier bag is (A) 2 (B) 3

(11) 2	
(C) 4	(D) 8

^{10.19} The data given in the following table summarizes the monthly budget of an average household.

Category	Amount (Rs.)
Food	4000
Clothing	1200
Rent	2000
Savings	1500
Other Expenses	1800

The approximate percentages of the monthly budget **NOT** spent on savings is

(A) 10%	(B) 14%
(C) 81%	(D) 86%

^{10.20} A and B are friends. They decide to meet between 1 PM and 2 PM on a given day. There is a conditions that whoever arrives first will not wait for the other for more than 15 minutes. The probability that they will meet on that days is (A) 1/4 (B) 1/16

$(\Lambda) 1/4$	(D) 1/10
(C) $7/16$	(D) 9/16

2011

ONE MARK

10.21 There are two candidates P and Q in an election. During the campaign, 40% of voter promised to vote for P, and rest for Q. However, on the day of election 15% of the voters went back on their promise to vote for P and instead voted for Q. 25% of the voter went back on their promise to vote for Q and instead voted for P. Suppose, P lost by 2 votes, then what was the total number of voters ?

(A) 100	(B) 110
(C) 90	(D) 95

techno-crafts, so that to invite them to come back would be counter-productive.

(A) identified

10.25

(C) gradualness

complete the following sentence :

(B) ascertained

(D) persistency

(C) exacerbated (D) analysed

binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy www.nodia.co.in

Choose the most appropriate word from the options given below to

It was her view that the country's had been by foreign

2011

TWO MARKS

^{10.26} The fuel consumed by a motor cycle during a journey while travelling at various speed is indicated in the graph below.

The distance covered during four laps of the journey are listed in the table below

Lap	Distance (km)	Average speed (km/hour)
Р	15	15
Q	75	45
R	40	75
S	10	10

From the given data, we can conclude that the fuel consumed per kilometre was least during the lap

(A) P	(B) Q
(C) R	(D) S

- 10.27 The horse has played a little known but very important role in the field of medicine. Horses were injected with toxins of disease until their blood build up immunities. Then a serum was made from their blood. Serums to fight with diphteria and tetanus were developed this way.
 - It can be inferred from the passage, that horses were
 - (A) given immunity to diseases
 - (B) generally quite immune to diseases
 - (C) given medicines to fight toxins
 - (D) given diphtheria and tetanus serums
- 10.28The sum of n terms of the series $4 + 44 + 444 + \dots$
(A) $(4/81) [10^{n+1} 9n 1]$
(B) $(4/81) [10^{n-1} 9n 1]$
(C) $(4/81) [10^{n+1} 9n 10]$
(D) $(4/81) [10^n 9n 10]$
- Given that f(y) = |y|/y, and q is any non-zero real number, the value of |f(q) f(-q)| is

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit **www.nodia.co.in**

(A) 0	(B) - 1
(C) 1	(D) 2

- ^{10.30} Three friends R, S and T shared toffee from a bowl. R took $1/3^{rd}$ of the toffees, but returned four to the bowl. S took $1/4^{th}$ of what was left but returned three toffees to the bowl. T took half of the remainder but returned two back into the bowl. If the bowl had 17 toffees left, how many toffees were originally there in the bowl? (A) 38 (B) 31
 - (C) 48 (D) 41

2010

^{10.31} Which of the following options is the closest in meaning to the word below ?

Circuitous	
(A) Cyclic	(B) Indirect
(C) Confusing	(D) Crooked

10.32 The question below consist of a pair of related words followed by four pairs of words. Select the pair that best expresses the relation in the original pair. Unemployed : Worker

(A) Fallow : Land	(B) Unaware : Sleeper
(C) Wit : Jester	(D) Renovated : House

^{10.33} Choose the most appropriate word from the options given below to complete the following sentence :

If we manage to our natural resources, we would leave a better planet for our children.

(A) unhold (B) re	estrain
-------------------	---------

(C) cherish (D) conserve

10.34 Choose the most appropriate word from the options given below to complete the following sentence :

His rather casual remarks on politics.....his lack of seriousness about the subject.

(A) masked	(B) belied
(C) betrayed	(D) suppressed

25 persons are in a room 15 of them play hockey, 17 of them play football and 10 of them play hockey and football. Then the number of persons playing neither hockey nor football is

(A) 2	(B) 17
(C) 13	(D) 3

201	0

10.35

10.36

ONE MARK

TWO MARKS

Modern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare ; and regretfully, their exist people in military establishments who think that chemical agents are useful fools for their cause.

Which of the following statements best sums up the meaning of the above passage ?

- (A) Modern warfare has resulted in civil strife.
- (B) Chemical agents are useful in modern warfare.
- (C) Use of chemical agents in ware fare would be undesirable.
- (D) People in military establishments like to use chemical agents in war.

10.37	If $137 + 276 = 435$ how much	is $731 + 672$?
	(A) 534	(B) 1403

(C) 1623	(D) 1531

5 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall ? (A) 20 days

(\mathbf{A}) 20 days	(D) 10 days
(C) 16 days	(D) 15 days

10.39 Given digits 2, 2, 3, 3, 3, 4, 4, 4 how much distinct 4 digit numbers greater than 3000 can be formed ?

(A) 50	(B) 51
(C) 52	(D) 54

10.40 Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

and sisters.) All were born on 1^{st} January. The age difference between any two successive siblings (that is born one after another) is less than 3 years. Given the following facts :

- 1. Hari's age + Gita's age > Irfan's age + Saira's age.
- 2. The age difference between Gita and Saira is 1 year. However, Gita is not the oldest and Saira is not the youngest.
- 3. There are no twins.
- In what order were they born (oldest first) ?
- (A) HSIG (B) SGHI
- (C) IGSH (D) IHSG

SOLUTIONS

- Option (D) is correct 10.1 Two and two make four
- Option (C) is correct. 10.2 You can always given me a ring whenever you need. Because a friend is need is a friend indeed
- Option (C) is correct. 10.3

and

Let the temperature on Monday, Tuesday, Wednesday and Thursday be respectively as T_M, T_{TU}, T_W, T_{TH} So, from the given data we have

$$\frac{T_H + T_{TU} + T_W}{3} = 41 \qquad \dots (1)$$

$$\frac{T_{TU} + T_W + T_{TH}}{3} = 43 \qquad \dots (2)$$

also, as the temperature on Thursday was 15% higher than that of Monday

 $T_{TH} = 1.15 T_M$ i.e.(3)

solving eq (1), (2) and (3), we obtain

$$T_{TH} = 46^{\circ} \mathrm{C}$$

Option (B) is correct. 10.4 Dare to commit mistakes

10.5 Option (D) is correct. They were requested not to quarrel with others. Quarrel has a similar meaning to 'fall out'

10.6 Option (C) is correct.

> Given, the distance travelled by the car in each quarter intervals as

Distance	Time Duration
8 km	$\frac{1}{4}$ hr
$6 \mathrm{km}$	$\frac{1}{4}$ hr
$16 \mathrm{~km}$	$\frac{1}{4}$ hr

Therefore, the total time taken $= \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{3}{4}$ hr

Total distance travelled = 8 + 6 + 16 = 30 km

Hence,

average speed = $\frac{\text{Total distance travelled}}{7}$

Total time taken

$$=\frac{30}{3/4} = 40 \text{ km/hr}$$

Option (D) is correct. 10.7

> It will be easy to check the options for given series. From the given series.

We get

Sum of 1 term $= S_1 = 10$

 $10 + 84 + 734 + \dots$

Sum of 2 terms
$$= S_2 = 10 + 84 = 94$$

and sum of 3 terms $= S_3 = 10 + 84 + 734 = 828$

Checking all the options one by one, we observe that only (D) option satisfies as

$$S_n = \frac{9(9^n - 1)}{8} + n^2$$
$$S_1 \frac{9(9^2 - 1)}{8} + 2^2 = 10$$

$$S_2 = \frac{9(9-1)}{8} + 2^2 = 94$$
$$S_3$$

< 0

 $=\frac{9(9^3-1)}{8}+3^2=828$

10.9

or

Option (D) is correct. 10.8 Nationalism in India is heterogeneous

Option (B) is correct. Given, the quadratic equation

$$3x^2 + 2x + P(P-1) = 0$$

It will have the roots with opposite sign if

$$P(P-1)$$

So it can be possible only when

$$P < 0 \text{ and } P - 1 > 0$$

$$P > 0$$
 and $P - 1 < 0$

The 1^{st} condition tends to no solution for P.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding. Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

Hence, from the second condition, we obtain

i.e., P is in the range (0,1)

Option (A) is correct. 10.10

> In a leap year, there are 366 days So, 52 weeks will have 52 saturdays and for remaining two days $(366 - 52 \times 7 = 2)$. We can have the following combinations

- Saturday, Sunday
- Sunday, Monday
- Monday, Tuesday
- Tuesday, Wednesday
- Wednesday, Thursday
- Thursday, Friday
- Friday, Saturday

Out of these seven possibilities, only two consist a saturday. Therefore, the probability of saturday is given as

$$P = \frac{2}{7}$$

 $x^{1259} = 3.52$

1.001 = x

Option (D) is correct.

Let

So in given data :

Again

10.11

$$\begin{aligned} x^{2062} &= 7.85\\ x^{3321} &= x^{1259+2062}\\ &= x^{1259}x^{2062}\\ &= 3.52 \times 7.85\\ &= 27.64 \end{aligned}$$

10.12 Option (C) is correct.

Option (D) is correct. 10.13

Option (B) is correct. 10.14

so,

Page 243

$$=\frac{9000}{10500}\times100\%=86\%$$

Option (A) is correct. 10.16

10.15

Option (B) is correct.

10.17 Option (A) is correct. Let no. of notes of Rs.20 be x and no. of notes of Rs. 10 be y. Then from the given data.

x + y = 14

$$x + 10y = 230$$

20xSolving the above two equations we get

x = 9, y = 5So, the no. of notes of Rs. 10 is 5.

Option (A) is correct. 10.18

We will categorize the 8 bags in three groups as :

(i) $A_1 A_2 A_3$, (ii) $B_1 B_2 B_3$, (iii) $C_1 C_2$

Weighting will be done as bellow :

 1^{st} weighting $\rightarrow A_1 A_2 A_3$ will be on one side of balance and $B_1 B_2 B_3$ on the other. It may have three results as described in the following cases.

Case 1 :

if

if

GATE Electronics & Communication by RK Kanodia Now in 3 Volume

 $A_1 A_2 A_3 = B_1 B_2 B_3$

Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free

visit www.nodia.co.in

This results out that either C_1 or C_2 will heavier for which we will have to perform weighting again.

 2^{nd} weighting $\rightarrow C_1$ is kept on the one side and C_2 on the other.

 $C_1 > C_2$ then C_1 is heavier.

 $C_1 < C_2$ then C_2 is heavier.

 $A_1 A_2 A_3 > B_1 B_2 B_3$ **Case 2 :**

it means one of the $A_1A_2A_3$ will be heavier So we will perform next weighting as:

 2^{nd} weighting $\rightarrow A_1$ is kept on one side of the balance and A_2 on the other.

 $A_1 = A_2$ it means A_3 will be heavier

> $A_1 > A_2$ then A_1 will be heavier

 $A_1 < A_2$ then A_2 will be heavier

Case 3: $A_1 A_2 A_3 < B_1 B_2 B_3$

This time one of the $B_1B_2B_3$ will be heavier, So again as the above case weighting will be done.

 2^{nd} weighting $\rightarrow B_1$ is kept one side and B_2 on the other

if $B_1 = B_2$ B_3 will be heavier

> B_1 will be heavier $B_1 > B_2$

> > $B_1 < B_2$ B_2 will be heavier

So, as described above, in all the three cases weighting is done only two times to give out the result so minimum no. of weighting required = 2.

Option (D) is correct. 10.19

Total budget = 4000 + 1200 + 2000 + 1500 + 1800

= 10,500

The amount spent on saving = 1500

So, the amount not spent on saving

= 10,500 - 1500 = 9000

So, percentage of the amount

Option (S) is correct. 10.20

> The graphical representation of their arriving time so that they met is given as below in the figure by shaded region.

So, the area of shaded region is given by

Area of $\Box PQRS - (Area of \Delta EFQ +$

Area of ΔGSH

$$= 60 \times 60 - 2\left(\frac{1}{2} \times 45 \times 45\right)$$
$$= 1575$$
So, the required probability
$$= \frac{1575}{3600} = \frac{7}{16}$$

Option (A) is correct.

10.21

Let us assume total voters are 100. Thus 40 voter (i.e. 40%) promised to vote for P and 60 (rest 60 %) promised to vote fore Q. Now, 15% changed from P to Q (15% out of 40)

	/0 eut er 10)
Changed voter from P to Q	$\frac{15}{100} \times 40 = 6$
Now Voter for P	40 - 6 = 34

Also, 25% changed form Q to P (out of 60%)

Changed voter from Q to P

 $\frac{25}{100} \times 60 = 15$

34 + 15 = 49

Thus P P got 49 votes and Q got 51 votes, and P lost by 2 votes, which is given. Therefore 100 voter is true value.

10.22 Option (A) is correct.

Now Voter for P

A gladiator performs in an arena. Commutators use trains. Lawyers

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014

performs, but do not entertain like a gladiator. Similarly, teachers educate. Only dancers performs on a stage.

10.23 Option (D) is correct.

> Available is appropriate because manipulation of genes will be done when other treatments are not useful.

Option (B) is correct. 10.24 Periodicity is almost similar to frequency. Gradualness means

something happening with time. Persistency is endurance. Rarity is opposite to frequency.

Option (C) is correct. 10.25

The sentence implies that technocrats are counterproductive

(negative). Only (C) can bring the same meaning.

10.26 Option (B) is correct.

Since fuel consumption/litre is asked and not total fuel consumed, only average speed is relevant. Maximum efficiency comes at 45 km/ hr, So least fuel consumer per litre in lap Q

10.27 Option (B) is correct.

Option B fits the sentence, as they built up immunities which helped humans create serums from their blood.

10.28 Option (C) is correct.

$$4 + 44 + 444 + \dots + 4(1 + 11 + 111 + \dots)$$
$$= \frac{4}{9}(9 + 99 + 999 + \dots)$$

$$= \frac{4}{9}[(10-1) + (100-1) + \dots]$$

$$= \frac{4}{9}[10(1+10+10^2+10^3) - n]$$

$$= \frac{4}{9}[10 \times \frac{10^n - 1}{10-1} - n]$$

$$= \frac{4}{81}[10^{n+1} - 10 - 9n]$$

10.29 Option (D) is correct.

Now

$$f(y) = \frac{|y|}{y}$$
$$f(-y) = \frac{|-y|}{y} = -f(y)$$
$$|f(q) - f(-q)| = |2f(q)| = 2$$

or

10.30

Option (C) is correct. Let total no of toffees be x. The following table shows the all calculations.

	Friend	Bowl Status
R	$=\frac{x}{3}-4$	$=\frac{2x}{3}+4$
S	$=\frac{1}{4}\left[\frac{2x}{3}+4\right]-3$	$=\frac{2x}{3} + 4 - \frac{x}{6} + 2$
	$=\frac{x}{6}+1-3=\frac{x}{6}-2$	$=\frac{x}{2}+6$
Т	$=\frac{1}{2}\left(\frac{x}{2}+6\right)-2$	$=\frac{x}{2}+6-\frac{x}{4}-1$
	$=\frac{x}{4}+1$	$=\frac{x}{4}+5$

Now,

or

$$x = 12 \times 4 = 48$$

 $\frac{x}{4} = 17 - 5 = 12$

10.31 Option (B) is correct.

Circuitous means round about or not direct. Indirect is closest in meaning to this circuitous

(A) Cyclic	: Recurring in nature
(B) Indirect	: Not direct
(C) Confusing	: lacking clarity of meaning
(D) Crooked	: set at an angle; not straight

 $\frac{x}{4} + 5 = 17$

10.32 Option (B) is correct.

A worker may by unemployed. Like in same relation a sleeper may be unaware.

10.33 Option (D) is correct.

Here conserve is most appropriate word.

10.34 Option (C) is correct.

Betrayed means reveal unintentionally that is most appropriate.

10.35 Option (D) is correct.

Number of people who play hockey n(A) = 15

Number of people who play football n(B) = 17

Persons who play both hockey and football $n(A \cap B) = 10$ Persons who play either hockey or football or both :

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$15 + 17 - 10 = 22$$

Thus people who play neither hockey nor football = 25 - 22 = 3

10.36 Option (D) is correct.

10.37 Option (C) is correct.

Since 7 + 6 = 13 but unit digit is 5 so base may be 8 as 5 is the remainder when 13 is divided by 8. Let us check.

SPECIAL EDITION (STUDY MATERIAL FORM)

At market Book is available in 3 volume i.e. in 3 book binding form. But at NODIA Online Store book is available in 10 book binding form. Each unit of Book is in separate binding.

Available Only at NODIA Online Store

Click to Buy

www.nodia.co.in

137_8			731_{8}
276_{8}			672_{8}
435	Thus here base is 8.	Now	1623

10.38 Option (D) is correct.

Let W be the total work. Per day work of 5 skilled workers $=\frac{W}{20}$ Per day work of one skill worker $=\frac{W}{5 \times 20} = \frac{W}{100}$ Similarly per day work of 1 semi-skilled workers $=\frac{W}{8 \times 25} = \frac{W}{200}$ Similarly per day work of one semi-skill worker $=\frac{W}{10 \times 30} = \frac{W}{300}$ Thus total per day work of 2 skilled, 6 semi-skilled and 5 unskilled workers is $=\frac{2W}{100} + \frac{6W}{200} + \frac{5W}{300} = \frac{12W + 18W + 10W}{600} = \frac{W}{15}$ Therefore time to complete the work is 15 days

Therefore time to complete the work is 15 days.

10.39 Option (B) is correct.

As the number must be greater than 3000, it must be start with 3 or 4. Thus we have two case:

Case (1) If left most digit is 3 an other three digits are any of 2, 2, 3, 3, 4, 4, 4, 4.

- (1) Using 2, 2, 3 we have 3223, 3232, 3322 i.e. $\frac{3!}{2!} = 3$ no.
- (2) Using 2,2,4 we have 3224, 3242, 3422 i.e. $\frac{3!}{2!} = 3$ no.
- (3) Using 2,3,3 we have 3233,3323,3332 i.e. $\frac{3!}{2!} = 3$ no.

(4) Using 2,3,4 we have 3! = 6 no.

- (5) Using 2,4,4 we have 3244, 3424, 3442 i.e. $\frac{3!}{2!} = 3$ no.
- (6) Using 3,3,4 we have 3334, 3343, 3433 i.e. $\frac{3!}{2!} = 3$ no.

(7) Using 3,4,4 we have 3344,3434,3443 i.e. $\frac{3!}{2!} = 3$ no. (8) Using 4,4,4 we have 3444 i.e. $\frac{3!}{3!} = 1$ no. Total 4 digit numbers in this case is 1 + 3 + 3 + 3 + 6 + 3 + 3 + 3 + 1 = 25Case 2: If left most is 4 and other three digits are any of 2, 2, 3, 3, 3, 4, 4, 4. (1) Using 2,2,3 we have 4223, 4232, 4322 i.e. $\frac{3!}{2!} = 3$ no (2) Using 2,2,4 we have 4224, 4242, 4422 i.e. $\frac{3!}{2!} = 3$ no (3) Using 2,3,3 we have 4233, 4323, 4332 i.e. $\frac{3!}{2!} = 3$ no (4) Using 2,3,4 we have i.e. 3! = 6 no (5) Using 2,4,4 we have 4244, 4424, 4442 i.e. $\frac{3!}{2!} = 3$ no (6) Using 3,3,3 we have 4333 i.e $\frac{3!}{3!} = 1$. no. (7) Using 3,3,4 we have 4334, 4343, 4433 i.e. $\frac{3!}{2!} = 3$ no **GATE Electronics & Communication** by RK Kanodia Now in 3 Volume Purchase Online at maximum discount from online store and get POSTAL and Online Test Series Free visit www.nodia.co.in (8) Using 3,4,4 we have 4344, 4434, 4443 i.e. $\frac{3!}{2!} = 3$ no (9) Using 4,4,4 we have 4444 i.e. $\frac{3!}{3!} = 1$. no Total 4 digit numbers in 2nd case = 3 + 3 + 3 + 6 + 3 + 3 + 1 + 3 + 1 = 26Thus total 4 digit numbers using case (1) and case (2) is = 25 + 26 = 51Option (B) is correct. Let H, G, S and I be ages of Hari, Gita, Saira and Irfan respectively. Now from statement (1) we have H + G > I + SForm statement (2) we get that G - S = 1 or S - G = 1As G can't be oldest and S can't be youngest thus either GS or SG possible. From statement (3) we get that there are no twins (A) HSIG : There is I between S and G which is not possible

- (A) HSIG: There is T between S and G which is not possible
- (B) SGHI : SG order is also here and S > G > H > I and G + H > S + I which is possible.

10.40

- (C) IGSH : This gives I > G and S > H and adding these both inequalities we have I + S > H + G which is not possible.
- (D) IHSG : This gives I > H and S > G and adding these both inequalities we have I + S > H + G which is not possible.

For more GATE Resources, Mock Test and Study material join the community http://www.facebook.com/gateec2014